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ABSTRACT. In this paper, we develop the blow-up analysis and establish the energy quantization
for solutions to super-Liouville type equations on Riemann surfaces with conical singularities at
the boundary. In other problems in geometric analysis, the blow-up analysis usually strongly
utilizes conformal invariance, which yields a Noether current from which strong estimates can
be derived. Here, however, the conical singularities destroy conformal invariance. Therefore,
we develop another, more general, method that uses the vanishing of the Pohozaev constant for
such solutions to deduce the removability of boundary singularities.
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1. INTRODUCTION

Many problems with a noncompact symmetry group, like the conformal group, are limit cases
where the Palais-Smale condition no longer applies, and therefore, solutions may blow up at isolated
singularities, see for instance [Lion|. Therefore, a blow-up analysis is needed, and this has become
one of the fundamental tools in the geometric calculus of variations. This usually depends on
the fact that the invariance yields an associated Noether current whose algebraic structure can be
turned into estimates. In the case of conformal invariance this Noether current is a holomorphic
quadratic differential. For harmonic map type problems, finiteness of the energy functional in
question implies that that differential is in L'. This then can be used to obtain fundamental
estimates. For other problems, however, like (super-) Liouville equations, finiteness of the energy
functional is not sufficient to get the L' bound of that differential and hence this is an extra
assumption leading to the removability of local singularities (Prop 2.6, [JWZZ1]).

But for (super-) Liouville equations on surfaces with conical singularities, we do not even have
conformal invariance, because the scaling behavior at the singularities is different from that at
regular points, see [JZZ3|. It turns out, however, that for an important class of two-dimensional
geometric variational problems, there is a condition that is weaker than conformal invariance, the
vanishing of a so-called Pohozaev constant (i.e. the Pohozaev identity), that is not only sufficient
but also necessary for the blow-up analysis. This Pohozaev constant on one hand measures the
extent to which the Pohozaev identity fails and on the other hand provides a characterization of
the singular behavior of a solution at an isolated singularity. This vanishing condition is already
known to play a crucial role in geometric analysis (see e.g. [St]), but for super-Liouville equations,
as mentioned, this identity by itself suffices for the blow-up analysis.

In this paper, we shall apply this strategy to the blow-up analysis of the (super-)Liouville bound-
ary problem on surfaces with conical singularities. To this purpose, let M be a compact Riemann
surface with nonempty boundary OM and with a spin structure. We also denote this compact
Riemann surface as (M, A, g), where g is its Riemannian metric with the conical singularities of
divisor

A = X5 54,
(for definition of A, see Section 2). Associated to the metric g, one can define the gradient V and
the Laplace operator A in the usual way.
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We then have our main object of study, the super-Liouville functional that couples a real-
valued function v and a spinor v on M

Bo (00) = [ (GI1Va + Kyt (P + )i, Yot [ {hgu=cethdo (1)

where K is the Gaussian curvature in M, and hg is the geodesic curvature of 9Mand c is a given
positive constant. The Dirac operator P is defined by D1 := Zi=1 e, Ve ¥, where {e1,e2} is an
orthonormal basis on TM, V is the Levi-Civita connection on M with respect to g and - denotes
Clifford multiplication in the spinor bundle XM of M. Finally, (-,-), is the natural Hermitian
metric on M induced by g. We also write |- |2 as (-,-),. For the geometric background, see [LM]
or [Jo].

The Euler-Lagrange system for Ep(u,) with Neumann / chirality boundary conditions is

_Agu = 262U_eu <waw>g_Kga in MO\{QLQQ;"' an}a
p v = —e"y, in M° \ {qh(p,"' an}a (2)
u
% = Ceu_hgy on 3M\{q1,q2,~'- aQM}7
Bty = 0, on OM\ {q1,q2," - ,qm}-

Here B* are the chirality operators (see Section 2 for the definition).
When ¢ = 0 and (M, g) is a closed smooth Riemann surface, we obtain the classical Liouville
functional

1
E(u)= / {5 IVul® + Kyu — e*}dv.
M
The Euler-Lagrange equation for E(u) is the Liouville equation
—Agu = 2e*" — K.

Liouville [Liou] studied this equation in the plane, that is, for K; = 0. The Liouville equation
comes up in many problems of complex analysis and differential geometry of Riemann surfaces,
for instance the prescribing curvature problem. The interplay between the geometric and analytic
aspects makes the Liouville equation mathematically very interesting.

When ¢ # 0 and (M, g) again is a closed smooth Riemann surface, we obtain the super-Liouville
funtional

1
Buw) = [ (G190 4 Kyt (D + e, ), - ™).
M
The Euler-Lagrange system for F(u, ) is

—Agu = 267 —e" (1), — K,
Do = —e'y

The supersymmetric version of the Liouville functional and equation have been studied ex-
tensively in the physics literature, see for instance [Pr], [ARS] and [FH]. As all supersymmetric
functionals that arise in elementary particle physics, it needs anticommuting variables.

Motivated by the super-Liouville functional, a mathematical version of this functional that
works with commuting variables only, but otherwise preserves the structure and the invariances of
it, was introduced in [JWZ1]. That model couples the bosonic scalar field to a fermionic spinor
field. In particular, the super-Liouville functional is conformally invariant, and it possesses a very
interesting mathematical structure.

The analysis of classical Liouville type equations was developed in [BM, LS, Li, BCLT] etc,
and the corresponding analysis for super-Liouville equations in [JWZ1, JWZZ1, JZZ2]. In partic-
ular, the complete blow-up theory for sequences of solutions was established, including the energy
identity for the spinor part, the blow-up value at blow-up points and the profile for a sequence of
solutions at the blow-up points. For results by physicists about super-Liouville equations, we refer
to [Pr], [ARS] and [FH] etc.
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When (M, A, g) is a closed Riemann surface (without boundary) with conical singularities of
divisor A and with a spin structure, we obtain that

1 u u
Buw) = [ (G IVul + Kyut (D o+ )00, — ™),
M

The Euler-Lagrange system for E(u, ) is

—Agu = 2% —¢" <1/1,1/1>q - K,

qu/) = 76“#’

This system is closely related to the classical Liouville equation, or the prescribing curvature
equation on M with conical singularites (see [T1], [CL1]). [BT, BT1, B, Ta, BCLT, BaMo] studied
the blow-up theory of the following Liouville type equations with singular data:

Ke*

[y Kevdg
where (M, g) is a smooth surface and the singular data appear in the equation. For system (3),
[JZZ3] provides an analytic foundation and the blow-up theory.

For Liouville boundary problems on (M, g) with or without conical singularites, there are also
lots of results on the blow-up analysis, see [JWZ2, BWZ, GL, ZZ, ZZZ]. For super-Liouville
boundary problems on a smooth Riemann surface M, the corresponding results can be found in
[JZ71, IWZZ2].

In this paper, we aim to provide an analytic foundation and to establish the blow-up analysis
for the system (2). Our main result is the following energy quantization property for solutions to

(2):

Theorem 1.1. Let (uy,,) be a sequence of solutions of (2) with energy conditions:

/ e*rdg < C, / [thnydg < C.
M M

¥y ={x € M, there is a sequence y, — x such that u,(y,) — +o0}.
If X1 # 0, then the possible values of

lim { [ 2e%%n —¢un

AN + 27N + Zj4m(1 4 a;){0,1} + £;27(1 + «;){0, 1},
where N'=1{0,1,2,--- | k}.

in M\{Q1,(J2,"' 7Qm}~ (3)

—Agu=A Ar (X)L 0504, — f),

Define

S

18

From the energy quantization property, one can deduce the concentration properties of conformal
volume and the compactness of solutions. It turns out that understanding of this property is the
key step to study existence from a variational point of view by a refined Moser-Trudinger inequality,
see e.g. [DJLW, DM].

If we assume that the points g1, g2, - - , q; arein M° for 1 <[ < m and the points ¢;4+1, qi+2," - Gm
are on OM for the surface (M, A, g) with the divisor 4 = YT ajq5, aj > 0, we have the following
Gauss-Bonnet formula

1 1
— K,d — hodo, = X(M
QW/M gvg+27r o1 g0y (M) + [A],
where X (M) = 2 — 2g) is the topological Euler characteristic of M itself, gas is the genus of M
and o
J

|A| = Eé':laj + E;n:lJrl?

is the degree of A, see [T1]. From (2) we obtain that
/ 2e%Un — e“"|wn|§dv9 —|—/ ce'ndoy = / Kydvg —|—/ hgdog = 2m(X (M) + |A]).
M oM M oM
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Then we can use Theorem 1.1 to get the following:

Theorem 1.2. Let (M, A, g) be as above. Then
(i)
2m(1 — gm) + 27722210@- + X o = 2m,
then the blow-up set 31 contains at most one point. In particular, 31 contains at most one
point if gpy =0 and A = 0.
(i) if
27(1 —gm) + 271'2;:104j + X ey <,
then the blow-up set ¥, = 0.

To show Theorem 1.1, a key step is to compute the blow-up value

wn@ — Kg)dv, + / (ce"™ — hg)dog},

dMNBY (p)

= lim li 2e2Un — gl
m(p) nglOnggo{ B%(p)( € ¢

at the blow-up point p € ¥ for a blow-up sequence (un,,). Here Bgf (p) is a geodesic ball of
(M, g) at p. For this purpose, we need to study the following local super-Liouville boundary value
problem (see Section 3):

—Au(z) = 2V2(z)|z|?*e?®) —V(z)|z|*e“®) T2, in D,
pU = —V(zx)|z|*e® T, in D,

ou a u(x) (4)
G = cV(x)|x|*e" ™), on L,,
BTV = o, on L,.

Here o > 0, V(z) is in CL(D;F U L,) and satisfies 0 < a < V(z) < b. L, and S, here and

in the sequel are portions of dD;", which are defined in section 3. Then we have the following

Brezis-Merle type concentration compactness theorem:

Theorem 1.3. Let (un, ¥,,) be a sequence of reqular solutions to (4) satisfying

/ |z|?*e?%n + |V, |*dx +/ |z|“e*ds < C.
D

L.
Define
¥y = {z € DrUL,, there is a sequence y, — © such that u,(yn) — +o0},
Yo = {z € DS UL,, thereis a sequence y, —  such that |V, (y,)| — +oo}.

