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We study the quantum separability problem by using general symmetric informationally complete

measurements and present a separability criterion for arbitrary dimensional bipartite systems. We

show by detailed examples that our criterion is more powerful than the existing ones in entanglement

detection.

I. INTRODUCTION

Quantum entanglement is one of the most fundamen-

tal resources in quantum information processing [1, 2, 3].

Operational and efficient criteria for the detection of en-

tanglement is of great significance. It has been discussed

that the problem of determining whether or not a giv-

en state is entangled is NP-hard [4, 5, 6]. There have

been numerous criteria to distinguish quantum entan-

gled states from the separable ones, such as positive par-

tial transposition(PPT) criterion [7, 8, 9], realignment

criterion [10, 11, 12, 13, 14, 15, 16], covariance matrix

criterion [17], correlation matrix criterion [18, 19], and

generalized form of the correlation matrix criterion [20].

While numerous mathematical tools have been em-

ployed in entanglement detection of quantum states, ex-

perimental implementation of entanglement detection for

unknown quantum states has fewer results [21, 22, 23,

24]. In [25], the authors connected the separability

problem with the concept of mutually unbiased bases

(MUBs) [26] for two-qubit, multipartite and continuous-

variable quantum systems. These entanglement criteria

are shown to be powerful and can be implemented ex-

perimentally. After that, the authors in [27, 28] gener-

alized such idea and provided an entanglement criteri-

on based on mutually unbiased measurements (MUMs)

[29]. Moreover, it has been shown that the criterion based

on MUMs is more effective than the criterion based on

MUBs.

Besides mutually unbiased bases, another intriguing

topic in quantum information theory is the symmetric

informationally complete positive operator-valued mea-

sures (SIC-POVMs). Most of the literature on SIC-

POVMs focus on rank-1 SIC-POVMs that all the positive

operator-valued measure (POVM) elements are propor-

tional to rank-1 projectors. Nevertheless, the existence

of SIC-POVMs in arbitrary dimension is still an open

problem [38]. In [30], the author introduced the gen-

eral symmetric informationally complete measurements

(general SIC-POVMs) in which the elements need not to

be rank one, and showed that general SIC-POVMs exist

in all finite dimensions. Furthermore, Gour and Kalev

[31] constructed all general SIC measurements from the

generalized Gell-Mann matrices. In [32, 33], the authors

presented separability criteria for both d-dimensional bi-

partite and multipartite systems based on general SIC-

POVMs. Very recently, Bae et.al.[34] studied entangle-

ment detection via quantum 2-designs, which includes

SIC-POVMs as a special example. In [35] the authors

investigated the entanglement properties of multipartite

systems with tight informationally complete measure-

ments including SIC-POVMs. In addition, the authors in

[36] considered a nonlinear entanglement criterion based

on SIC-POVMs. In [37] the authors used the general

SIC-POVMs to derive the entanglement criterion and

demonstrated the superiority of the criterion by various

examples.

In this paper, we study the quantum separability prob-
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lem by using general SIC-POVMs and present a sepa-

rability criterion for arbitrary high dimensional bipar-

tite systems of a dA-dimensional subsystem and a dB-

dimensional subsystem. The paper is organized as fol-

lows. In Sec. II, we recall some basic notions of SIC-

POVMs and general SIC-POVMs. Section III provides

an entanglement criterion based on the general SIC-

POVMs and some remarks. In Sec. IV, we compare the

criterion with the ones in [32] and [37] via detailed exam-

ples, and show that our criterion is more efficient than

the existing ones. We conclude the paper in Sec. V.

II. SIC-POVMS AND GENERAL SIC-POVMS

We first review some basic knowledge of symmet-

ric informationally complete measurements and general

symmetric informationally complete measurements. A

POVM {Pj} with d2 rank-1 operators acting on Cd is

symmetric informationally complete, if

Pj =
1

d
|ϕj⟩⟨ϕj |, (1)

d2∑
j=1

Pj = I, (2)

where j = 1, 2, · · · , d2, I is the identity operator, and the

vectors |ϕj⟩ satisfy |⟨ϕj |ϕk⟩|2 = 1/(d+ 1), j ̸= k. The ex-

istence of SIC-POVMs in arbitrary dimension d is still an

open problem. Only analytical solutions have been found

in dimensions d = 2 − 24, 28, 30, 31, 35, 37, 39, 43, 48, 124

and numerical solutions have been found up to dimension

151 [38].

