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We investigate the polygamy relations related to the concurrence of assistance for any multipartite
pure states. General polygamy inequalities given by the αth (0 ≤ α ≤ 2) power of concurrence of
assistance is first presented for multipartite pure states in arbitrary-dimensional quantum systems.
We further show that the general polygamy inequalities can even be improved to be tighter inequal-
ities under certain conditions on the assisted entanglement of bipartite subsystems. Based on the
improved polygamy relations, lower bound for distribution of bipartite entanglement is provided in
a multipartite system. Moreover, the βth (0 ≤ β ≤ 1) power of polygamy inequalities are obtained
for the entanglement of assistance as a by-product, which are shown to be tighter than the existing
ones. A detailed example is presented.

PACS numbers:

INTRODUCTION

Quantum entanglement [1–8] has been extensively s-
tudied due to its importance in quantum communication
and quantum information processing in recent years. The
study of quantum entanglement from various viewpoints
has been a very active area and has led to many impres-
sive results. Monogamy of entanglement is one of the
nonintuitive phenomena of quantum physics that distin-
guish quantum from classical physics. Different from the
classical world, it is not possible to prepare three qubits
in a way that any two qubits are maximally entangled.
Qualitatively, monogamy of entanglement measures the
shareability of entanglement in a composite quantum sys-
tem. Moreover, the monogamy property has emerged as
the ingredient in the security analysis of quantum key
distribution [9].

The monogamy relation was first quantified by Coff-
man, Kundu, and Wootters [10] for three qubits, which
satisfies EA|BC ≥ EAB+EAC . The CKW inequality shows
the mutually exclusive nature of multipartite quantum
entanglement in a quantitative way: more entanglement
shared between two qubits (A and B) necessarily im-
plies less entanglement between the other two qubits (A
and C). CKW inequality was generalized for multiqubit
systems [11] and also studied intensively in more gener-
al settings [12, 13]. However, the CKW inequality fails
for higher-dimensional quantum systems. It is also not
generally true for three-qubit systems with other entan-
glement measures like entanglement of formation [14].
Monogamy of multiqubit entanglement and some higher-
dimensional quantum systems were later characterized in
terms of various entanglement measures [15–17].

Whereas the monogamy of entanglement shows the
restricted sharability of multipartite quantum entangle-
ment, the distribution of entanglement in multipartite
quantum systems was shown to have a dually monoga-
mous property. Using concurrence of assistance [18] as
the measure of distributed entanglement, the polygamy

of entanglement provides a lower bound for distribution
of bipartite entanglement in a multipartite system [19].
Polygamy of entanglement is characterized as a polygamy
inequality, EaA|BC ≤ EaAB+EaAC for a tripartite quan-
tum state ρABC , where EaA|BC is the assisted entangle-
ment [20] between A and BC. Polygamy of entanglement
was generalized to multiqubit systems [19] and arbitrary
dimensional multipartite states [19, 21–23].

The study of quantum entanglement in higher-
dimensional quantum systems is of importance in quan-
tum information processing. Monogamy and polygamy
of entanglement can restrict the possible correlations be-
tween the authorized users and the eavesdroppers, which
tightens security bounds in quantum cryptography. And
optimized monogamy and polygamy relations give rise
to finer characterizations of the entanglement distribu-
tions. Furthermore, to optimize the efficiency of entan-
glement usage as a resource in quantum cryptography,
higher-dimensional quantum systems rather than qubits
are preferred in some physical systems for stronger secu-
rity in quantum key distribution [24].

In this paper, we provide a tighter polygamy inequali-
ties for arbitrary dimensional quantum systems. General
polygamy inequalities given by the αth (0 ≤ α ≤ 2) pow-
er of concurrence of assistance are first presented for mul-
tipartite pure states in arbitrary-dimensional quantum
systems. We further show that the general polygamy in-
equalities can even be improved to be tighter inequalities
under certain conditions on the assisted entanglement of
bipartite subsystems. Based on the improved polygamy
relations, lower bound for distribution of bipartite entan-
glement is provided for multipartite systems. Moreover,
the βth (0 ≤ β ≤ 1) power of polygamy inequalities are
obtained for the entanglement of assistance, which are
shown to be tighter than the existing ones.

