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Abstract Uncertainty relation is a core issue in quantum mechanics and quantum in-
formation theory. We introduce modified generalized Wigner-Yanase-Dyson (MGWYD)
skew information and modified weighted generalized Wigner-Yanase-Dyson (MWGWYD)
skew information, and establish new uncertainty relations in terms of the MGWYD skew
information and MWGWYD skew information.
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1. Introduction

Let H be a separable complex Hilbert space and B(H ), S(H) and D(H) the set of all
bounded linear operators, Hermitian operators and density operators on H, respectively.
An operator A € B(H) is called a trace-class operator if

1Al 2= (eallAllen) < o0

nel

for some orthonormal basis {e, }ner of H, where |A| = (ATA)%. In this case the trace of
A is defined as Tr(A) = > .;{en|Ale,). We denote the set of all trace-class operators
on H by L'(H). An operator A € B(H) is called a Hilbert-Schmidt operator if

1ALz == (3" (enlAT Alen))? < 00
nel
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for some orthonormal basis {e}ner of H. We denote the set of all Hilbert-Schmidt
operators on H by L?(H).

For a density operator p € D(H) and an observable A € S(H), the Wigner-Yanase
(WY) skew information is defined by [1]

1(4) i= — 5 Te([o*, A1), (1

where [X,Y] := XY — Y X is the commutator of X and Y. A more general quantity was
suggested by Dyson,

13(4) s= S Tr([p, Al A]), 0<a<1, (2)

which is now called the Wigner-Yanase-Dyson (WYD) skew information. (2) was further
generalized to [2]

ﬁﬁM)Z—gﬁmﬁAWﬂAb““ﬂ% a,8>0, a+p<1, (3)

which is termed the generalized Wigner-Yanase-Dyson (GWYD) skew information. It is
easy to see that when a + 8 = 1, Eq. (3) reduces to Eq. (2), and Eq. (2) reduces to Eq.
(1) when a = 3.
Another generalization of WYD skew information is given as follows [3]:

_ 2
K%@z—iﬁ(ﬁwgﬂiA4>,0§a§L (4)
where A9 = A — Tr(pA)I. We call K§(A) the weighted Wigner-Yanase-Dyson skew
information in the following. Noting that I,(A) = I,(Ap), when o = %, Eq. (4) also
reduces to Eq. (1) in this case.

Remarkable properties of WYD skew information and GWYD skew information
are revealed, and various types of uncertainty relations based on WY skew information,
WYD skew information and GWYD skew information are studied during the past few
years [4]-[19]. Particularly, uncertainty relations based on WY skew information and
WYD skew information with quantum memory are investigated recently [20]-[21]. Be-
sides skew information, uncertainty relations based on other quantities such as entropy,
variance, statistical distance, quantum coherence have been extensively studied with ex-
perimental demonstrations. It is well known that the observables and Hamiltonians in
quantum mechanics are assumed to be Hermitian operators mathematically. However,
it is argued that non-Hermitian quantum mechanics may also be an interesting frame-
work [30]. Moreover, other important operators such as quantum gates [31], generalized
quantum gates [38] and the Kraus operators of a quantum channel [31] are not necessar-
ily Hermitian. Therefore, it is natural to consider the corresponding definitions of the
different types of the skew information mentioned above for pseudo-Hermitian and/or
PT-symmetric quantum mechanics [32, 33, 34, 35, 36, 37].



For a density operator p € D(H) and an operator A € L?(H) (not necessarily
Hermitian), a generalization of the quantity in Eq. (1) is defined by [39],

11(4) := 5 Tr([p?, AT]lp%, A)), 5)

which we refer to modified Wigner-Yanase (MWY) skew information.
Similarly, a generalization of the quantity in Eq. (2) is defined by [40]

131(4) = —5 Te((p™ AT, 4)), 0<a<1, (6)

for any A € L*(H) and p € D(H), which we call modified Wigner-Yanase-Dyson
(MWYD) skew information.

And a generalization of the quantity in Eq. (4) is given by [41]

1 pa _'_plfa t pa _i_plfa
K2(A) = — =Ty A LA A— | <a<l 7
kel = -5 (|5 ] [ ]) osast @)
for any A € L?(H) and p € D(H), which we call modified weighted Wigner- Yanase-Dyson
(MWWYD) skew information.