Then, we have Xo C X1. Moreover, (un, ¥,) admits a subsequence, still denoted by (u,,V,,), that

satisfies
a) |U,,| is bounded in L{2.((D;" U L,)\Z2) .
b) For u,, one of the following alternatives holds:
i) wy is bounded in L5S.(D;" U L,).
ii) u, — —oo uniformly on compact subsets of D U L,.

iii) 31 is finite, nonempty and either

uy, is bounded in Lio.((D;F U L,)\%1) (5)
or
up — —oo uniformly on compact subsets of (D} U L,.)\Z. (6)

To show the quantization property of the blow-up value, we need to rule out (5) in the above
theorem. To this end, the decay estimates of the spinor part ¥,,, the Pohozaev identity of the local
system and the energy identity of ¥,,, which means there is no energy contribution on the neck
domain, play the essential roles. The corresponding theorem is the following:

Theorem 1.4. Let (un,¥,,) be a sequence of reqular solutions to (4) satisfying
/ |z|?*e?%n + |0, | dx +/ |z|“e*ds < C.
Df

T
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Denote by 1 = {x1,z2, -+ ,2;} the blow-up set of u,. Then there are finitely many solutions
(u®* R that satisfy

{ —AubF = 2\x|ae2“i’k - |x|°‘e“i’k (Uik piky in S,
. i,k . .
pUsk = —|z|*e" phk in S2,

fori=1,2,--- I, andk =1,2,--- ,K;, and a > 0, or there are finitely many solutions (u?!, Wi-l)
that satisfy

(7)

—Awt = 2l — fafe (WL WYy — 1, in 2,
pyit = — || e I, in 55,
8’(1,]’1 o , 2 (8)
0 = clz|%e" =/, on 95z,
n
Byl = 0, on 9S?%,

forj=1,2,---,J,andl=1,2,--- ,L;, and o > 0. Here Sf/ is a portion of the sphere cut out by
a 2-plane with constant geodesic curvature . After selection of a subsequence, ¥, converges in
C to VU on (B UL,)\X1 and we have the energy identity:

loc
I Ki J Lj
. U, Ady = ol gk / Wity
R /m| |dv+§:§:/s2| o+ 323 [ It )

i=1 k=1 j=11=1

A crucial step in proving the above theorem is to show the removability of isolated singularities
at the boundary, which is equivalent to the vanishing of the Pohozaev constant (see Theorem 4.5).
Once the energy identity for the spinor part (9) is established, we can then obtain

Theorem 1.5. Let (uy,¥,) be solutions as in Theorem 1.53. Assume that (un,¥,) blows up and
the blow-up set X1 # (0. Then

up — —00  uniformly on compact subsets of (D} U L,)\ 3.
Furthermore,

/D+(0) [2V(:U)|x|2a62“" - V(a:)x|ae“"|\lln|2]¢dx+/Lr cV(x)|x|%e' — Z m(z;)o(z;)

r x; €3
for every ¢ € C*(DF U L) and m(x;) > 0.

In the end, with the help of the Pohozaev identy (see Proposition 4.1) and the Green function
at some singular points, we have the following:

Theorem 1.6. Let (uy, V,) be solutions as in Theorem 1.3. Assume that (un, ¥,,) blows up and

the blow-up set X1 # 0. Let p € 31 and assume that p is the only blow-up point in Dgg (p) for some
09 > 0. If there exists a positive constant C' such that

max u, — min u, < C,

S5, (P) S5 (@)
then the blow-up value m(p) = 4w when p ¢ Ls,(p), m(p) = 27 when p € Ls,(p) \ {0}, and
m(p) = 2n(1 + a) when p = 0.

2. PRELIMINARIES

In this section, we will first recall the definition of surfaces with conical singularities, following
[T1]. Then we shall recall the chirality boundary condition for the Dirac operator D, see e.g.
[HMR]. In particular, we will see that under the chirality boundary conditions B*, the Dirac
operator ) is self-adjoint.

A conformal metric g on a Riemannian surface ¥ (possibly with boundary) has a conical singu-
larity of order « (a real number with a@ > —1) at a point p € X U 9% if in some neighborhood of
p

g = ¢z — 2(p)[**|dz|?

5



where z is a coordinate of ¥ defined in this neighborhood and u is smooth away from p and
continuous at p. The point p is then said to be a conical singularity of angle 8 = 27(a + 1) if
p ¢ 0¥ and a corner of angle § = w(a+1) if p € 9%. For example, a (somewhat idealized) American
football has two singularities of equal angle, while a teardrop has only one singularity. Both these
examples correspond to the case —1 < a < 0; in case o > 0, the angle is larger than 27, leading to
a different geometric picture. Such singularities also appear in orbifolds and branched coverings.
They can also describe the ends of complete Riemann surfaces with finite total curvature. If (M, g)
has conical singularities of order ay, s, -+ ,aum at q1,q2, - ,qm, then g is said to represent the
divisor A = Y7L ajq;. Importantly, the presence of such conical singularities destroys conformal
invariance, because the conical points are different from the regular ones.

The chirality boundary condition for the Dirac operator P is a natural boundary condition for
spinor part ¥. Let M be a compact Riemann surface with M # () and with a fixed spin strcuture,
admitting a chirality operator GG, which is an endomorphism of the spinor bundle ¥ M satisfying:

G*=1, (G,Go) = (1, ¢),
and

for any X € T(TM),v,p € T(XM). Here I denotes the identity endomorphism of X M.

We usually take G = y(w2), the Clifford multiplication by the complex volume form ws = iejeq,
where eq, es is a local orthonormal frame on M.

Denote by

S = ZM‘BM

the restricted spinor bundle with induced Hermitian product.
Let 77 be the outward unit normal vector field on M. One can verify that 7 G : ['(S) — I'(S)
is a self-adjoint endomorphism satisfying

(G2 =1, (RGY,p) = (¥, WGy),

Hence, we can decompose S = V@ V~, where V7 is the eigensubbundle corresponding to the
eigenvalue +1. One verifies that the orthogonal projection onto the eigensubbundle V*:

B L*(S) — L*(VF)
¥ - %(Ii%}G)vJ},

defines a local elliptic boundary condition for the Dirac operator J , see e.g. [HMR]. We say that
a spinor ¥ € L?(I'(XM)) satisfies the chirality boundary conditions B¥ if

B*lon = 0.
It is well known (see e.g. [HMRY]) that if ¢, ¢ € L?(I'(XM)) satisfy the chirality boundary conditions
B¥ then
(7 -1, 0) =0, on M.

In particular,
/ (7 -1, 0) = 0. (10)
oM

It follows that the Dirac operator J) is self-adjoint under the chirality boundary conditions B*.
It may be helpful if we recall that on a surface the (usual) Dirac operator J) can be seen
as the (doubled) Cauchy-Riemann operator. Consider R? with the Euclidean metric ds? + dt?.
)

Let e1 = 5; and ey = % be the standard orthonormal frame. A spinor field is simply a map

U : R? = A, = C2, and the actions of e; and e, on spinor fields can be identified by multiplication

with matrices
(0 4 (0 1
“=\i o) 27 \-1 o)

6



Ifw:= (ch> :R? — C? is a spinor field, then the Dirac operator is

of of dg

0 i\ [ 75 o N[z .. [2:
pm:(i é) i +(—1 0) by | =297 |

ds ot 9z

where
0 1/0 .0 0 1/0 .0
— == =——i=], —==(=—+i=].
0z 2 (85 315) 0z 2 (85 6t>

Therefore, the elliptic estimates developed for (anti-) holomorphic functions can be used to study
the Dirac equation.

If M be the upper-half Euclidean space Ri, then the chirality operator is G = iejes = ((1) _01) .

Note that 77 = —es, we get that

1 1/1 4#+1
BiZQ(Iiﬁ-G)ZQ(ﬂ 1).
Yy

y ) , and then the boundary condition

By the standard chirality decomposition, we can write ¢ = (

becomes
Yy =FY_  on IM.
Without loss of generality, in the sequel, we shall only consider the chirality boundary condition
B =B+,
We have the following geometric property:

Proposition 2.1. The functional Eg(u,v) is invariant under conformal diffeomorphisms ¢ :
M — M preserving the divisor, that is, ¢ * A = A. In other word, if we write that ¢*(g) = \?g,
where A > 0 is the conformal factor of the conformal map p, and set

U = uoyp—In\,

b= Aoy,
then Eg(ii,1) = Eg(u,1). In particular, if (u,1) is a solution of (2), so is (i, 1)).

(11)

3. THE LOCAL SINGULAR SUPER-LIOUVILLE BOUNDARY PROBLEM

In this section, we shall first derive the local version of the super-Liouville boundary problem.
Then we shall analyze the regularity of solutions under the small energy condition.

First we take a point p € M?°, choose a small neighborhood U(p) C M?°, and define an
isothermal coordimate system = = (z1,22) centered at p, such that p corresponds to z = 0 and
g = e¥|z|>*(dx? + dz3) in D,.(0) = {(x1,72) € R? | 22 + 23 < r2}, where ¢ is smooth away from
p, continuous at p and ¢(p) = 0. We can choose such a neighborhood small enough so that if p is
a conical singular point of g, then U(p) N A = {p} and a > 0, while, if p is a smooth point of g,
then U(p) N\ A = 0 and o = 0. Consequently, with respect to the isothermal coordinates, we can
obtain the local version of the singular super-Liouville-type equations,

{ —Au(z) = 2V2(z)|x\2ae2“(“")—V(x)|z|ae“(z)|\ll|2

Py = —V(z)|z|%et @V in D,(0), (12)

which is no any boundary condition since p is a interior point of M. Here ¥ = |x\%e@w, V(x)
is a C18 function and satisfies 0 < a < V(x) < b. The detailed arguments can be found in the
section 3 of [JZZ3]. We also assume that (u, ¥) satisfy the energy condition:

/ |z|?*e?" + |U|*dr < +oo. (13)
D,.(0)

7



We put DT := D,.(0). We say that (u, ¥) is a weak solution of (12) and (13), if u € W2(D,)
and U € W3 (D(XD,)) satisfy

VuVodx / (2V2(x)|z[*Ye®™ — V (z)|z|*e"|V|?) pdz,

D, T

[ wpois = - [ vellrew. g

D, 3

4
for any ¢ € C3°(D,) and any spinor £ € C® N W01’3 (T(XD,)). A weak solution is a classical
solution by the following:

Proposition 3.1. Let (u, V) be a weak solution of (12) and (13). Then (u,¥) € C?*(D,) x
C*(I(SD,)).

Note that when « = 0 this proposition is proved in [JWZ1] (see Proposition 4.1). When a > 0,
this proposition is proved in [JZZ3](see Proposition 3.1).

For p € OM, we also can choose a small geodesic ball U(p) C M and define an isother-
mal coordimate system x = (x1,x2) centered at p, such that p corresponds to z = 0 and
g = €2?|z|?*(dz? + dz3) in 5:(0) = {(s,t) € R? | s> + 2 < r%/t > 0}, where ¢ is smooth
away from p and continuous at p. We can choose such a geodesic ball small enough so that if p is
a conical singular point of g, then U(p) N A = {p} and « > 0, while, if p is a smooth point of g,
then U(p) N A =0 and o = 0. Set L, = dD;f NORZ, and S;F = D, NR3. Also in the sequel,
we will set L,.(zo) = D, (z9) NOR%, and S;7(z¢) = 0D} (z9) NR2. Consequently, with respect
to the isothermal coordinates, (u,)) satisfies

—Au(z) = e2¢(I)|x|2o‘(2e2“(w — @ |p2(z) — K,) in D,
P lty) = —eOlafre (e alfy) in Dy,
L= el e — hy), ont,, M
Be* |2|3y) = 0, on L.
Here A = aﬁm + 5£2m2 is the usual Laplacian, and the Dirac operator /) can be seen as doubled

Cauchy-Riemann operator, B is the chirality boundary operator of spinors.

Note that the relation between the two Gaussian curvatures and between the two geodesic
curvatures are respectively

—A¢p = e¥z|**K,,
{ g—i = e?|x|"hy.