We first recall monogamy and polygamy inequalities
related to concurrence and concurrence of assistance. Let
HX denote a discrete finite-dimensional complex vector
space associated with a quantum subsystem X. For a
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bipartite pure state |ψ⟩AB ∈ HA ⊗HB, the concurrence
is given by [25–27], C(|ψ⟩AB) =

√
2 [1− Tr(ρ2A)], where

ρA is the reduced density matrix obtained by tracing over
the subsystem B, ρA = TrB(|ψ⟩AB⟨ψ|). The concurrence
for a bipartite mixed state ρAB is defined by the con-
vex roof extension, C(ρAB) = min{pi,|ψi⟩}

∑
i piC(|ψi⟩),

where the minimum is taken over all possible pure s-
tate decompositions of ρAB =

∑
i

pi|ψi⟩⟨ψi|, with pi ≥ 0,∑
i

pi = 1 and |ψi⟩ ∈ HA ⊗HB .

For a tripartite state |ψ⟩ABC , the concurrence of assis-
tance is defined by [28, 29],

Ca(|ψ⟩ABC) ≡ Ca(ρAB) = max
{pi,|ψi⟩}

∑
i

piC(|ψi⟩),

where the maximum is taken over all possible pure
state decompositions of ρAB = TrC(|ψ⟩ABC⟨ψ|) =∑
i

pi|ψi⟩AB⟨ψi|. For pure states ρAB = |ψ⟩AB⟨ψ|, one

has C(|ψ⟩AB) = Ca(ρAB).
For an N -qubit state ρAB1···BN−1

∈ HA ⊗ HB1 ⊗
· · · ⊗ HBN−1 , the concurrence C(ρA|B1···BN−1

) of the s-
tate ρAB1···BN−1

, viewed as a bipartite state under the
partition A and B1, B2, · · · , BN−1, satisfies the Coffman-
Kundu-Wootters inequality [11, 30],

C2(ρA|B1,B2··· ,BN−1
) ≥

N−1∑
i=1

C2(ρABi), (1)

where ρABi = TrB1···Bi−1Bi+1···BN−1(ρAB1···BN−1). Fur-
ther improved monogamy relations are presented in [15]
and [16].
The dual inequality in terms of the concurrence of as-

sistance for N -qubit states have the form [19],

C2
a(ρA|B1,B2··· ,BN−1

) ≤
N−1∑
i=1

C2
a(ρABi

). (2)

For a bipartite arbitrary dimensional pure state
|ϕ⟩AB =

∑d1
i=1

∑d2
k=1 aik|ik⟩AB in Cd1 ⊗ Cd2 , the con-

currence is given by [31]

C2(|ϕ⟩AB) = 2(1− Tr(ρ2A)) = 4

d1∑
i<j

d2∑
k<l

|aikajl − ailajk|2.(3)

And for a mixed state ρAB =
∑
i pi|ϕi⟩AB⟨ϕi|,

from (3) its concurrence of assistance satis-
fies Ca(ρAB) = max{pi,|ϕi⟩}

∑
i piC(|ϕi⟩) ≤∑D1

m=1

∑D2

n=1(max
∑
i pi|⟨ϕi|(LmA ⊗ LnB)|ϕ∗i ⟩|) =∑D1

m=1

∑D2

n=1 Ca((ρAB)mn) := τa(ρAB) [32], where D1 =
d1(d1 − 1)/2, D2 = d2(d2 − 1)/2, LmA = PmA (−|i⟩A⟨j| +
|j⟩A⟨i|)PmA , LnB = PnB(−|k⟩B⟨l| + |l⟩B⟨k|)PnB , and
PmA = |i⟩A⟨i| + |j⟩A⟨j|, PnB = |k⟩B⟨k| + |l⟩B⟨l| are the
projections onto the subspaces spanned by the local
bases {|i⟩A, |j⟩A} and {|k⟩B , |l⟩B}, respectively. A

general polygamy inequality for any multipartite pure
state |ϕ⟩A1···An ∈ Cd1 ⊗· · ·⊗Cdn was established in [32],