The concept and constructions of general SIC mea-

surements were introduced in Refs. [30, 31]. A set of d2

positive semidefinite operators {Pα}d
2

α=1 on Cd is said to

be a general SIC measurements if

d2∑
α=1

Pα = I, (3)

Tr(P 2
α) = a, (4)

Tr(PαPβ) =
1− da

d(d2 − 1)
, (5)

where α, β ∈ {1, 2, · · · , d2}, α ̸= β, the parameter a satis-

fies 1
d3 < a 6 1

d2 , and a = 1
d2 if and only if all Pα are rank

one, which gives rise to a SIC-POVM. It can be shown

that Tr(Pα) = 1
d for all α. Contrasting to SIC-POVM,

the general SIC-POVM can be explicitly constructed [31].

Let {Fα}d
2−1

α=1 be a set of d2 − 1 Hermitian, traceless op-

erators acting on Cd, satisfying Tr(FαFβ) = δα,β . Set

F =
∑d2−1

α=1 Fα. The d2 operators

Pα =
1

d2
I+ t[F − d(d+ 1)Fα], α = 1, 2, · · · , d2 − 1,(6)

Pd2 =
1

d2
I+ t(d+ 1)F (7)

form a general SIC measurement. Here t should be cho-

sen such that Pα > 0 and the parameter a is given by

a =
1

d3
+ t2(d− 1)(d+ 1)3. (8)

III. ENTANGLEMENT DETECTION VIA
GENERAL SIC-POVMS

Entanglement detection via SIC-POVMs had been dis-

cussed in [37]. However, the method subjects to the exis-

tence of SIC-POVMs, which is an open problem. Unlike

the SIC-POVMs, the general symmetric informationally

complete measurements do exist for arbitrary dimension

d.

Consider a quantum state ρ and a general SIC-POVM

Ms = {Pα}d
2

α=1. We have the probability pα = ⟨Pα⟩ =

Tr(Pαρ) of outcome α. Conversely, the quantum state ρ

can be reconstructed from these probabilities:

ρ =
d(d2 − 1)

ad3 − 1

d2∑
α=1

pαPα − d(1− ad)

ad3 − 1
I. (9)

Denote (e| = (p1 p2 · · · pd2) and |e) = (p1 p2 · · · pd2)T .

Calculation shows that

d2∑
α=1

p2α =
(ad3 − 1)Tr(ρ2) + d(1− ad)

d(d2 − 1)

6 ad2 + 1

d(d+ 1)
, (10)

where the upper bound is saturated iff ρ is pure.
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Now consider a dA × dB bipartite state ρ, and two

general SIC-POVMs: {PA
α }d

2
A

α=1 with parameter aA and

{PB
α }d

2
B

α=1 with parameter aB for the two subsystems, re-

spectively. The linear correlations between PA and PB

read

[P]ij = ⟨PA
i ⊗ PB

j ⟩. (11)

Denote P the matrix with entries given by [P]ij .

Theorem 1 If a bipartite state ρ is separable, then

∥P∥tr 6
√

aAd2A + 1

dA(dA + 1)

√
aBd2B + 1

dB(dB + 1)
, (12)

where ∥P∥tr = Tr(
√
PP†).