By standard elliptic regularity we conclude that ¢ € Wl P(DF UL, for some p > 1if a >
0 and if the curvature K, and h, of M is regular enough Therefore, by Sobolev embedding,
¢ € CL (D} UL,). If we denote V(x) = e?, Wi(x) = e*|z|?*K, and Wa(x) = e®|x|*hy,, then
0<a<V(z)<b, Wi(z)isin LP(D;) and Wa(x) is in LP(L,) for all p > 1 if the curvature K,
and hgy of M is regular enough. Therefore, the equations (14) can be rewritten as:

—Au(z) = 2V2(x)z?*e?®) — V(z)|z|*e™®) W2 — W, (z), in D,
PU = —V(zx)|z|*e“® @, in D,

Qu = cV(x)|z|e" — W, on L.,
B(¥) = 0, on L,.

Furthermore, let w(x) satisfy

—Aw(z) = —-Wi(z), inD;
g—z = —Ws(a), on L,,
w(xr) = 0, on S,



It is easy to see that w(x) is in C%(D;F) N CY(D;F U L,). Setting v(x) = u(z) — w(z), then (v, ¥)
satisfies

—Av(z) = 2V%(x)|z|>*e2*®) — V(2)|z|*e?@|T?, in D;f,
pPU = —V(zx)|z|%e’®v, in D,

2 = cV(z)|z|vev@), on L,,
B(Y) = 0, on L,.

Here a > 0, V(z) is in C (D,;" UL, ) and satisfies 0 < a < V(x) < b. Thus we get the local system
(4) of the boundary problem (2).

As the interior case, we can also define (u, ¥) be a weak solution of (4) if u € WH2(D;") and
4
U € W, (D(SD;)) satisfy

/+vw¢d:p = /+(2V2(x)|x|20‘62“(””) —V(x)|x|“e“(m)|\ll\2)¢d:v+/ (cV (x)|z]|*e’ @) pdo
D} .

r Ly

[ wpgis = - [ V@l w, g
D} D

4

for any ¢ € C§°(D;f U L,.) and any spinor £ € C§°(T'(2(D;F U L,.))) N Wé’%(F(EDj‘)). Here
Wyt (D(ED)) = {glw € WhE (D(ED), Bz, =0}

For weak solutions of (4) we also have the following regularity result.

Proposition 3.2. Let (u, ¥) be a weak solution of (4) with the energy condition

/+ |lz|2*e?" 4 |W|*dv +/ |z|“e*do < 0. (15)
Dy

r

Then u € C2(D;) N CH(DF UL,) and ¥ € C2(T(SD;)) N CHI(S(D; U Ly))).

Note that when a = 0 this proposition has been proved in [JWZZ2]. When « > 0, to get the
L' integral of u™, we need a trick which was introduced in [BT] and also was used in [JZZ3]. That
is, by using the fact that for some ¢t > 0

1
/ L w<c
bt |z [2te

we can choose s = tJ%l € (0,1) when a > 0 and s = 1 when o = 0 such that

28/ utdx S/ e*tdy < (/ |x|2a62“dm)s(/ |z~ dz)' ™ < .
D D} D Df

T

Once we get the L' integral of ut, we can get the conclusion of Proposition 3.2 by use the same
argument in [JWZZ2]. We omit the proof here.

We call (u,) a regular solution to (4) if u € C*(D;}) N C*(D} U L,) and ¥ € C*(I'(¥D;")) N
CHI(2(Df U Ly))).

Next we consider the convergence of a sequence of regular solutions to (4) under a smallness
condition for the energy. We assume that (u,, ¥,) satisfy that

—Auy(z) = 2V2(x)|z[>*e? @) —V(z)|z|*e" @) |w, |, in D;f,
pv, = —V(z)z|%e®W,, in D, (16)
% = cV(z)[x|re ), on L,
B, = 0, on L.,
with the energy condition
/ o2 4 | W, [Adv +/ e[ do < C (17)
D;f T

9



for some constant C' > 0. First, we study the small energy regularity, i.e. when the energy
Jp+ [@]?*e*rdz and [, |z|*e“»dx are small enough, u,, will be uniformly bounded from above.
Our Lemma is:

Lemma 3.3. Fore; < m, and €3 < 7. If a sequence of reqular solutions (un, ¥,) to (16) with

/ 2V (x)|z[*e*  dx < 1, |c|/ V(z)|x|“e*rdo < &g, / |U,|*dz < C
D Ly Df

for some fized constant C > 0, we have that ||u;‘l‘||Lm(5%) and ||\I'n||Lw(5%) are uniformly bounded.

Proof. As the same situation as in Proposition 3.2, we can no longer use the inequality 2 [ u;} <
J €% to get the uniform bound of the L'-integral of u," when o > 0. But notice that there exists

a constant ¢t > 0 such that )
/ Tdm <C.
pi |z[*t

Setting s = 77 € (0,1), then we obtain

28/ uda < / esundy < (/ \3:|2ae2“"dx)s(/ |z| 72 dz)t < C.
Df Df Df D

Then by a similar argument as in the proof of Lemma 3.5 in [JWZZ2] we can prove this Lemma. O

When the energy [+ 2V?(x)|z|**e*» 4 [, V(x)|z|*e“~ds is large, in general, blow-up phe-
nomenon may occur, i.e., Theorem 1.3 holds.

Remark 3.4. Let v, = u,, + alog|z|, then (v,, ¥,,) satisfies

—Av,(z) = 2V2(z)e?n®) —V(2)et@)|T,, |2, in D;f,
Py, = —V(z)e@®w,, in D,
% = V(x)ern®) 4 Tadp=0, on L,,
BU, = 0, on L,,

with the energy condition
/ e 4 |, |*dx +/ e’"ds < C.
D;f L,
Then, by using similar arguments as in [BT], the two blow-up sets of u,, and v,, are the same. To
show this conclution, it is sufficient to show the point x = 0 is a blow-up point for u,, if and only if
it is a blow-up point for v,,. In fact, if 0 is the only blow-up point for v, in a small neighbourhood
D;; U Ls,, that is, for any 6 € (0,4p), 3Cs5 > 0, such that

max v, < Cs, and maxwv, — +o00, (18)
Di\Df D3,

then, it is easy to see that 0 is also the only blow-up point for u, in a small neighbourhood
D;; U Ls,, that is, for any 6 € (0,40), 3Cs > 0, such that

max u, < Cs, and maxu, — +oo. (19)
D;O\DJ+ D;ro

In converse, we assume that 0 is the only blow-up point for u,, in a small neighbourhood D;O ULs,
such that (19) is holds. We argue by contradiction and suppose that there exists a uniform constant

C, such that v, (z) < C for any x € 5;;. First, we can obtain that there exists a uniform constant
C, such that |¥,|?(z) < C for any x € EEO. For this purpose, we extend (v, ¥,) to the lower
half disk D;". Assume Z is the reflection point of x about 8Ri, and define

v (Z) 1= vp(x), T€D:,

U, (z):= ide;-V,(x), Te€D,,

vn () +

e , xeDT,

ATL(z) = {evn(l)’ T e D’r_
10



Then W,, satisfies
DY, =-A4,(2)¥,, inD,.
Since A, (z) is uniformly bounded in L*>(Ds,) and st |V, |*dz < C, we have ¥,, is uniformly
0

bounded in W3 (I'(2Ds,)) and in particular ¥, is uniformly bounded CV(F(Ebg)) for some
2 2
0 <~ < 1. Further, since

Fal) =2V (@) |2 ** ) — V,, (2) 2] e O 0, 2 = 2V (2)e* ) =V, (2)e O |, [

and
Gn = —Vn(x)|x|°‘e“"(””)\lln = —Vn(ac)e””(“:)\lln

are uniformly bounded in 5;0. Then by Harnack type inequality of Neumann boundary problem
2

(see Lemma A.2 in [JWZZ2]), it follows that infﬁg U, — +00. Thus we get a contradiction since
20

2
the blow-up set of u,, is finite.

4. REMOVABILITY OF LOCAL SIGULARITIES

The Pohozaev indenty is closely related to the removability of singularities. In this section, we
shall first establish the Pohozaev identiy for regular solutions to (4). Then for solutions defined on
a domain with isolated singularity, we define a constant which is called the Pohozaev constant. The
most important is that a necessary and sufficient condition for the removability of local singularities
is the vanishing of Pohazaev constant.

Proposition 4.1. (Pohozaev indenty) Let (u, V) be a reqular solution of (4), that is (u, V) satisfies

—Au(z) = 2V2(x)]z?*e?®) —V(z)|z|*e™®) |¥|?, in D},
PU = —V(z)|z|*e“® @, in DY,

% = V(x)|z|*e @), on Lg,

BY = 0, on Lpg.

Then we have the following Pohozaev identity
0 1
R/ 1242 _ Ligydo
st Ov 2
R
= (1+ oz){/ (2V3(z)|x**e® — V (x)|z|*e"|¥|?)dv —|—/ cV(z)|x|%e"ds}
D} L

R
—R/ V2($)|£L"2a€2ud(7+/ ¢
st Lr

+/ x.V(v2(x))|x|2%2udv—/ 2 YV (@) 2] e [ 2dv
Dt D

R

oV (s,0 X 0} 15—
0V(s,0) )|S|ase“(b’0)ds —cV(s,0)|s|*set =0 s=H
s

ov

+i/g;<g\f,<x+x).w>dg+i[qg((m—&-x)-\ll,ay>d0, (20)

where v is the outward normal vector to SE, and T is the reflection point of © about 8]1%1.

Proof. The case of @ = 0 and V = 1 has already been treated in [JZZ1]. The calculation of the

Pohozaev identity is standard. Since in the sequel we will need to calculate the Pohozaev identity

for different equations, for reader’s convenience, we give the detailed proof for this general case.
First, we multiply the first equation by « - Vu and integrate over D; to obtain

- Auz - Vudv = / 2V2(x)|z)**e* 2 - Vudv — / V(x)|x|e"|¥|*2 - Vudv.
D}, DY, D},
R R R
11



It follows from direct computations that

Auz - Vudv
D}
1
_ R/ |@‘2_,|VU|2dg+ a—u(x-Vu)ds
S; 61/ 2 Lr 8”
= R |G-Vl + [ v@lale e Vas
o S; 8V 2 Lr

Lr

1
R/ |@\2—7|Vu|2da—(a+1)/ oV (2)[z|" e  ds
st Ov 2

7/ CLV(S’O) |s|ase“(s’0)ds + cV(5,0)|s|ase“(S’0) zilfR,
Lr 88

/ 2V (z)|x**e* 2 - Vudv
.