τ2a (|ϕ⟩A1|A2···An
) ≤

n∑
i=2

τ2a (ρA1Ai), (4)

where ρA1Ak
is the reduced density matrix of |ϕ⟩A1|A2···An

associated with the subsystems A1Ak, k = 2, · · · , n.

WEIGHTED POLYGAMY RELATION FOR
CONCURRENCE OF ASSISTANCE

Polygamy of entanglement states that if a multipar-
tite state is maximally entangled with respect to a given
kind of multipartite entanglement, then it must be pure
[33]. This observation implies that all maximally entan-
gled states are necessarily uncorrelated with any other
systems. One can even propose this condition as another
requisite for a good multipartite entanglement quantifi-
er. Furthermore, it is also important to note that this
polygamy holds for all kinds of entanglement, that is,
whenever a system reaches a maximum amount of en-
tanglement under any partitions, it becomes “free” of its
environment.

Therefore, for states that do not reach the maximum
amount of entanglement of assistance under any parti-
tion, the polygamy inequality of entanglement provides
a lower bound for the distribution of bipartite entangle-
ment in a multipartite system. Meanwhile, the bipartite
sharability of entanglement in a multipartite system gives
an upper bound of the entanglement. Tighter polygamy
inequalities give rise to finer characterization of the en-
tanglement distributions, which are tightly related to the
security of quantum cryptographic protocols based on en-
tanglement [9] (it limits the amount of correlations that
an eavesdropper can have with the honest parties). In
the following, we give a class of polygamy inequalities
that are tighter than existing ones. First, we give the
definition of Hamming weight.

For any non-negative integer j and its binary expansion

j =
n−1∑
i=0

ji2
i,

with log2 j ≤ n and ji ∈ {0, 1}, i = 0, 1, · · · , n − 1,
we can always define a unique binary vector j⃗ associated
with j,

j⃗ = (j0, j1, · · · , jn−1). (5)

For the binary vector j⃗ defined in (5), the Ham-
ming weight wH (⃗j) is defined by the number of 1′s in
{j0, j1, · · · , jn−1} [1].

[Lemma 1]. For any real numbers x and t, 0 ≤ t ≤ 1,
0 ≤ x ≤ 1, we have (1 + t)x ≤ 1 + (2x − 1)tx.
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[Proof]. Let f(x, y) = (1+y)x−yx with 0 ≤ x ≤ 1, y ≥
1. Then ∂f

∂y = x[(1+y)x−1−yx−1] ≤ 0. Therefore, f(x, y)

is an decreasing function of y, i.e., f(x, y) ≤ f(x, 1) =
2x − 1. Set y = 1

t , 0 < t ≤ 1, we obtain (1 + t)x ≤
1 + (2x − 1)tx. When t = 0, the inequality is trivial. �
The following theorem provides states that a class of

polygamy inequalities satisfied by the α-power of τa.
For convenience, we denote τa(ρABi) = τaABi

the con-
currence of assistance ρABi and τa(ρA|B0B1···BN−1

) =
τaA|B0B1···BN−1

.
[Theorem 1]. For any multiparty pure state

ρAB0···BN−1
, we have

ταa A|B0B1···BN−1
≤
N−1∑
j=0

(2
α
2 − 1)wH (⃗j)ταa ABj

(6)

for 0 ≤ α ≤ 2, where j⃗ = (j0, j1, · · · , jN−1) is the vector
from the binary representation of j and wH (⃗j) is the
Hamming weight of j⃗.
[Proof]. Without loss of generality, we can always have