In [39], the authors established Heisenberg type uncertainty relation and a Schrédinger-
type uncertainty relation based on MWY skew information. The definitions and prop-
erties of MWYD skew information were discussed in [40], and the uncertainty relations
for MWY skew information and MWYD skew information were extensively studied in
[42]-[43]. Moreover, the uncertainty relations for MWWYD skew information was given
in [41]. Recently, the authors in [44] introduced some related quantities, and derived
some generalizations of Schrédinger’s uncertainty and Heisenberg uncertainty relation
described by MWYD skew information.

In this paper, we first introduce the concepts of modified generalized Wigner-Yanase-
Dyson (MGWYD) skew information and modified weighted generalized Wigner-Yanase-
Dyson (MWGWYD) skew information as the generalizations of the quantities defined
in Eq. (3) and (7), and discuss their properties in detail in Section 2. Furthermore, we
provide new uncertainty relations based on these two new quantities in Section 3. Some
concluding remarks are given in Section 4.

2. MGWYD and MWGWYD skew information

We first define the MGWYD skew information for an operator A € L?(H) (not
necessarily Hermitian) and p € D(H) as follows:

157)(A) = —%Tr([pa,ATHpB,A]pl‘“‘ﬁ), a,>0, a+pB<1. (8)

Correspondingly we define

IS71(A) = ST ARHA Addp ), B0, a kBl (0)
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where {X,Y} := XY + Y X is the anti-commutator of X and Y. It follows from the
definitions that

I37](4) = S[Tr(pATA) + Tr(p™+? Ap! =0 AT) — Tr(p' 7 AT pP 4) — Tr(p* Ap'~ AT)]
and

1J5P|(A) = %[Tr(pATA) + Tr(p* TP Ap! =P AT + Tr(p' P AT PP A) + Tr(p* Ap'~@ AT)).

We also need the following definitions of related quantities.

Definition 1 For a,3 >0, a+ 8 <1, A,B € L*(H) and p € D(H), we define the
following quantities:

(i) [Cove?|(A, B) = §[Tr(pAl B)+Tr(p* 8 Ap' == BN —Tr(pB)Tr(pA")—Tr(pA)Tr(pB")];

i) [Var$?] (A) = L[Te(p A 4)+Te(p+8 Ap =8 AN~ Te(pA) Tr(p AT)~Tr(pA) Te(pAT)};

iii) ]Corrg"ﬁ (A,B) = [Tr(pATB)—i—Tr( atB Apt—=B B —Tr(p' P AT pP B)—Tr(p* Ap' ~*B")];

(
(
(iv) [C57](A, B) = §[Tr(p' P Al pP B) + Te(p™ Ap'—BH)];
(
(vi)

v) [Co71(A) = |C37)(A, A) = l[Tl"(plfﬁz‘ﬂpﬁfl) + Tr(p™Ap'~* AT)];

vi) [U7](4) = /[Var$ | (A)2 — [[Vars?|(4) — [157] (A)]2.

The followmg proposition follows immediately from the above definitions.

Proposition 1 For o, 3 >0, a+ 3 <1, A€ L*(H) and p € D(H), it holds that

(i) 137 (4) = 2°1(A), 1357](4) = [33°|(A);

(i) [13°7](AT) = [13:7](4), |757](AT) = |357|(A);

(ifi) [157|(A) = |Corrg?|(4, A).

In order to obtain the main results in the next section, we first study the properties
of the MGWYD skew information and the related quantities defined above.

Proposition 2 Let o, 3 > 0,a+3 <1, A, B € L?>(H),p € D(H), Ay = A-Tr(pA)I,
By = B — Tr(pB)I. We have

(i) \Corrz"6|(A, B) = |Corr;‘)"5|(A0,Bo) = ]Covg"5|( ,B) — |Cg”3|(Ao,Bo);
(i) [15°°](4) = [13%](Ao) = [Var](A)—|C57](Ao) = 3[Te(pAT A)+Te(p+? Apt-e— At) -
Tr(p' P ATpP A) — Tr(p™Ap'~*AT)];

(iii) [J57|(A) = [Varg?|(A) + |C37|(Ao) = 3[Tr(pATA) + Tr(po+P Apt=o—PAT) +
Tr(p' P AT PP A) + Tr(p* Ap'—*AT)];

(iv) [U37](4) = /11371 (A) 1337 (A);
(v) 0< |Ip’ﬂ|< ) < USP|(A) < [Varg?|(A).