R

- V2 (x)|x[**e* dv — / LT V(VZ(x))|z|**e* dv,

R R DR

= R/ V2 (x)|z**e* do — (2+2a)/
S+
and
/ V(2)|z|*e"| ¥z - Vudy
Dy

= R/ V(x)|x|ae“|\11|2da—/ |x\o‘e“x-V(V(x)|\Il\2)dv—(2+a)/ V(z)|z|%e" ¥ |*dv.
Sk Dy Dy,

Therefore we have

1
R/ |@|2 — ~|Vu|?do
St ov 2
R

= (1—|—a)/ 2V2(x)|m|2“62“dv—(2+a)/ V(x)|x|°‘e“\\ll|2dv+(a+1)/ cV(x)|z|*e"ds
D}, D}, LR

R

—R/ V2(m)|x|2ae2“da+R/ V(z)|z|*e"|V|?do
+ S;

R

b [ PR s s — v (s, 0)lfse =R

Lr 0s £

—|—/ z - V(V2(x))|z]**e* dv — / |z| % - V(V (x)|¥]?)dv (21)
Dj, D}

On the other hand, for € R2, we denote = x1e; + x2e2 under the local orthonormal basis
{e1,e2} on R2. Using the Clifford multiplication relation

€€t e e =—20;5, for 1 <i,j <2

and
(,0) = (ei - ei- )
for any spinors 1, p € I'(XM). We know that
(,ei-¥) +{ei-,9) =0 (22)
for any ¢ = 1,2. Using the chirality boundary condition of ¥, we extend (u, ¥) to the lower half
disk Dj. Assume Z is the reflection point of z about ﬁRi, and define

uw(z) ==u(z), € Dy, (23)
U(z) :=ie; - ¥(z), € Djg. (24)
Then it follows from the argument in Lemma 3.4 of [JWZZ2] that we obtain
Dy =—-A(z)y in Dg.

12



Here

Alz) = V(z)|z|*e*®, z e DE,
T\ V(@)|z|*e™™®,  x € Dj.

Using the Schrodinger-Lichnerowicz formula E2 =-A+ %Kg, we have
~AV = —dA(z) -+ A*(x)¥  in Dg. (25)

Then we multiply (25) by - ¥ (where - denotes the Clifford multiplication) and integrate over Dg
to obtain

/ (A\I/,x-\Il)dv:/ (dA(z) - U,z - U)dy — A% (2)(U, 2 - U)dv,
Dgr Bgr Dgr
and
/ <x~\IJ,A\IJ>dv:/ (x- U, dA(z) - U)dv — A%(x)(z - U, U)dv.
Dpgr Dgr Dr

On the other hand, by partial integration,

/ (AT, z - U)dv
Dr

div(VV, x - \I/dv—/ ZV U,eq ¥ dv—/ (VU,z-VU)
Dr

Dr DRa 1

_ / <%‘f )da—l—/D(E\II,\IJ)dv—/D (VU, 2 - V)

= dcrf/ A(a:)|\Il|2dv7/ (VU2 - V),
8DR Dr Dr

= _ @ _u 2 _ .
_ /sz O (e +7) Wdo 2/D+ V() [z|" e [ 2du / VU, z - V),

R Dr
and similarly

/ (x-\I/,A\I!>:/ <(x+5c)-\ll,a—q})do—2/ V(x)|x\ae“|\ll\2dv—/ (x- VU, VD).
Dr dDFENRZ ov Dt Dr

R

Furthermore we also have

/ (dA(z) - W,z - U)dv + / (x-U,dA(x) - U)dv
Dr

Dr
2 2
/ Z (Ve A(z)eq - ¥, eg - W)agdv + Z (e - U,V A(z)eq - V)zgdv
B 1 DR o,p=1

= / Z Ve A(z)en - U, eq - Uaodo
D

R a=1

= 2/DR33~V(A(QU))|\IJ| dv

= =2/ A@az V(¥ dv—4 [ A2)|¥[2dv+2R A(z)| V|2 dv

Dr Dr dDg
= —4/ V(2)|z|e s - V(|¥]*)dv — 8/ V(x)|x|"e"|¥|?dv + 4R/ V(x)|x|*e"|¥|?dv.
D}, DY dDFNR2
13



Therefore we obtain

R/ V(x)|x|e"|¥|?do 7/ V(x)|x|e - V(| ¥[*)dv
dDENR2 Df

1 ov 1 ov

- 1[G vy [ (era) S
4 dDFENRZ v 4 dDFENR2 v
Jr/ V(x)|x|*e"|¥|?dv. (26)
Djy

Putting (21) and (26) together, we obtain our Pohozaev type identity (20). O

Pohozaev type identity is shown to be closely related to the removablity of local singularities of
solutions. For a solution of (12) and (13), we defined in [JZZ3] the following Pohozaev constant:

Definition 4.2 ([JZZ3]). Let (u, ¥) € C?(D,\{0}) x C*(I'(X(D,\{0}))) be a solution of (12) and
(13). For 0 < R < r, we define the Pohozaev constant with respect to the equations (12) with the
constraint (13) as follows:

C(u,¥) = R \%|2—1|VU\2da
ADR(0) v 2

- 1+ a)/ V2 (x)|z|**e* — V (z)]x|*e"|0|?)dx
Dr(0)

ov

1 U
+R V3(2)|z[**e*do — f/ (a—,x W)+ (x- 0,
9D r(0) 2 JoDg(o) OV
—/ (\x|2a62“x . V(V2(x)) - \x|0‘e“|\11|2x -VV(x))dx
Dr(0)

where v is the outward normal vector of 9Dg(0).

It is clear that C(u, ¥) is independent of R for 0 < R < r. Thus, the vanishing of the Pohozaev
constant C'(u, ¥) is equivalent to the Pohozaev identity

1
R/ |%|2 — ~|Vu|?do
8DR(O) 8u 2

= (1+ Oé)/ Q2V2(x)]x[**e* — V (z)|z|*e"|0]*)dx
Dr(0)

-R V2(x)|m‘2ae2udg+1/ (<a£’x.qj>+<x.\1/,a£>)do—
D R(0) 2 Jopg(o) OV v
+/ (|x|2ae2“x . V(Vz(z)) - |x|ae“|\IJ|2:17 -VV(z))dx (27)
Dr(0)

for a solution (u, ¥) € C%(D,(0)) x C*(I'(XD,(0))) of (12) and (13).
We also proved in [JZZ3] that a local singularity is removable iff the Pohozaev identity (27)
holds, that is, iff the Pohozaev constant vanishes.

Theorem 4.3 ([JZZ3]). Let (u,¥) € C?(D, \ {0}) x C*(T'(X(D,-\ {0}))) be a solution of (12) and
(13). Then there is a constant v < 2m(1 + «) such that

u(z) = —%logm + h, near 0,

where h is bounded near 0. The Pohozaev constant C(u, V) and 7y satisfy:

2

gl
U)=—.
Clu, ) 4
In particular, (u,¥) € C*(D,) x C*(I'(XD,)), i.e. the local singularity of (u, V) is removable, iff
C(u,¥) =0.

For the singular boundary problem (4), we can define the Pohozaev constant in a similar way:
14



Definition 4.4. Let (u, ¥) € C2(D;")NCH(DF UL,\{0}) x C2(D(ED; ) NCHI(S(DF UL\ {0}))
be a solution of (4) and (15). For 0 < R < r, we define the Pohozaev constant with respect to the
equations (4) with the constraint (15) as follows:

9 1
Cp(u,T) =R 12812 - 2 | Vu2do
ODFNRZ ov 2
a4 a)/ (2V2(2) |22 — V (2)[2]" T [2)dv — (o + 1) / oV (2)[z|7 et ds
D D} NOR2
1% _
+R Vg(x)|x|2o‘62“da — / cm|s|ase“ds + ¢V (s,0)|s|*se” z;Ij”R
dD}ENRZ dD}NOR2 &

—/ x-V(V2(x))|z**e* dv + / x - VV(2)|z|e"|2dv
Dy, Dy

1/ ov _ 1/ _ ov
—— —., (r+2) -V)do — - r+2x) -V, —)do.
g (@ @D W=7 [ (k) 0

The removability theorem of a local singularity at the boundary is following;:

Theorem 4.5. (Removability of a local boundary singularity) Let (u,¥) € C?(D;5) N CY(D;} U
LA\{0}) x C3(T(ED;F)) n CHIT(X(D;F U L, \{0}))) be a solution of (4) and (15), then there is a
constant v < w(1 + «) such that

u(z) = f%bgm +h, near 0,

where h is bounded near 0. The Pohozaev constant C(u, V) and 7y satisfy:

2
-
Cu, ¥) = s
In particular, (u,¥) € C*(D;F)NCYD} UL,) x C3(T(XD;}))NCHT(X(D;f UL,))), i.e. the local
singularity of (u, V) is removable, iff C(u, ¥) = 0.

To prove Theorem 4.5, we need to derive the decay of spinor part W near the singular point.
For the case of & = 0 and V(z) = 1, this is shown in [JZZ1]. By using similar arguments, we can
also get the following lemma for the general case:

Lemma 4.6. There are 0 < g1 < 27 and 0 < g9 < 7 such that (v, §) satisfy

—Av = 2V3(z)[x[**e — V(x)|z|%e” (4, ¢), in B,
Po = —V(@ale's, in B
9 = cV(x)|z|ve, on L., \{0},
By = 0, on L., \{0},

with energy conditions

/ |z[2*e*dr < g1 < 2T, / |p|*dx < C, |c|/ |z|%eds < ey < .

B, B, Lig
Then for any x € E—% we have
1 3 1
[o(@)l|z]? + [Vo(a)||z|> < C(/+ 6| da)i. (28)
2|2

Furthermore, if we assume that e** = O(W), then, for any x € E%o, we have

[$(@)l|2]? + |Vé()||z|* < Clale ( /  lol'da), (29)

0
for some positive constant C. Here € is any sufficiently small positive number.

15



Proof of Theorem 4.5: By the conformal invariance, we assume without loss of generality that
fBi |z|>*e*dz < &1 and |c| fLr |z|*eds < €2 where €1 and €2 are as in Lemma 4.6. By standard
potential analysis, it follows that there is a constant v such that
. U i

lim —— = —.

lz|»0 —log|x| &
By fDi |z|>*e?*dx < C, we obtain that v < m(1 + «). Furthermore, by using Lemma 4.6 and by a
similar argument as in the proof of Proposition 5.4 of [JWZZ1], we can improve this to the strict
inequality v < m(1 + ). Next we set
o) = =1 [ gl = sl VA = Vil 1y — 1 [ togle = yl(eV () luie)do

s

r

and set w = u — v. Notice that v satisfies that

—Av = 2V3(x)|z]?¥e? — V(x)|z|¥e"|¥|?, in D},
g—fL = cV(z)|z|*e, on L,,

and w satisfies that
{ -Aw = 0, in D,
oo 0,  on L, \{0}.
We can check that
v(@)
im ——— =
lz|—0 — log |z|
Since we can extend w to B,\{0} evenly to get a harmonic function w in B,\{0}, then we obtain
that
w(x) . u—v v
im ——— = lim ———— = —.
lz|»0 —log|x|  |z|—0 —log|z| 7

Duo to w is harmonic in B;\{0} we have
w= 7110g|x\ + wo
™
with a smooth harmonic function wg in B,. Therefore we have
u = fllog |z] +v+wp near 0.
™