τaABj
≥ τaABj+1

≥ 0, (7)

by relabeling the subsystems. From (4), it is sufficient to
show thatN−1∑

j=0

τ2aABj

α
2

≤
N−1∑
j=0

(2
α
2 − 1)wH (⃗j)ταa ABj

. (8)

We first prove the inequality (8) for the case that N is
a power of 2, N = 2n, by mathematical induction. For
n = 1, by using Lemma 1 we have

ταa A|B0B1
≤ ταa AB0

+ (2
α
2 − 1)ταa AB1

,

which is just the inequality (8) for N = 2.
Now let us assume that the inequality (8) is true

for N = 2n−1 with n ≥ 2, and consider the case
that N = 2n. For an (N + 1)-partite quantum state
ρAB0···BN−1

and its bipartite reduced density matrices
ρABj , j = 0, 1, · · · , N − 1, we haveN−1∑

j=0

τ2aABj

α
2

=

2n−1−1∑
j=0

τ2aABj
+

2n−1∑
j=2n−1

τ2aABj

α
2

=

2n−1−1∑
j=0

τ2aABj

α
2
1 +

∑2n−1
j=2n−1 τ2aABj∑2n−1−1
j=0 τ2aABj

α
2

.(9)

Due to (7) we have

2n−1∑
j=2n−1

τ2aABj
≤

2n−1−1∑
j=0

τ2aABj
. (10)

By using Lemma 1 we getN−1∑
j=0

τ2aABj

α
2

≤

2n−1−1∑
j=0

τ2aABj

α
2

+(2
α
2 − 1)

 2n−1∑
j=2n−1

τ2aABj

α
2

. (11)

Here, the induction hypothesis assures that2n−1−1∑
j=0

τ2aABj

α
2

≤
2n−1−1∑
j=0

(2
α
2 − 1)wH (⃗j)ταa ABj

. (12)

From above relations we obtain 2n−1∑
j=2n−1

τ2aABj

α
2

≤
2n−1∑
j=2n−1

(2
α
2 − 1)wH (⃗j)−1ταa ABj

.(13)

Taking into account (11), (12) and (13) we have2n−1∑
j=0

τ2aABj

α
2

≤
2n−1∑
j=0

(2
α
2 − 1)wH (⃗j)ταa ABj

, (14)

which proves the inequality (8) for N = 2n.
Now for an arbitrary positive integer N , consider an

(N+1)-partite state ρAB0···BN−1
. We can always assume

that 0 ≤ N ≤ 2n for some n. Consider a (2n+1)-partite
quantum state

ρ′AB0···B2n−1
= ρAB0···BN−1 ⊗ δBN ···B2n−1

, (15)

which is a product of ρAB0···BN−1
and an arbitrary (2n−

N)-partite quantum state δBN ···B2n−1
.

Because ρ′AB0···B2n−1
is a (2n+1)-partite state, inequal-

ity (14) leads to

ταa (ρ
′
A|B0B1···B2n−1

) ≤
2n−1∑
j=0

(2
α
2 − 1)wH (⃗j)ταa (σABj ), (16)

where σABj is the bipartite reduced density matrix of
ρ′AB0···B2n−1

for j = 0, 1, · · · , 2n−1. Since ρ′AB0···B2n−1
is

a separable state with respect to the bipartition between
AB0 · · ·BN−1 and BN · · ·B2n−1, one has

τa(ρ
′
A|B0B1···B2n−1

) = τa(ρA|B0B1···BN−1
), (17)

and

τa(σABj ) = 0, (18)

for j = N, · · · , 2n − 1. Moreover, for j = 0, 1, · · · , N − 1
one has

σABj = ρABj . (19)
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From (16 - 19), we have

ταa (ρA|B0B1···BN−1
)

= ταa (ρ
′
A|B0B1···B2n−1

)

≤
2n−1∑
j=0

(2
α
2 − 1)wH (⃗j)ταa (σABj )

=

N−1∑
j=0

(2
α
2 − 1)wH (⃗j)ταa (ρABj ). (20)

This completes the proof. �
We have obtained the general polygamy inequality of

the αth (0 ≤ α ≤ 2) power of concurrence of assistance
for arbitrary-dimensional quantum systems. In fact, (4)
is a special case of (6) for α = 2. Besides, based on
the improved polygamy relations, we get a new upper
bound for bipartite entanglement in multipartite systems
for 0 ≤ α < 2, which is better than (4). To illustrate the
advantage of (6), we give an example as follows.