Proof. We consider a pure separable state ρ = ρA ⊗ ρB

at first. We have

P =

 pA,1

...
pA,d2

A

(
pB,1 · · · pB,d2

B

)
≡ |eA)(eB|, (13)

where pA,i = Tr(PA
i ρ) for i = 1, 2, · · · , d2A and pB,j =

Tr(PB
j ρ) for j = 1, 2, · · · , d2B . Then

∥P∥tr = (eA | eA)
1
2 (eB | eB)

1
2

6
√

aAd2A + 1

dA(dA + 1)

√
aBd2B + 1

dB(dB + 1)
. (14)

By employing the convexity property of the trace norm,

we have

∥P∥tr 6
√

aAd2A + 1

dA(dA + 1)

√
aBd2B + 1

dB(dB + 1)
(15)

for separable states.

Remark 1. If one takes a = 1
d2 , the criterion of

Theorem 1 reduces to the criterion based on SIC-POVM

[37], i.e., if a bipartite state ρ is separable, then ∥P∥tr 6√
2

dA(dA+1)

√
2

dB(dB+1) .

Remark 2. If dA = dB and aA = aB , we have

∥P∥tr 6 ad2+1
d(d+1) . Furthermore, for a product state, one

gets

Ja(ρ) 6 ∥Ps∥tr, (16)

where Ja(ρ) =
d2∑
j=1

Tr(Pj ⊗Qjρ) [32].

IV. EXAMPLES

Let us consider some examples to illustrate the effec-

tiveness and superiority of our criterion compared with

the previously known criterion in [32] and the recently

criterion in [37].

Let {Pα}d
2

α=1 be a set of general SIC-POVM on Cd with

the parameter a. Let P̄α denote the conjugation of Pα.

Then {P̄α}d
2

α=1 is another set of general SIC-POVM with

the same parameter a. We consider the case of d = 3.

It can be shown that for any non-zero t ∈

[−0.012, 0.012], the following nine matrices

Pα =
1

9
I+ t(G9 − 12Gα), for α = 1, 2, · · · , 8, (17)

P9 =
1

9
I+ 4tG9 (18)

form a general SIC-POVM, where

G1 =

 1√
2

0 0

0 − 1√
2

0

0 0 0

 , G2 =

 0 1√
2

0
1√
2

0 0

0 0 0

 ,

G3 =

 0 0 1√
2

0 0 0
1√
2

0 0

 , G4 =

 0 − i√
2

0
i√
2

0 0

0 0 0

 ,

G5 =


1√
6

0 0

0 1√
6

0

0 0 −
√

2
3

 , G6 =

 0 0 0
0 0 1√

2

0 1√
2

0

 ,

G7 =

 0 0 − i√
2

0 0 0
i√
2

0 0

 , G8 =

 0 0 0
0 0 − i√

2

0 i√
2

0

 ,

G9 =


1√
2
+ 1√

6
1−i√

2
1−i√

2
1+i√

2
− 1√

2
+ 1√

6
1−i√

2

1+i√
2

1+i√
2

−
√

2
3

 .

We can use the two general SIC-POVMs {Gα}9α=1 and

{Ḡα}9α=1 to recognize entanglement.

Example 1. Consider the isotropic states that are lo-

cally unitarily equivalent to a maximally entangled state

mixed with white noise:

ρiso = q | Φ+⟩⟨Φ+|+ (1− q)
I
d2

, 0 6 q 6 1, (19)
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where | Φ+⟩ =
1√
d

d−1∑
i=0

| ii⟩. For d = 3, by direct-

ly calculating the correlation entries [P]ij = ⟨Gi ⊗ Ḡj⟩,

i, j = 1, · · · , 9, we have ∥P∥tr − 4a+1
6 = 96t2(4q − 1) > 0

for 1
4 < q 6 1. Thus our criterion can detect the entan-

glement of the state ρiso for 1
4 < q 6 1.

Example 2. Consider the Werner states [39]

Wd ≡ 1

d3 − d
((d− f)Id2 + (df − 1)V ), (20)

where −1 6 f 6 1, V =
∑d−1

i,j=0 |ij⟩⟨ji|. Wd is entangled

if and only if −1 6 f < 0. For d = 3, by direct calcula-

tion we have ∥P∥tr − 9a+1
12 = 48t2(

√
(3f − 1)2 − 2) > 0

for −1 ≤ f < − 1
3 . Thus our criterion recognizes the en-

tanglement for −1 6 f < − 1
3 . From the criterion in [32],

one has Ja(W3) − 9a+1
12 =

d2∑
j=1

Tr(Gj ⊗ ḠjW3) − 9a+1
12 =

36(f − 3)t2 < 0, since −1 6 f 6 1. Hence, our criterion

is more efficient than the criterion in [32].