To compute the Pohozaev constant of (u, U) we need the decay of the gradient of w near the
singular point. We denote that fi(x) := 2V?(z)|z|?*e®“(®), fo(z) := =V (z)|z]|*e*®|¥[?(x) and
f3(x) := cV(x)|z|*e". Since each f; is L' integrable, we can obtain el*®)! € LP(D;t) for any p > 1
and el*@®! ¢ LP(L,) for any p > 1. Since

fl(x) = |1~|_27’](‘|‘2Ol(2‘/'2(1,)6274;0(gg)_i_gv(I))7

folw) = —[a| "= TV (@)e o0 2] | B 2 (),
and
fa(w) = ||~ 7T eV (z)ero @@,

we set §1 = 277 —2a and s3 = T —a+ 1. Then max{s;,sa} = s3 < 2. Since |¥| < Clz|~ 2 near 0
and wp(z) is smooth in B,, we have by Holder’s inequality that f; € L*(D;) for any ¢ € (1, %) if
s1 >0, and f; € LY(D;') for any ¢t > 1 if s; < 0. For fa, we have fo € LY(D;) for any ¢ € (1, %)

if s3>0, and fy € LY(D;}) for any t > 1 if s5 < 0. For f3, we have f3 € L*(L,) for any ¢ € (1, %)
if s >0, and f3 € L*(L,) for any t > 1 if s; < 0. Putting all together and by standard elliptic

theory, we have v(z) is in L*® (Dj) On the other hand, since v(z) is in L*>® (DT+
Lemma 4.6 that there exists a small dg > 0 such that

0| < Cla|~3, near 0,

), it follows from

and
|VU| < Clz|® "2, near 0.
16



Next we estimate Vo(z). If s; < 0 and sy < 0, then v(x) is in Cl(E:). If s > 0or sy >0,
Vou(z) will have a decay when |z| — 0. Without loss of generality, we assume that 0 < s; < 2 and
0 < s9 < 2. For any x € D;" we hanve

O |wun+m@m@+ll;g§ﬁ

1

-2 s g AW @+ . m<|unp+|x—-m<““ )|+ 12(w) ey
1

—&-f/ I3 y+— / f3(y)ldy
(Je—y|>23AL, |$*y|| (w)ld (e—yl<lzlynL, |$*y|| )l
= h+DLh+I3+14

Fix t € (1, %) and choose 0 < 71 < 1 such that % < 2. Hence, we have 0 < 7y < 2 — s9. Then
by Holder’s inequality we obtain

zlsgl Ly A+ £l dy)

o—yl>L2}nDt |z — y| 7T {lo—y|> 2Dt [T =yl

|f3(y)ldy

1 C

|J)|1 T

For I, since y € {y||lz —y| < lel implies that |y| > m, we can get that
2 2

1 ,
L<C ——dy < Cla" .
(le—y|<'2lynD; |z —ylly]*

Similarly, for 13, we fix t € (1, 21) and choose 79 > 0 such that % < 1, and hence we have

0 < <1-— 2L By Holder’s inequality we obtain,
1 1 =1 1 1
Bl o< (f L dy) e )y
T Jja—y> 0L, |z — y| 7T {le—y|> 5L, [z =y
< ¢
=

For I, we have
1 1

—dy
(e—yl<tzlynL, |2 =yl |y =

C 1 C
—— dy < ——,
2% J(e—yi<ynr, [T =yl 7 faf™

for some 73 with 0 < 73 < 1. In conclusion, for all z € B;F(0) we have

|[Vou(z)| < ¢ ¢ ¢

< o T T

| 1]

IN

C

for suitable constants 0 < 71 <2 — 89, 0 < 75 <1 — %1 and 0 < 13 < 1.

At this point we are ready to compute the Pohozaev constant C'(u, ¥). We denote

Vu:—lm—i—V(wo—&-v( r)) = _ZW"‘V??( 2).
By (30), we have
[ GIvuE = G
= 7 Si;[(Z)QWIP_ ZW+|VU|2]d5—r[Sj(_Z:1'+x|~j77)2d5
- r/y—i(%)?# %xvaM;W \2—(x|'gj”>2]da
- Sy [ SR e LG5
= _§+Or(1),
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where o0,(1) — 0 as 7 — 0. We also have

(1+a) / 2V2(x)\x|2°‘62“ - V(x)|x\o‘e“|\ll\2dx =o0,(1),
D

and
T V2(z)|z|**e* do = o.(1),
I
and
/ +(\x|2°‘62“x SV (V2(z)) = |z|%e"|¥|%z - VV (z))dz = o,(1),
D}
and
(o + 1)/ cV(x)|z|*e"do — 0M|s|ase“ds +cV(s,0)|s]%se" 520, = or(1),
st L, s
and
ov _ _ oV
oo (x +7)-V¥)do + /Si<(m +z) VY, EMU =o,(1).
Putting all together and letting r — 0, we get
A2
C(u,¥) = lim C(u, ¥,7) = —.
r—0 2w
Since C(u, V) = 0 for (u, V), therefore we get v = 0. This implies that the local singularity of
(u, ¥) is removable. O

5. BUBBLE ENERGY

After a suitable rescaling at a boundary blow-up point, we will obtain a bubble, i.e. an entire
solution on the upper half-plane Ri with finite energy. In this section, we will investigate such
entire solutions. We will first show the asymptotic behavior of an entire solution and compute the
bubble energy, and then show that an entire solution can be conformally extended to a spherical
cap, i.e., the singularity at infinity is removable.

The considered equations are

200 2u o u .
—Au = 2z|**e — |z|%e" (¥, ), in R%,
Py = [z, in R%, o)
0
5‘% = c|z|ve", on OR?%,
By = 0, on OR?%.
The energy condition is
I w) = [ afee s joftyds + [ Jalnetds < . (32)
R2 oR2

First, let us notice that if (u,) is a weak solution of (31) and (32) with u € Hl’Q(Ri) and

loc

(S Wllo’cé (D(ZR2)), by using similar arguments as in the proof of Proposition 3.2, we have
ut e Lm(gi). Consequently, it follows that u € C2_(R2) N CL (R}) and v € C2 (I(SR2)) N
CL.(T(ZRY)).

loc

We call (u,1) a regular solution of (31) and (32), if u € C?.(R2) N Clloc(ﬁi) and ¢ €
(N(SR2)) N O, (N(SRY)).

loc

02

loc
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Next, we denote by (v, ¢) the Kelvin transformation of (u, ), i.e.
o(z) = u(#) ~2(1+a)lnlz],

T

o(z) = |$\_11/J(W)-

Then (v, ¢) satisfies

—Av = 2‘x|2a€27j - |z|aev <¢7 ¢> ) in R%,-a
Po = —fales, in B2 )
9 = cfz|vev, on 0R? \{0},
By = 0, on 9R3 \{0}.
And, by change of variable, we can choose ry small enough such that (v, ¢) satisfies
/ |z|**e*dr < 1 < 2T, / |p|*dx < C, |c] |z|%evds < &g < . (34)
lz|<ro |z|<ro Is|<ro

Applying Lemma 4.6 to (33) and (34), and by the Kelvin transformation, we obtain the asymp-
totic estimate of the spinor ¥(x)
)

lWh(z)| < Cla| 2% for |z| near oo, (35)
and ,

\Vip(z)| < Clz|"27% for |x| near oo, (36)
for some positive number §; provided that e? = O(W), where ¢ is any small positive
number.

Denote
d= / 2|z e? — |z|*e" || ?dx —|—/ clz|¥e"ds,
R2 OR%
and
50:/ e"pdx.
R

Next, we will show that d = 2(1 + a)7 and & is a well-defined constant spinor.

Proposition 5.1. Let (u,) be a regular solution of (31) and (32) and let ¢ be a nonnegative
constant. Then we have

u(x) = —% In|z| +C+O(|z|™1) for |z| mnear oo, (37)
P(z) = —%#(I +ie1) - & +o|z|7h) for |z| mear oo, (38)

where - is the Clifford multiplication, C is a positive universal constant, and I is the identity. In
particular we have d = 2(1 + )7 and &y is well defined.

Proof. We shall apply standard potential analysis to prove this proposition. Similar arguments
can be found in [CL2, JWZ1, JWZ2] and the references therein. The essential facts used in this
case are the Pohozaev identity and the decay estimate for the spinor. For readers’ convenience, we
sketch the proof here.

Step 1. lim;|_o “(w)‘ = —% and d > 7(1 + «).

In |z
Let
1
wle) = 5 / (log|z —y| +log [ — y| — 2log [y]) 2ly[**e**® — [y]*e" @ (y)|*)dy
R+

! T @, U

t+5- | (logla —y| +log|z — y| - 2log ly|)cly|*e" @ dy.
T Jor2

where Z is the reflection point of z about 9R?. It is easy to check that w(z) satisfies
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{Aw = 2|z|?>%e® — |z|ve“|y|?, in R?%,

gu = —clz|e, on OR%.
and
w(x) d
lz|=oo In |z| 7
Consider v(z) = u 4+ w. Then v(zx) satisfies
Av = 0, in RZ,
% = 0, on 8R3.

We extend v(z) to R? by even reflection such that v(z) is harmonic in R?. From Lemma 5.1 we
know v(z) < C(1+4In(|z|+1)) for some positive constant C. Thus v(z) is a constant. This completes
the proof of Step 1. Since [p. |z|?*e?“dx < oo, we get that d > m(1 + «). Furthermore, similarly

=

as in the case of the usual Liouville or super-Liouville equation, we can show that d > 7(1 + ).

Step 2. The proof of (37) and d = 27 (1 + «).
Notice that we have shown d > 7(1 + «) in Step 2, we then can improve the estimates of e*“ to

e? < Clz| 72+~ for || near occ.
Therefore the asymptotic estimates (35) and (36) of the spinor ¢ (z) hold. By using the standard
potential analysis we can obtain that
d
u(z) = ——Injz| + C + O(|z| 1) for |z| near oo
™

for some constant C' > 0. Thus we get the proof of (37).
Furthermore, we can show that d = 27(1 + «). For sufficiently large R > 0, the Pohozaev
identity for the solution (u,1) gives

R/ |@|2 - 1|Vu|2d0
S; ov 2

= (1 +a)/ 2|z e — |z|e"|¥|?dv + (a + 1)/ clz|*e*ds
DTt

R Lr

S=—

—R/ |lz[?*e*do — c|s|“se*|SZf
Sk

1 ov 1 ov
- — z) - U)d - z) -V, —)do.
#3 Gt D [ (@ a) e G (39)
By the asymptotic estimates (35), (36) and (37) of (u,) we have
9, 1 d?
lim R [ |22 - Z|Vu’do = —,
R—+too  Jgt ov 2 2m
and
lim R |z[2*e*do + c|s|*se*|SZf = 0,
R—+oc0 S;
and oW ow
lim —,(x+§7)-\ll>da—|—/ (z+7) -0, ydo 0.
R—too Jgi OV st ov

Let R — 400 in (39), we get that
d2
— =1+ a)d.
27

It follows that d = 27(1 + «).

Step 3. The proof of (38).
Since d = 2m(1 + «) by Step 2, we can improve the estimate for e?* to
e < Q| 7HF™ for |z| near oo. (40)
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This implies that the constant spinor &j is well defined. By using the chirality boundary condition
of spinor, we extend (u,) to the lower half plane R? (see (23) and (24)) to get

Py =A@y, inR.
Here A(x) is defined by

 [lafren®, zeR2,
A(x) - {|E|a€u(i), = R%.