Let us consider the three-qubit state ρ = |ψ⟩⟨ψ| in the
generalized Schmidt decomposition form, where |ψ⟩ =
λ0|000⟩+ λ1e

iφ|100⟩+ λ2|101⟩+ λ3|110⟩+ λ4|111⟩, λi ≥

0, i = 0, 1, 2, 3, 4 and
4∑
i=0

λ2i = 1. We have τaA|BC =

2λ0
√
λ22 + λ23 + λ24, τaAB = 2λ0

√
λ22 + λ24, and τaAC =

2λ0
√
λ23 + λ24. Take λ0 = λ1 = 1

2 , λ2 = λ3 = λ4 =
√
6
6 ,

one has τaA|BC =
√
2
2 , τaAB = τaAC =

√
3
3 , and the

marginal quantum relations is τ2aAB + τ2aAC − τ2aA|BC ≈
0.167 for α = 2. For α = 1, the marginal quantum
relations from (6) is τaAB + (

√
2 − 1)τaAC − τaA|BC ≈

0.109, which is smaller than the one for α = 2.

Since 0 ≤ (2
α
2 − 1)wH (⃗j) ≤ 1 for any 0 ≤ α ≤ 2, we

have

ταa A|B0B1···BN−1
≤
N−1∑
j=0

(2
α
2 − 1)wH (⃗j)ταa ABj

≤
N−1∑
j=0

ταa ABj
, (21)

for any multipartite quantum state ρA|B0B1···BN−1
. Thus,

we have the following corollary.

[Corollary 1]. For any multiparty pure state
ρAB0···BN−1

, we have

τa
α
A|B0B1···BN−1

≤
N−1∑
j=0

τa
α
ABj

for 0 ≤ α ≤ 2.

The class of weighted polygamy inequalities in Theo-
rem 1 can be further tightened under some condition on
bipartite quantum relations.

[Theorem 2]. For any multipartite pure state
ρAB0···BN−1

, if

τ2aABi
≥

N−1∑
j=i+1

τ2aABj
(22)

for i = 0, 1, · · ·N − 2, we have

ταa A|B0B1···BN−1
≤
N−1∑
j=0

(2
α
2 − 1)jταa ABj

(23)

for 0 ≤ α ≤ 2.
[Proof]. From Lemma 1, we have

ταa A|B0B1···BN−1

≤ ταa AB0
+ (2

α
2 − 1)

N−1∑
j=1

τ2aABj

α
2

≤ ταa AB0
+ (2

α
2 − 1)ταa AB1

+ (2
α
2 − 1)2

N−1∑
j=2

τ2aABj

α
2

≤ · · ·
≤ ταa AB0

+ (2
α
2 − 1)ταa AB1

+ · · ·+ (2
α
2 − 1)N−1ταa ABN−1

.

�
In Theorem 2, the condition (22) are always satisfied

by some states. Let us consider a four-qubit state ρ =
|W ⟩ABCD⟨W |, where |W ⟩ABCD = a|1000⟩ + b|0100⟩ +
c|0010⟩ + d|0001⟩, and a2 + b2 + c2 + d2 = 1. We have
τa(ρA|BCD) = 2a

√
1− a2, τa(ρAB) = 2ab, τa(ρAC) =

2ac, τa(ρAD) = 2ad. The condition (22) is satisfied as
long as b2 ≥ c2 + d2. For example, we set b = 1√