Proof. We first prove (i). It is direct to check that
|Corr?|(Ag, By)
= L [TH(p(A = Te(pA) 1)1 B) + Te(0™ (A — Te(pA) )= BY)
Tr(p P (A~ Tr(pAYY P B) — Tr(p™(A — Te(pA) ) BY)
= Lte(p(A = Tr(pA) D) B) + Te(0B(A - Te(pA) 1) p P BY)
~Tr(p' (A = Tr(pA))Tp” B) = Tr(p* (A — Tr(pA)I)p'~*BY)]
= S [(Tx(pATB) — Tr(pB) Tr(pAT) — Tr(pA) Tr(pB) + Tr(pA)Tr(pB))

ﬁ

(0P Ap' =27 BY) = Tr(pB) Tr(pA) — Tr(pA) Tr(pB') + Tr(pA)Tr(pB))
(Tr(ﬂ1 P Ap" B) — Tr(pB) Tr(pAT) — Tr(pA)Tr(pB) + Tr(pA) Tr(pB))
(TY( “Ap'*BY) = Tr(pB)Tr(pA) — Tr(pA)Tr(pB') + Tr(pA) Tr(pB))]
= Q[Tr(pATB) + Te(p* P Ap' =27 BT) — Tr(p' P ATp" B) — Tr(p™ Ap' ~*BT)]
= \Corr?’ﬂ(A, B).

Meanwhile we have that

|Corrg’6

1
(Ao, Bo) = §[TT(PA(T)BO) + Tr(p*+P Agp' =P B})] — |CSP| (Ao, Bo)
= |CovP|(A, B) — |C5P| (Ao, Bo).
Hence, (i) holds. Then (ii) can be easily obtained. (iii) can be proved analogously.
Similar to the proof of Theorem 2 in [44], (iv) and (v) can be deduced similarly. [J
Proposition 3 Let a, 3 > 0, a+3 <1, A,B € L*(H), p € D(H), Ag = A—Tr(pA)I

and By = B — Tr(pB)I. For a spectral decomposition of p = > Ap|t¥m) (|, denote
Amn = (Um|Ao|tpn). We have

(i) |Covﬁ”8|(A,B) =33 /\O‘J“B(/\1 B G brm + /\}fa_ﬁamn%). In particular,
VargB)(A) = 1 3, A O @) nm|2+A1 Pl amnl?);

(i1) |Corr®P|(A, B) = L 3 (An—Am P A @ambrm+ N O A = AL A by, =
L X OV — A b+ AT P

(i) I3 ’BMI ) =4S AL (A — Afim‘a‘ﬁmnmﬁﬂf Plamn|?] = lzzmnw
XD X = A amn? = 33,0 cn A% = AL Nt = Am) M P lagm 2+ A% Jamn |];

(IV) ‘JPWBS ): QZmn A?n()‘ﬁ +)‘6)[>‘1 o B|anm‘2+)‘11 “ B‘amn’ ] 12 Zmn()‘a
A%)(A%+Ag)>\n_a_ﬁ\amn!2 = 22m<n(A%+)‘g)(Ag’b+A£)P\ma B‘ nm’2+)‘n “ B‘amn‘ ].

Proof. Direct calculation shows that

pATBO Z )\manm nm:

Tr(PaJrﬁA[JgPliaiﬁBO) = Z )‘?r;rﬁ)‘%;aiﬁamn%,

mn
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Te(p'~* Alp” By) = Z M P NS

Tr(pO‘A(Jgpl_o‘Bo Z AL AN mnbrn

and we can thus obtain (i) and (ii) immediately. Consequently for (iii), we have

192](A) = |Corr3?|(A, A) Z)\O‘ A AN B gl + AL a2
Moreover, we can rewrite |If,‘”g (A) as
1
a,B _ a o B _ \Byyl—a—p 2

or
« ]' o « —a— ——
I210A) = 5 D (O = X% = XD lanm [ + A7 amn .
m<n

(iv) can be proved in a similar way. This completes the proof. [J

Now, we define the modified weighted generalized Wigner-Yanase-Dyson (MWG-
WYD) skew information for an operator A € L?(H) (not necessarily Hermitian) and
p € D(H) as follows:

1 4 pf * 4 pf .
]Kﬁ’B’(A)Z—QTr<[p2p,A$] [’)Q’),Ao] Pl ) a,8>0, a+8<1. (10)

A related quantity |L§’B |(A) is defined as

1 (0% B (3 ﬂ
L5 )(4) = 5T ({p + ,Aé}{p?,Ao}pl‘“‘ﬁ) 0,820, a+B <1 (11)

The properties of the above two quantities are summarized in the following two

propositions.

Proposition 4 Let o, >0, a+ 3 <1, A€ L?*(H) and p € D(H). The following
statements hold:

(i) [Kp7|(A) = [Kp?|(A);
(ii) [Kp7[(AT) = [K57|(A);
(i) [Kp7[(A) > |157](A).

Proof. (i) and (ii) can be easily verified from the definition. We now prove (iii).

By Proposition 1 (i), we have

() = Ll e ey

Ka»ﬂ
K5 2 9 770 2

1 —a— —a— 1 (e «
= Tl Al", Aclp' P + [0, Af)[0P, Aolp' ) + L (1371(4) + 1)

1 N N o Cam Lo
= Tl A, Aolp' =P + [0, ][0, Aol =) + S 1571 (A).

(4))



Suppose that the spectral decomposition of p is p = Em Am|®m) (1| and denote ap, =
(tm|Ap|tn). Then we obtain

Te([p, AJ][p%, Aolp'*P) = Tr(p” Al — Afp™)(p* Ao — App™)p' "
= Tr(2p"Ap™ Ao — p** Af Ao — p** ApAf)pt 7
= Te(2p' A~ Ag — pM P AT A — p! TP A AY)
= D> AN, = AT = AL gy,

mn
and
Tr([p®, Afllp™, Aolp' ™) = 3 (@A ONL = A = A g .
mn
By Proposition 3 (iii), we get

1
8

1
a _ yo B _ y\Byyl-a—p 2

KOP(A) = —c 0 ALt —an 0o 4+ A otF Al metd _gplmens)

Since a, 3 >0, a+p <1land 0 < A\, A, <1, we have )\Tln+a—6 > )\37?, )\71n—a+ﬂ > /\gf and
)\}L_a_ﬁ < 1, and thus

A T AT = (G AT
which implies that

A A e N P V> P VoA

B IS PRLL b w0 Ve D Y ) P )
= (X% = A0 + (A = A

= 200, = A0 (O = XA,

Again, by Proposition 3 (iii), we conclude that [K$7|(A) > |I2F|(4). O
In a similar way, we can prove the following proposition.

Proposition 5 Let a, 3> 0, a +3 <1, A€ L?*(H) and p € D(H). The following
statements hold:
(1) 1157 1(4) = Ly (A);
(i) L7 (AT) = L5 7] (A);
(ifi) [L37](A4) > [357((A).
3. Uncertainty relations based on MGWYD and MWGWYD skew informa-

tion



In this section, we present some new uncertainty relations based on MGWYD skew
information and MWGWYD skew information and related quantities defined in the pre-
vious section. First of all, imitating the proof of Lemma 1 and Lemma 2 in [44], we can

prove the following Lemma.

Lemma 1 For any z,y > 0, 0 < 8 < min{a, 1 — a}, we have
(@ +y™)|z” =y’ < |z —y), (12)
daf(x —y)® < (z* = y?**) (% — y*). (13)

Utilizing Lemma 1, the first main result of this paper can be stated as follows.