51 /2 (l‘)w T

The constant spinor &; is also well defined. From the asymptotic estimates (35) and (40) and a
similar argument in [JZZ3] we obtain

o 1 x —1
V@)= —5omm Gtolel ™) for fal mear o (41)
Since
& = A(z)pdr + | A(x)pde
R2 R2
- / |x|“e“¢dx+/ jz|%e" @iy - (z)dw
R2 R2

/ |z[*e Pd + / ly|*e"®iey - 4b(y)dy
R2 RZ

+

= (I—f—iel)./ |x|“e“pdx
R2

2
= (I + i@l) . 50.
Hence we obtain from (41)
W(x) = —ii(l—i—ie ) - & +o(|z|™h) for |z| near oo
2 |z)? 1S '
Thus we finish the proof of Step 3 and we complete the proof of the Proposition. O

Proposition 5.1 indicates that the singularity at infinity of regular solutions for (31) and (32)
can be removed as in many other conformally invariant problems.

Theorem 5.2. Let (u, ) be a regular solution of (31) and (32). Then (u,v) extends conformally
to a regular solution on a spherical cap Sg/, where ¢’ is the geodesic curvature of aSE,.

Proof. Let (v, ¢) be the Kelvin transformation of (u, 1) as before. Then (v, ¢) satisfies the system
(33). To prove the theorem, by conformal invariance, it is sufficient to show that (v, ¢) is regular

on Ri. Applying Proposition 5.1, we get

d
v(z)=(=—-2(1+a))ln|z|+O(1) for |z| near 0. (42)

T
Since a = 2m(1 + «), it follows that v is bounded near the singularity 0. Recall that ¢ is also
bounded near 0, we can apply elliptic theory to obtain that (v, ¢) is regular on Ei. O
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6. ENERGY IDENTITY FOR SPINORS

The energy identity for spinor part of solutions to the super-Liouville equations on closed Rie-
mann surfaces was derived in [JWZZ1, JZZ3]. In this section, we shall prove an analogue for the
singular super-Liouville boundary problem, i.e. Theorem 1.4. For harmonic maps in dimension
two and J-holomorphic curves as well as for solutions of certain nonlinear Dirac type equations,
similar results are derived in [DT, PW, Ye, Z2] and the references therein.

To prove Theorem 1.4, we shall derive the local estimate for the spinor part on an upper half
annulus. Since we can extend (u, ¥) to the lower half disk D, by the chirality boundary condition
of W, the proof of this local estimate can be established by using the result of Lemma 3.4 of
[JWZZ1]. Here we just state the Lemma and omit the proof.

Lemma 6.1. Let (u, V) satisfies (4) and
/ |z|?“e?® + |U|*dx —|—/ |z|“e“ds < C.
Df L,

For 0 <ry < 2ry < %2 <ry <, consider the annulus Ay, r, = {x € R?|ry < |z] < 1o} and the

upper half annulus A}, . = Ap, 7, N R?. Then we have
([ uhia(f e (43)
At AT
2ry, T2 2ry, 72
< Gl i mieel] o pmieel] i
A:,rl,,,? A?rur‘z jl 2 Atz
s2T] 52

for a positive constant Cy and some universal positive constant C'.

Proof of Theorem 1.4. We will follow closely the argument for the energy identity of harmonic
maps, see [DT], or for super-Liouville equations, see [JWZZ1, JZZ1, JZZ3]. Since the blow-up set
Y1 is finite, we can find small disk D;; (z;), which is centered at each blow-up point z;, such that

Dg;(xi) N D;’; (z;)=0fori+#j,i,j=1,2,---,P,and on (D;f U Lr)\Ule(D;(wi) U Ls, (x4)), ¥,
converges strongly to ¥ in L*. So, we need to prove that there are (u** %), which are solutions
of (7),i=1,2,---,I;k=1,2,--- , K;, such that

L;
lim lim |@, |*dv = Z/ |Ebk 2w, for i =1,2,---,1T; (44)
) k=1"5"

d;—0n—o00 DY (;
7

or, we need to prove that there are (uj’l,gj’l)7 which are solutions of (8), j = 1,2,---,J;1 =
1,2,---,Lj, such that

L,
lim lim |, | dv = Z/ |E 2w, for j=1,2,---,J; (45)
) =175

3-0n=% [pt (,
J

When p € (D;F)°, from [JZZ3], we know that (44) holds. So, without loss of generality, we
assume that p € L, and there is only one bubble at each blow-up point p. Furthermore, we may
assume that p = 0. The case of p # 0 can be handled in an analogous way and in fact this case

is simpler, as |z|* is a smooth function near p. Then what we need to prove is that there exists a
bubble (u, &) as (7), such that

. . 4 o 4
fing fim, [ vl = | eltan, (46)
or there exists a bubble (u, &) as (8) such that such that
lim lim [T, [*dv = / €| dv. (47)
d—0n—o0 Df 52,

c
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Next we rescale functions (u,, ¥,,) at the blow-up point p = 0 and then try to get the bubble of
(tn, ¥,,). To this purpose, we let z,, € E}_ such that u,(z,) = maxp+ Un (x). Write 2, = (Sp,tn).

un(Tn)

It is clear that x, — p and u,(z,) — +oo. Define A\, = e~ =1 . We know A, |z,| and
t, converge to 0 as n — 0, but their rates of converging to 0 may be different. Next we will
distinguish three cases.

Case I. ‘f\—‘ =0(1) as n — +o0.
In this case, we define the rescaling functions
Up(z) = up(Apz)+ (1 +a)lni,
~ 1
U (z) = MNU,(\x)
for any x € bj%. Then (@, (z), ¥, (z)) satisfies
ANy (z) = 2V2(Anz)|z|?@e2tn (@) — V(Anx)\x|aea"(z)|\T/n(x)\2, in Dt |
~ _ - 22n
PV, (x) = —V(\)|z|*e™@W, (1), in DF; |
_ _ 3an
au"ém) = V(\z)|z|*e™ @) onls,
BU,(z) = 0, onlL s,

with the energy condition

/ |z 2e?Tn @) | W, (z)|dv +/ jz|*e™ P do < C.
D+ L

5 )

p v 2Xn

We know that
max Uy, (z) = ﬂn(m—") = up(zy) + (an + 1) In A, = 0.
Dt An

2xn

Notice that the maximum point of @, (z), i.e. {*, is bounded, namely [$=| < C. So by taking a
subsequence, we can assume that = — z¢ € R? with |z¢| < C. Therefore it follows from Theorem

1.3 that, by passing to a Suksequence7 (U, \Tln) converges in CZ(R2)NC}, (R%r) x C2 (T(ZR%))N
CL.(T'(XR%)) to some (u, ¥) satisfying
_A@ = 2V2(O)|x|2ae2~ﬁ _ V(0)|x|°‘ea|\fl|2, in R?i-’
py = —V(0)z|*e" ¥, in R, )
L= ()], on OR2.
BV = 0, on OR%

with the energy condition [, (Jz|**e*" + |U|4)dx + Joge |2|%€"do < co. By Proposition 5.1, there
i i

holds
/

By the removability of a global singularity (Theorem 5.2), we get a bubbling solution on S2.

(2V2(0)]z[2*?® — V(0)|z]| e |¥|?)dz + / eV (0)|z|%do = 2n(1 + ).
: on2

Case 1II. @ — +00 as n — +oo.
In this case, we must have

Up (Yn) = tn(zn) + (@ + 1) Injz,| = (a+ 1) In|z,| — (@ + 1) In A, — +o0. (49)
Therefore we can rescale twice to get the bubble. First, we defince the rescaling functions

{un(z) = Un(|fn|=’17)+(oé+1)ln|xn|
Un(z) = |an]?Un(|an|2)
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for any x € D s . Then (Un (), U, (z)) satisfies that

Meal’
~DUn(z) = 2V3(Jan|a)|z*e® @ — V(|ay|2)|z]*e™ DT, (2)]?, i DT,
PU() = ~V{Jaala)laloe™ T, (2), n D,
) (frgla)al e, oLy
BY,(z) = 0, on L2|£n‘.
Set that y,, = |§”| We assume that yg = lim,, oo 1= o] By (49), we know g is a blow-up point
of (@,,V,). We can set 6, = e~ W) and p, = % = A (‘z ‘) . It is clear that d, — 0,

pn — 0 and h;—" — 400 as n — co. We define the rescaling functions

Un(x) = Up(dpz+yn)+1nd, = un(xn + pnx) — up(xy)

U, (z) 82V, (602 + Yn) = pa Vo (Tn + pn)

for any x such that y, + §,x € ﬁ;(yn) with any R > 1. By a direct computation, we have
Q= {2 € R|y, + 8,2 € Di(yn)} = {2 € R%[wy + put € Dy, () ).

We set L, = 0Q,, N {z € R%|t = 72—’;}. Then (@i, (z), ¥, (z)) satisfies

—Dp(x) = 2V + puz)| 2 ‘ﬂn ]2 20 ()
Vot )y + B O @, n
PUn(x) = =V(zn+pnz)lfge + \p" 2[*e™ W, (z),  in Oy,
aun( ) — CV(xn‘Fpnx)“””" + |m:1 x‘a u,L(a:)’ on Ly,
B\Iln( ) = 0, on L.
with the energy condition
/ | +7:C‘2a 2%, ( z)+|\11 (z )|4dv+/ | +7$|a (@) 1y < O
|$n| ‘ Tp L. |xn| | Tn

It is clear that
Un () < max,(x) = u,(0) = 0.

n

Now we proceed by distinguishing two subcases.

Case I1.1 Z—" — 400 as n — oo.

Notice that |‘””" + ‘z ‘x| — lasn — oo in CP (R?). It follows from Theorem 1.3 that, by
passing to a subsequence, (i, ¥,,) converges in C? _(R?) x C? _(T'(TR?)) to some (u, U) satisfying

AT — 2 2u Uy |2 : 2
{ A 2V2(0)e2" — V(0)e"| B[, in R?, (50)

py = —V(0)e"7, in R?,
with the energy condition [, e** + |W|*dz < co. By Proposition 6.4 in [JWZ1], there holds
/ (2V2(0)e27 — V(0)e?[B[2)dx = 4.
R2

By the removability of a global singularity (Theorem 6.5 in [JWZ1]), we get a bubbling solution
on S2.

CaseIIZ Ly —>Aasn—>oo
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Simiar in the Case II.1, we have from Theorem 1.3 that, by passing to a subsequence, (U, \T/n)
converges in C3_(R2 )N CL (R2,) x C% _(T(ZR?%,)) N CL(XR? ;) to some (u, ¥) satisfying

—ATL = 2V2(0)e" —V(0)e"|¥[2,  inRZ,,
Py = —V(0)e"y, in R? , (51)
2—2 = cV(0)eY, on OR? , |
BU = 0, on 9R? ,,

with the energy condition [p, €%+ \W|4dx + [opz €"do < co. By Proposition 6.4 in [JWZ1],
—A —A

there holds
L.

By the removability of a global singularity (Theorem 6.5 in [JZZ1]), we get a bubbling solution on
SZ.

(2V2(0)e*™ — V(0)e™|¥|?)dx + / cV(0)e¥do = 2.
OR2

It is well know, in order to prove (46) or (47), we need to prove that there is no any energy of
¥, in the neck domain, i.e.

lim lim lim |0, [*dv = 0, (52)
6—0 R—+oo n—oo A;Rm

where A({ R.n 18 the neck domain which is defined latter. To this purpose, we shall proceed separately
for Case I, Case II.1 and Case I1.2.