2
, a =

c = d = 1√
6
. Then the state ρ = |W ⟩ABCD⟨W | satisfies

the condition (22). On the other hand, if b2 ≤ c2 + d2,
e.g., c = 1√

2
and a = b = d = 1√

6
, then ρ does not satisfy

the condition (22).
[Remark 1]. For any non-negative integer j and the

corresponding binary vector j⃗ in Eq. (5), the Ham-
ming weight wH (⃗j) is upper bounded by log2 j. Thus,
we have wH (⃗j) ≤ log2 j ≤ j, which implies that

ταa A|B0B1···BN−1
≤

∑N−1
j=0 (2

α
2 − 1)jταa ABj

≤
∑N−1
j=0 (2

α
2 −

1)wH (⃗j)ταa ABj
, for 0 ≤ α ≤ 2. In other words, in-

equality (23) in Theorem 2 is tighter than the inequali-
ty (6) in Theorem 1 for states satisfying the conditions

τ2aABi
≥

∑N−1
j=i+1 τ

2
aABj

, i = 0, · · · , N − 2.

POLYGAMY RELATIONS FOR
ENTANGLEMENT OF ASSISTANCE

Now we study the polygamy relations for entangle-
ment of assistance. For polygamy inequality beyond
qubits, it was shown that the von Neumann entropy
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can be used to establish a polygamy inequality of tripar-
tite quantum systems [34]. For any arbitrary dimension-
al tripartite pure state |ψ⟩ABC , one has E(|ψ⟩A|BC) ≤
Ea(ρAB) + Ea(ρAC), where E(|ψ⟩A|BC) = S(ρA) is the
entropy of entanglement between A and BC in terms
of the von Neumann entropy S(ρ) = −Trρ ln ρ, and
Ea(ρAB) = max

∑
i piE(|ψi⟩AB), with the maximiza-

tion taking over all possible pure state decompositions
of ρAB =

∑
i pi|ψi⟩AB⟨ψi|. Later, a general polygamy

inequality for any multipartite state ρA1|A2···An
was es-

tablished [35],

Ea(ρA1|A2···An
) ≤

n∑
i=2

Ea(ρA1Ai
). (24)

Recently, another class of multipartite polygamy in-
equalities in terms of the βth power of entanglement of
assistance (EOA) has been introduced [23]. For any mul-
tipartite state ρA|B0B1···BN−1

and 0 ≤ β ≤ 1,

Eβa A|B0B1···BN−1
≤
N−1∑
j=0

βwH (⃗j)Eβa ABj
, (25)

if EaABi
≥ EaABi+1

for i = 0, 1, · · · , N − 2; and

Eβa A|B0B1···BN−1
≤
N−1∑
j=0

βjEβa ABj
,

if EaABi
≥

∑N−1
j=i+1EaA|Bj

for i = 0, 1, · · · , N − 2. With
a similar consideration to τAB0···BN−1

, we have the fol-
lowing result for EOA.

[Theorem 3]. For any multipartite state ρAB0···BN−1 ,
we have

Eβa A|B0B1···BN−1
≤
N−1∑
j=0

(2β − 1)wH (⃗j)Eβa ABj
(26)

for 0 ≤ β ≤ 1.

To illustrate the tightness of the inequality (26)
compared with the inequality (25) in [23], we consid-
er the three-qubit state ρABC = |W ⟩ABC⟨W |, where
|W ⟩ABC = 1√

3
(|100⟩ + |010⟩ + |001⟩). We have

Ea(ρA|BC) = S(ρA) = log2 3 − 2
3 and Ea(ρAB) =

Ea(ρAC) = 2
3 . Thus the marginal EOA from inequal-

ity (25) is Eβa (ρAB) + βEβa (ρAC) − Ea(ρA|BC) = (1 +

β)( 23 )
β + 2

3 − log2 3. The marginal EOA from inequali-
ty (26) is Eβa (ρAB) + (2β − 1)Eβa (ρAC) − Ea(ρA|BC) =

2β( 23 )
β + 2

3 − log2 3. Fig. 1 shows that our inequality
gives a smaller upper bound than (25) in [23], namely,
our marginal EOA is smaller than inequallity (25) in [23]
for 0 < β < 1.