Example 3. Consider the 3×3 bound entangled state

ρx [40],

ρx =



x
8x+1 0 0 0 x

8x+1 0 0 0 x
8x+1

0 x
8x+1 0 0 0 0 0 0 0

0 0 x
8x+1 0 0 0 0 0 0

0 0 0 x
8x+1 0 0 0 0 0

x
8x+1 0 0 0 x

8x+1 0 0 0 x
8x+1

0 0 0 0 0 x
8x+1 0 0 0

0 0 0 0 0 0 x+1
2(8x+1) 0

√
1−x2

2(8x+1)

0 0 0 0 0 0 0 x
8x+1 0

x
8x+1 0 0 0 x

8x+1 0
√
1−x2

2(8x+1) 0 x+1
2(8x+1)


, (21)

FIG. 1. The value of |P∥tr − 9a+1
12

for the state ρx, where
x ∈ (0, 1) and t ∈ [−0.012, 0.012].

where 0 < x < 1.

By straightforward computation, we have that

∥P∥tr > 9a+1
12 for 0 < x < 1. Thus our criterion can

detect the entanglement for the whole family of 3 × 3

bound entangled states. In Fig. 1 we plot the value of

|P∥tr − 9a+1
12 as a function of x and t.

Now we add white noise to ρx, and consider

ρ(x, q) = qρx +
(1− q)

9
I, 0 6 q 6 1. (22)

Using the same general SIC-POVMs, we have

Ja(ρ(x, q))−
9a+ 1

12
=

d2∑
j=1

Tr(Gj ⊗ Ḡjρ(x, q))−
9a+ 1

12

= 24t2(−4 +
q + 35qx

1 + 8x
). (23)

From Fig. 2, one can easily find that Ja(ρ(x, q))− 9a+1
12 <

0 for all permissable x, q. Thus our criterion is shown

to be more efficient in detecting entanglement of ρ(x, q)

than the criterion of Ref. [32].

Moreover, our criterion can successfully detect entan-

glement for some states that cannot be detected by the

criterion in [37]. Let us consider the following three
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FIG. 2. The value of −4+ q+35qx
1+8x

for x ∈ (0, 1) and q ∈ [0, 1].

states, ρ(0.25, 0.994), ρ(0.45, 0.995) and ρ(0.57, 0.996),

whose entanglement cannot be identified by the crite-

rion in [37]. Denote the correlation entries by [Pα]ij =

⟨Gi ⊗ Ḡj⟩, i, j = 1, · · · , 9, α = 1, 2, 3, for three states

ρ(0.25, 0.994), ρ(0.45, 0.995) and ρ(0.57, 0.996), respec-

tively. We have ∥P1∥tr > 9a+1
12 , ∥P2∥tr > 9a+1

12 and

∥P3∥tr > 9a+1
12 in the respective fixed parameter inter-

val, see FIG. 3. Thus our criterion can successfully detec-

t the entanglement of these states by suitably choosing

the general SIC measurements, namely, the parameter t.

Therefore, in this case our criterion is more efficient than

the criterion in [37].

V. CONCLUSION

We have presented an entanglement detection criteri-

on constructed from the general SIC measurements. In-

terestingly, this construction includes the criterion con-

structed by the SIC measurements as a special case that

the parameter a of general SIC measurements is equal to

1/d2. The criterion has been shown to be more efficient

in detecting entanglement of some quantum states than

the existing criteria. Moreover, our separability criterion

is experimentally feasible.
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FIG. 3. The value ∥P∥tr − 9a+1
12

for the states ρ(0.25, 0.994),
ρ(0.45, 0.995) and ρ(0.57, 0.996) (form top to bottom).
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