For Case I, we define the neck domain is
Af g ={z e RE\R < || <6}

We have two claims.

Claim 1 For any ¢ > 0, there is an N > 1 such that for any n > N, we have

(Jz[P>e®n + W, |*) + |z|%e" <e; Vr € [eAR,0].
Df\DY_, (DF\DT_, )nor3

To prove this claim, we note two facts. The first fact is: for any T > 0, there exists some N(T')
such that for any n > N(T), we have

Lo e w+ et < (5%
DI\D} a(DF\D} _)nor3

Actually, since (uy,¥,) has no blow-up point in 5;\{p}, then |¥,| is uniformly bounded in
D;\D;;_T , and wu, will either be uniformly bounded in D;\D;;_T or uniformly tend to —oo in

D;\D(;_T. So if w, uniformly tends to —oo in Ds\Ds.-r, it is clear that, for any given T > 0,
we have an N(T) big enough such that when n > N(T)

g
/ (e + [ jafoet < £,
Di\D} _ a(DF\D _)nor2 2

Moreover, since ¥,, converges to ¥ in L} ((D;} N L,)\ X1) and hence

loc

T 2
DI\DT DI\DT

se—T se—T

T

For any small & > 0, we may choose § > 0 small enough such that [+ [U|* < £, then for any given
8
T > 0, we have an N(T) big enough such that when n > N(T')

/ W, |4 < %
D*\D*e

Consequently, we get (53).



If (un, ¥y) is uniformly bounded in Df\DF ., then we know (un,¥,) converges to a weak
solution (u, ¥) strongly on compact sets of Dy \ {p}. Therefore, we can also choose § > 0 small
enough such that, for any given 7' > 0, there exists an N(T) big enough, when n > N(T), (53)

holds.

The second fact is: For any small ¢ > 0, and T' > 0, we may choose an N(T') such that when
n> N(T)

R

S e D R N
Dper\Pr a(D} 7 \Df)NoRZ

< g

Lo e [ e
Df L.r\DX, oD} . r\DX, ) OR:

if R is big enough.

Now we can prove the claim. We argue by contradiction by using the above two facts. If there
exists €9 > 0 and a sequence 7, r, € [eA,R,d], such that

/ (a2 4 |0, [4) +/ wfoet > o,
D ADY, d(DF DT, NoRY

Then, by the above two facts, we know that Ti — 400 and )‘:—R — 0, in particular, 7, — 0 as
n — 4+00. Rescaling again, we set

’Un(m) = ’U,n(Tnl‘) + (1 + a> lnr"“
1
on(®) = rRU(r,z)
for any x € D% \Di@
It is clear thrz;t "
/ (|1'|2a621’" + |§Dn|4) _|_/ |5C‘aev" > £9- (54)
DT\D:F—I O(DT\D:—I)QBR?F

And (v, @y satisfies for any R > 0

—Duvp(x) = 2V (ra)|a?*e® ™) — V(ra)|z|*e Do, (z)]2, in (D% \ DY, »),

Ponla) = ~V(raz)|e]?e" @, (x), in (D% \ DY),

Qoale) = GV (rp) |z *eon @), on 3(]51 \ DLR )N ORZ,
Ben(®) = 0, on O(D% \ DY) N ORE.

According to Theorem 1.3, there are three possible cases:
(1). There exists some ¢ € Q,, = (D% \ D} ) and energy concentration occurs near the point

Tn T™n

¢, namely along some subsequence we have

Jim (2262 + [on]4) +/ o]’ > g0 > 0
"7 Dr(9)NQn Dy (9)N0QnN{t=0}

for any small » > 0. In such a case, we still obtain the second “bubble” by the rescaling argument.

Thus we get a contradiction.

(2). For any R > 0, there is no blow-up point in D};\ D and v,, — —oo uniformly in D}, \ D7 .
R R

Then, it is clear that ¢,, converges to a spinor ¢ in L} (@\ {0}) which satisfies

loc
{Ego = 0, inRi,Z
By = 0, ondR7\{0}.
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We translate ¢ to be a harmonic spinor on R? <\ {0} satisfying the corresponding chirality boundary
condition and then extend it as in (24) to a harmonlc spinor % on R? \ {0} with bounded energy,
Le., |[@]|par2) < 0o. As discussed in [JWZZ1], % conformally extends to a harmonic spinor on S2.
By the well known fact that there is no nontrivial harmonic spinor on S?, we have that % = 0 and
hence ¢, converges to 0 in L} (R2 \ {0}). This will contradict (54)

(3). For any R > 0, there is no blow-up point in (D}, \ D;) and (vy, ¢p) is uniformly bounded

in (D} \ DT). In such a case (v,,p,) will converge to (v,¢) strongly on (D}, \ D1) and (v, p)
R R
satisfying

A = 2O — VOl n R,
Dy = =V(0)|z|*"¢p, in R,
g—z = cV(0)|x|*e", on OR? \ {0},
By = 0, on OR% \ {0}

with finite energy. It is clear that (v, ) is regular.

Next we need to remove the singularities of (v, ) and then obtain the second bubble of the
system. Concequently we get a contradiction. To this purpose, let us use the Pohozaev identity of
(un, ¥,,) in D, it follows for any p with rp,p < §

ouy,
rnp/ | |2 - 7|Vun|2do
S+

n P

= (1+ a)/ 2V2(z) |z e — V (x)|x|%e" | ¥, |2 dv + (a + 1) / cV(x)|z|*e" ds
hs Lryp

™np

oV (s,0 s=r
—7"”,0/+ V3(x )\x|20‘62“"d0—|—/L c%bwse“"ds—cV((s,O))|3|”‘se“"|s:_’§ip

TnpP

U, [2dv

/ 2(2))|z**e*n dv — / x - VV(x)|z|%e*
Df,, D.p
1 ov, _ 1 _ ov,,

e

Hence for rescaling functions (v, ¢,) we have

/ Ia””IQ - f|wn|2da

= (1+ a)/ 2V (rpx)|z2Ye®n — V(rpx)|z|e’ |pn|2dv + (a4 1) / eV (rpx)|z|*e’ds
+

D, L,

OV ((rps,0 5=
—p/ V2(7‘nm)\x|2a62”“da+/ 0M|s|ase“"d8—cV((rns,0))|s|ase”"|szﬂp
S;r L Js

P

-I-/ z - (VV) (rpx)|z)** e dv — / x - (VV) (rpx)|z| e [, |2dv
D DF

P 3

1 Opn _ 1 _ Ovn
+4/$< i ,(z+x)-4pn>da+4/Sp+<(x+x)~<pmm)do’.
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This implies that the associated Pohozaev constant of (v, ¢,) satisties
C(vn, ¢n) = C(vn, ¢n, p)

Ovp, 5 1 9
= _— —_ = nd
. gt~ gIunlds

—(1+ a)/ 2V (rpx)|z2e® ™ — V(rpx)|z|e" |pn2dv — (a4 1) / cV(rpx)|z|*eds
b}

L,

s=p
s=—p

—l—p/ VQ(Tna:)|x\2a62”"dU—/ cw|s|ase”"ds+cV((rns,O))|s|o‘se”"
S;r L Js

7/D+

1 890n _ 1 _ 899n
_4/S;< B ,(x+x)~¢n>da—4/S;r<(x+m)-gom8y>d0
= 0.

P

g0n|2dv

o (TVra)laoe ot [ o (V) ra)fale
D/’

Since, for any p > 0, [+ [€]**e* + |op|*dv + [, |z|¥e""ds < C, it is easy to check that
P p

lim lim z - (VV3)(rpz)|z**e* dv + / z - (VV)(rpx)|z|e" |pn2dv = 0,
p—0n—o0 le ‘Dj

and
giir(l) nh_>ngo ; c%kﬁsewds =0.
This implies that ’
0 = lim lim C(vn,en,p)

p—0n—oo

<pn|2dv

= 111% C(v,p,p) — (1 + ) lim lim 2V2 (rpx) |z e — V (rpx)|x|“ et
p—

r—0n—oo D

—(14 ) lim lim cV(rpx)|z|*e’ds
r—0n—o0 L,

= Cv,¢) = (1 +a)f.
Here
B8 = lim lim [/ 2V (rpx)|z2e®n — V(rpx)|z|e’ |pn|2dv +/ cV(rpz)|z|*e’ ds],
D

r—0n—oo
r

and C(v,¢) = C(v, ¢, p) is the Pohozaev constant of (v, ¢), i.e.
Ov 1
C = e - 2d
(v, ) p/sjlayl 51Vl do

—(1+ 04)[/13+ 2V2(0)|m|20‘e2v — V(O)|x|ae“|cp|2dv —|—/ cV(0)|z|*e"ds]

p P

s=—p

+p / V2(0)|2[2%X dor + eV (0)[s|se?|*="
S+

P

On the other hand, we use the fact that (v, ¢,) converges to (v, ¢) in CZ (R3)N C’lloc(ﬁi_\{O}) X

loc
C2 (I(SR2)) N CL_(D(SR\{0})) again to get

loc loc
/ 2V2(rnx)\x|2@62vn — V(rnm)|x|ae"’”|gpn|2dv —|—/ cV(rpx)|z|“e’ds
Df L,

— / 2V2(0)]x]**e? — V(O)|x|°‘e”|4p|2dv—|—/ cV(0)|z|*e"ds + B
D L,
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as n — 0o. By using Green’s representation formula for u, in D:{ and then take n — oo, we have

B, 1
where
oz) = + / I L @V2(0) |y e @ — V(0)[y[*e" @ |l (y))dy
T Jpr |z —yl
b [ e Oy
o A P
and

)= [t S B

. v
v |z —ylov |z —yl?

It is clear that (z) is in Cl(Di,f) and ¢ satisfies

2V2(0)|x**e*” — V(0)[z[*e"|¢[?,  in DF,

—Né
{ % = cV(0)]z|ve”, on L,.

By similar arguments as the proof of Propostion 4.5, we can obtain that

62
C = —
(v,0) =5,
This implies that
2
14+ a)B= ﬂ—
2

Noticing that [+ [z|**e*"da < oo, we have § < (14 ). Therefore we obtain that 8 = 0, i.e.
I

C(v,¢) = 0, and the singularity at 0 of (v, ) is removed by Propostion 4.5. Forthermore, the
singularity at oo of (v,¢) is also removed by Theorem 5.2. Thus we get another bubble on SZ,
and we get a contradiction to the assumption that m = 1. Concequently we complete the proof of
the claim 1.

Claim 2 We can separate AIR’H into finitely many parts

N
+ +
Aé,R,n - U Ak
k=1
such that on each part

1
agun <« " k=1,2,---,N;.

/I |x‘ € = 4A27 ) 4y s 4VE
where Nj, < Ny for Ny is a uniform integer for all n large enough, A = D:'k,l \D:‘k, r0 =¢,rVk =
MR, rF < k=l for k=1,2,---, N, and Cy is a constant as in Lemma 6.1.