EOA

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

Β

FIG. 1: The blue dashed line represents the marginal EOA
from inequality (26) for three-qubit W state, the red thick line
represents the marginal EOA from inequality (25) in [23].

Since 0 ≤ (2β−1)wH (⃗j) ≤ 1 for any 0 ≤ β ≤ 1, we have

Eβa A|B0B1···BN−1
≤
N−1∑
j=0

(2β − 1)wH (⃗j)Eβa ABj

≤
N−1∑
j=0

Eβa ABj
,

for any multipartite quantum state ρA|B0B1···BN−1
. Thus,

we have the following corollary.
[Corollary 2]. For any multipartite pure state

ρAB0···BN−1
, we have

Ea
β
A|B0B1···BN−1

≤
N−1∑
j=0

Ea
β
ABj

for 0 ≤ β ≤ 1.
With a similar consideration to Theorem 2, we can

tighten the class of weighted polygamy inequalities in
Theorem 3 under certain conditions on bipartite quan-
tum correlations.

[Theorem 4]. For any multipartite state ρAB0···BN−1 ,
we have

Eβa A|B0B1···BN−1
≤
N−1∑
j=0

(2β − 1)jEβa ABj
, (27)

conditioned that

E2
aABi

≥
N−1∑
j=i+1

E2
aABj

,

for i = 0, 1, · · ·N − 2, 0 ≤ β ≤ 1.
[Remark 2]. For any non-negative integer j, since

wH (⃗j) ≤ log2 j ≤ j, one has Eβa A|B0B1···BN−1
≤∑N−1

j=0 (2β − 1)jEβa ABj
≤

∑N−1
j=0 (2β − 1)wH (⃗j)Eβa ABj

for

0 ≤ β ≤ 1. Therefore, inequality (27) in Theorem 4



6

is tighter than the inequality (26) in Theorem 3 for s-

tates satisfying the conditions E2
aABi

≥
∑N−1
j=i+1E

2
aABj

,
i = 0, · · · , N − 2.
In particular, (27) reduces to (24) in [35] for β = 1.

For 0 < β < 1, (27) is a tighter polygamy inequality
compared with (24). Since wH (⃗j) ≤ j, (27) in Theo-
rem 4 is in general tighter than the (26) in Theorem 3.
From the example shown in Fig. 1, one can see that (26)
is generally tighter than the result in [23]. Hence our
weighted polygamy relations give finer characterizations
of the entanglement distributions among the subsystems,
and help better security analysis of quantum key distri-
bution [9] in quantum information processing.

CONCLUSION

Entanglement monogamy and polygamy are funda-
mental properties of multipartite entanglement. We have
investigated the polygamy relations related to the con-
currence of assistance. General polygamy inequalities
given by the αth (0 ≤ α ≤ 2) power of concurrence of
assistance have been presented for multipartite states in
arbitrary-dimensional quantum systems. We have fur-
ther shown that the general polygamy inequalities can
even be improved to be tighter ones under certain con-
ditions on the assisted entanglement of bipartite subsys-
tems. Based on the improved polygamy relations, low-
er bound for distribution of bipartite entanglement has
been provided for multipartite systems. Moreover, the
βth (0 ≤ β ≤ 1) power of polygamy inequalities have
been obtained for the entanglement of assistance as a by-
product, which are shown to be tighter than the existing
ones.
The higher-dimensional quantum systems are the key

resources in various quantum information and communi-
cation processing tasks. For instance, the qudit (d > 2)
systems are preferred in some quantum key distributions,
where the use of qudits increases the coding density and
provides stronger security compared to qubits [36]. Our
results apply to general polygamy relations of multipar-
tite entanglement in arbitrary higher-dimensional quan-
tum systems. Moreover, our polygamy inequalities pro-
vide tighter constraints and finer characterizations of the
entanglement distributions among the multipartite sys-
tems. These results may highlight future works on the
study of multipartite quantum entanglement.
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