Theorem 1 Let 0 < 3 < min{a,1 —a}, A, B € L*(H) and p € D(H). We have

«, «, o, 2
[USP|(A) - [US7|(B) > 4af||Corrl P |(A, B)[?. (14)

Proof. It follows from Proposition 3 (ii) that

|Corr$P|(A,B) = = Z AL NS — AN B + AL P )
m<n
+—= Z Aa )\B [)\1 a=p mnbmn+)\1 ar Banmbnm]
m<n

which implies that

1 L
|Corry|(A, B)| < 5 > AN = N A b + A by

m<n

1 o o _
+§ Z A%IAQ - )‘gﬂ ) ‘)‘711 “ Bamnbmn + )‘711 “ ﬂanmbnm‘

m<n
1 o o _
= 5 2 O AN = Al A b + Ay b
m<n
Utilizing (12), we obtain
||Corr$P|(A, B)| < = Z |Am N B b+ AL P b (15)
m<n

Thus, combining Cauchy-Schwarz inequality, Lemma 1 (13), Proposition (iii) and (iv),



from Eq. (15) we obtain

40zﬁ||Corrz"5](A, B)]2
<aBD> 1m = Al A P ammbnm + AP b

m<n

1 _
= = 2 O‘/B )\m - An ' A170‘75@71771bnm + Aliaiﬁamnbmn 2
4 m n

m<n
1 _
< Z[Z [()‘;Xn - )‘%)()‘gz - )‘g)()‘% + )‘g)()‘gw + )‘g)]% ’ |)‘71n_a_6anmbnm + )‘rlz_a_ﬂamnbmnHQ
m<n
1 1
a o B B 1—a—p 2 1-a—p 2\15 .
< G2 106 = X0 = MDA lannl® + A7)
(A%, + A2, + A2 AP b | + AL by )] 2]
1
a o B B 1-a—p 2 1—a—p 2\ .
P S (O YA [ e U Rt L
m<n
<1571 (A) - 1357 (B).

From the above deductions, we can also obtain that

40| Corel?|(A, B < |I27|(B) - |35 (4).
Therefore, by Proposition 2 (iv), we get

[USPI(A) - [UP|(B) > 4ap|[Corrl?|(A, B)[?,

This completes the proof. [J
Imitating the proof of Lemma 3 in [44], we can prove the following lemma.

Lemma 2 For any z,y > 0, 0 < § < min{4a, 1 — a}, we have
(@2 —2%yP)? < (a2 = y?) (2 — ). (16)

Based on this lemma, we now give the second main result of this paper.

Theorem 2 Let 0 < 3 < min{da,1 —a}, A,B € L?(H) and p € D(H). We have

(A, B)|. (17)

(0% (64 1 (67
US7|(4) - [Up?|(B) = ZIICOHp’ﬁ

Proof. It follows from Proposition 3 (ii), (iii), (iv), Lemma 2 and Cauchy-Schwarz



inequality that
| \Corra’ﬂ |(A, B)|?

7\2)\0‘ A8 — A N =B bm 4+ A P b |2

Z)\ |)\5 )\'B| ’)\1 T ﬁanmbnm )\}nfaiﬁamn%]Q

IA
»MH

D IO% = AL, = MDA + A (NG, + D))= -

mn

1 Cr— Cr— 1
(A};m_a_ﬁ|anm|2"’)‘qlz_a_6|amn|2)2()‘71na ﬁ|bnm|2+)‘7lz “ ﬂ|bmn|2)2]2

T2 [O% = A% = ADO% + A (% + A0z

IN
—_

N lanml® + A )2 0 buan | + 27 o) 212
1
a Yo B B 1—a—p 2 l—a—p A

D % A+ XN, A MDA b | + A by )

1
_ B
=1 418

(4) - 4135°7|(B)
= 4[137|(4) - 3571(B).

Similarly, we have
a?IB 2 a?ﬁ
HCorrp |(A,B)|* < 4|15

(B) - 135°1(A).

Hence, by Proposition 2 (iv), we conclude that

HCorrz"B

2 a,fB o,
(A, B)|” < 4|U5"[(A) - [U7

(B).
This completes the proof. [J

Remark Let us compare the above two theorems. (17) holds when o, 8 > 0, a+f <
land o < f <4a. When o, >0, a+3 < 1and % 1<B8<q wehave4aﬁ> 4, and thus
(17) is better than (14). When o, 3 > 0, a + 3 § land S < a < i we have 4af < 1 1
and thus (14) is better than (17).

In the previous section, we have defined the quantities |K,Oj’6 [(A) and |Lff’5 |(A). Now

we define the quantity |W57|(4) = \/ IK$P|(A)[LSP|(A) for any A € L2(H). Then it
follows from Proposition 2 (iv), Proposition 4 (iii) and Proposition 5 (iii) that

a, a,B a,B
(W2 P1(4) = [Ug7[(4), W

o, 2
(B) > [USP|(B), for all A, B € L2(H).

Therefore, we obtain the following two uncertainty relations as consequences of Theorem
1 and Theorem 2.

10



Corollary 1 Let 0 < 8 < min{a,1 —a}, A,B € L?*(H) and p € D(H). Then we
have

(WeP|(A) - [WeP|(B) > dap||Corry|(A, B)|*. (18)

Corollary 2 Let 0 < 3 < min{4a,1 —a}, A, B € L?>(H) and p € D(H). Then we
have

o e’ 1 e}
(W 21(4) - [WEPI(B) > [|CorrP|(A, B)[. (19)

Example 1 Consider the Werner state

ip 0 0 0

S ¢B3-2p) §(4p-3) 0
v 0 #(@p-3) ¢(B3-2p 0 [’

0 0 0 P

where p € [0,1]. Note that p% is separable when p € [0, £]. Let A and B be the following

non-Hermitian matrices

0 1 0 —2 10 0

A 1 0 ¢ O . B- 01 0 -1 (20)
1 0 1 0 010 —1
0 -1 0 1 1 0 ¢« 0

8.

Figure 1: The y-axis shows the uncertainty and its lower bounds. Red solid (dotdashed)
line represents the value of the left (right)-hand side of Eq. (14) with a = % and g = %
for p2; blue solid (dotdashed) line represents the value of the left (right)-hand side of
Eq. (14) with o = %—8 and = % for pab.

Moreover, when we fix the value of p, the gap between the left and right hand sides
of Eq. (14) for separable states are greater than those for the entangled states. See
Figure 2 for an illustration of this fact for p = 0.3 and p = 0.9.
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Figure 2: The z-axis shows the uncertainty and its lower bounds. (a) p = 0.3 (in this case
p2 is a separable state): Red (blue) surface represents the value of the left (right)-hand
side of Eq. (14) for p2; (b) p = 0.9 (in this case p@ is an entangled state): Red (blue)
surface represents the value of the left (right)-hand side of Eq. (14) for p@.

Example 2 Consider the isotropic state

F2F +1) 0 0 FMAF —1)

b 0 1(1-F) 0 0

Piso = 0 0 %(1 _F) 0 )
1(4F —1) 0 0 12F +1)

where F € [0,1]. Note that pf’ is separable when F' € [0,1]. With A and B being the
non-Hermitian matrices given in (20), Figure 3 illustrates the uncertainty relation (14)
with different values of o and §.

y

Figure 3: The y-axis shows the uncertainty and its lower bounds. Red solid (dotdashed)
line represents the value of the left (right)-hand side of Eq. (14) with a = %—é and g = %
for p¢® : blue solid (dotdashed) line represents the value of the left (right)-hand side of
Eq. (14) with a = %—(5) and = % for pgb .

Moreover, when we fix the value of F', the gap between the left and right hand sides
of Eq. (14) for separable states are less than those for the entangled states. See Figure
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4 for an illustration of this fact for ' = 0.4 and F' = 0.7.

0.0

Figure 4: The z-axis shows the uncertainty and its lower bounds. (a) F' = 0.4 (in this
case p? is a separable state): Red (blue) surface represents the value of the left (right)-
hand side of Eq. (14) for pf; (b) F = 0.7 (in this case pf® is an entangled state): Red

(blue) surface represents the value of the left (right)-hand side of Eq. (14) for p2

is0°

4. Conclusions

Based on the newly introduced quantities termed modified generalized Wigner-
Yanase-Dyson skew information and modified weighted generalized Wigner-Yanase-Dyson
skew information, we have derived new uncertainty relations, which turned out to be the
generalizations of the main results in [44]. Information based quantum uncertainty re-
lations are of significance for usual Hermitian quantum mechanical systems. Our work
shew new light on the study of uncertainty relations for non-Hermitian operators.
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