The proof of this claim is very similar to those in [JWZZ1, JZZ1, Z1] and the argument is now
standard, so we omit it.
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Now we apply Claim 1 and Claim 2 to prove (52). Let € > 0 be small, and let § be small
enough, and let R and n be big enough. We apply Lemma 6.1 to each part AZ to obtain

\I]n4% < Co/ w?aeQUn%/ ‘Ijn4%
(/1w U ypr Rl

l rl ert— e—1y1

Lo / IO / 0,4
Dt ,\D}, DY\D*

1

< co((/+ ]2 ) 4 e +5%)((/ U, |")3 €3 467) + Ced
Al
< ool [ lalen)r([ walie ot vt 4o
Al Al
1 1 1 1 K
< 7(/ W9 + Ot + et 1),
2 AlJr
Therefore we have
(/ W, < C(eF +e7 +e1).
Af
Since € is small, we may assume € < 1. Then we get
(] lwait < cet. (59)
Al
With similar arguments, and using (55), we have
(] 1vualht<cet, (56)
A+
1
Summing up (55) and (56) on A;” we get
No
4 4 1
L A o BN AR N 67
//X;,R,n A;:R,n, =1 A?’

Thus we have shown (52) in the first case.

For Case II, according the blow-up process, we define the neck domain is
A:;R,n ={z € R%|p,R < |z — x| < |20|S}.
Notice that

/+ |\I:n|4du:/+ [T, |*dv
D D

’ TonT
_ / |\Iln|4dv+/ @n|4dv+/ T, [4dv
DJlra ‘ \DEI (yn) DEI (yn)\D5 R (yn) 5nR2(yn)
- / |@n|4dy+/ |\Iln|4dv+/ |0, |*dv.
D* 5 \Dj (ya) DY ey @\D s (@) DY n,(yn)

[EXA

Duo to the assumption that (u,,¥,) has only one bubble at the blow-up point p = 0, (uy,, ¥,)
also has only one bubble at its blow-up point yg. Therefore, we have

lim lim lim [T, |*dv = 0.
6—0 Ry — 00 n—00 D+5 \Dﬁl(yn)

[zn]

While D}; r,(Yn) is a bubble domain, we know to prove (52) it is sufficient to prove that

lim lim lim [T, [*dv = 0. (58)
S—o00 R—00 n—00 A-g .
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To prove (58), by using the similar argument as the case 1, we have the following facts:

Fact II.1: For any small ¢ > 0, and T > 0, there exists some N (T') such that for any n > N(T)
we have

/ ‘L ‘S(IH)\D

for sufficiently large S.

nl|Se—T

(P> + W, |*) +/ |z|%e" <e,
(xn) oD, s@n\D o (2n))NORY

|zn

Fact I1.2: For any small £ > 0, and T > 0, we may choose an N(T') such that when n > N(T)

/ (222 4 0,4 + / et
D:TLR (n)\D} p(zn) B(D:n BT ()\D} 1 (xn))NORZ

Pn

-/ (1T EaPoet™ + 3, + [ L
(Dpor\Dr){t>—tn} | Tn|  [Tn (Do \Dr)"{t=—1t2} |$n| 0]
< g,
if R is large enough.
Buy using the above two facts, we need to prove the following claim:
Claim II.1 For any € > 0, there is an N > 1 such that for any n > N, we have
/ (|x>*e®m + ¥, |*) +/ |z|%e"r <e; Vr € [eppR,|xn|S].
Dif (zn)\DT_, (wn) O(DiF (xn)\DT_, (2n))NORZ

Proof of Claim II.1 We assume by a contradiction that there exists eg > 0 and a sequence 7,
Ty € [epnR, |2,]S], such that

/ (‘x|2a€2u" +|\11n‘4)+/ |.’L‘|a€u" > eo.
Din(xn)\DJrf - (zn) a(Din(mn)\D+7 (xn))ﬁaRQ

Then, by Fact I1.1 and Fact I1.2, we know that |$"|S — 400 and p” — 0, in particular, r, — 0

as n — +o00. We assume that A = lim,,_,oo & o Here A is either a nonnegatlve real number or +oc.
Next we proceed by distinguishing two cases.

Case II.1 A > 0.

In this case, we note that D, ,(z,) is in R? when n is sufficient small and 0 < p < A. We
define the rescaling functions again

V() = Up(rpx 4+ x,) + In(r, |z, |%),
1
on(x) = r2V(rpe+x,)

for any r,x + x,, € Df;us(”fn) \ D:nR(xn). Then (v,(x), pn(x)) satisfies that

L 2 2vn L @ Vn
(I + ol +[n|*) + | et > g,
(DD, )n{t>—ty [Tl o] (DD, )n{t=—tx} [Za] |20
(59)
Note that (v, ¢,) satisfies for any R > 0 and S > 0
—Avp(x) = 2V2(rnx+wn)|‘§—”‘ Ty x| e?on(®)

V(a4 )| 2+ P2l @), i (Disyis \ Doy )Q{DTZ},

Don(x) = =Virpz+zn)lg2y + 22l vn (@), (2), i (D s \Dpna) n{t>-1=
avgy) = cV(Tnx—i—xn)M 24 z|evn (@) on (D\In\s \Dan) Nn{t= t:: ,
B(pn(.’L‘) = 0, on (Dun\s \Dan) n {t :’;:}
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According to Theorem 1.3, there are three possible cases. Similar to the Case I, we can rule out
the first and the second possible cases. If the third case happens, then there is no blow-up point
in (Dr\ Dy)N{t > —b} for any R > 0 and any b < A. Furthermore (vn,¢,) will converge to
(v, ) strongly on (Dpg \ D%) N{t> —b}. If A > 0, then (v, p) satisfies

~ho = 2V2(0) —V(O0)e'lpl’, i RY\ (0},
p(p = ( )GUQD, in ]R% \ {0}7 (60)
%’L = ¢V (0)e?, on OR%( in the case of A < +00),
By = O7 on OR3 ( in the case of A < 400)

with finite energy.

Since D, ,(z,) contains completely in R? when n is sufficient small and 0 < p < A, we know
that the origin is acturally an interior singular point of (v,¢) to (60). Then this local singular
can be removed by using the similar arguments in the case I of [JZZ3]. After removing the local
sigularity 0, we can remove the singularity at co of (v, ) to (60) by Theorem 5.2. Thus we get
another bubble on S? %, and we get a contradiction to the assumption that m = 1. Concequently
we complete the proof of the claim II.1.

Case I1.2 A = 0.

|zn
Tn

[snl

= 400, we have lim,,_, 5= = +00
n

In this case, noticing that x,, = (sp,t,) and lim,

and lim,,_, o |j—”| = 4o00. We set z], = (s,,0). Then we define the rescaling functions in this case

1

Un(x) = up(rpz+2) + In(r,ls,|®),
on(z) = 12V (rpz+ )

for any r,x + ), € Dlznls(x;) \ D:nR(m;). Since that

/ (‘$|2a62u"+|\1/n|4)+/ |z|aeun
D* (%)\Dl o1y, (@) a(D7 (x’)\Dg o1, (@n))NORY

1,
2"

> / (|x|2ae2un + |an‘4) +/ x‘aeun
D, (e \DF_, () (DY, (@a\D_,, (20))N0RE
> €0,
we have that (v,(x), p,(z)) satisfies that
.’E/ 2a 2v ‘TC% n a v,
(722 + |22 4 [ pn|?) + |+ e > . (61)
DI\D*_, snl s (D+\D+ yN{t=0} |80 |$n
2 q— 2
Note that (v,, @, ) satisfies for any R > 0 and S > 0
—Nvy(z) = 2Vi(rpx+ o, )| s Gn‘x|2°‘ e2vn(2)
V(e -+ el e+ Tafoen® g (), in (D \ Dfa),
p@ﬂ( ) = V(rnw+x )‘|§n| + o x|a U"(w)wn( ), ( EME \s \D )
8Un( ) — CV(Tn$+.T )||Sn| + ‘7’71 x|a ’Un(‘L) on 8(D<|t‘ s \D )ﬂaRi’
ngn(x) = 0, on a(Dtn‘S \Dan) NoR2.

According to Theorem 1.3, there are three possible cases. From (61), we can rule out the first and
the second possible cases by using the simiar arguments of Case I. Next we assume that the third
case happens, i.e. there is no blow-up point in DE \ DT for any R > 0. Furthermore (v,, @, ) will
R
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converge to (v, p) strongly on D} \ D1, and (v, ) satisfies
R

—Av = 2VZ%(0)e2" — V(0)e?|p|?, in R%,
ﬁsﬁ = 7V(0)6v907 in R?{-a (62)
2 = cV(0)e?, on OR% \ {0},
By = 0, on ORZ \ {0}

with finite energy.

Next we will remove two singular points at 0 and at oo, and concequently we get the second
bubble of the considered system. Thus we get a contradiction. To this purpose, let us computate
the Pohozaev constant of (v, ¢). Let start with the Pohozaev identity of (u,, ®,). We multiply all
terms in (4) by (z — z7,) - Vu, and integrate over D} (x7,). It follows for any sufficient small p
that

ou,, 1
S L L
S;‘tLﬂ(w{n) 2

ov
= / (2VZ(x)|z[2Ye®  — V (z)|z|%e" |V, |?)dv +/ cV(z)|z|%e* ds
D, p(a1,) Lrpp(ay,)
,rnp/ V2($)|I'|2a62u"d0'+/ Cw(s _ Sn)e“"ds
rnp(frl) Ly, p(27,) s

— eV (5,0)|s]%(s — sp)en ST TP

S=Tp—Tnp

+/ (z = ap) - V(V2(2)|z[**)e* dv — / (@ —ap,) - V(V(2)|z[*)e" @, [*dv
D p(y,) D p(a,)

1 v 1 ov
- T—92¢ ). U Z T—92¢ ). U —
+4/w(x,)<ay’<“x z}) >d"+4/s+ Ntz =2w) - . 5o

™n P

Hence for rescaling functions (v, ¢,) we have

Ovy,
p /S ISP~ I Vundo

/
— / 2V (rpx + 2, )|—+—LE|2“ o0 _V(rpx + !, )|—+ z|%ev |, |*dv

D E [sn| * [snl |
+/ cV(rnx+x;)|x—" + r—"a:|ae”"ds

L, |$n |sn

OV ((rns + 5n,0)) 228 + 224()
—p/ V3 (rpx + ), )|——|— z|*“e 2“”d0—|—/ c [sn] R
S EM |5n‘ L, 0s
Tn o=
_CV((rn5+sn70)>||s | s+ ﬁ|a$€vn|s—€p
2 / x/n Tn 2a\ 2v / ‘Tln T'n @\ v 2

+ x - V(V(rpz + x))| + x|**)e " mdv — z - V(V(rpx + o) | 7% + —z|%)e" |pn|“dv

Df snl ~ [snl Df |snl  Isnl

1 ol B 1 _ Opn,
+4/Sp+< i ,(a:+x)-<pn>do+4/Lgi<(x+x)-<pn,ay)da. (63)
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Since the associated Pohozaev constant of (vy,, ) is

C(”na‘ﬂn) = O(”na@nyp)
- / Ia”"\z - f|wn|2do

—/ 2V2(rnx+a:;)
D

; \Ilnl

—/ cV(rpx + ) ‘— + —m|“ Unds
L

|5l

!/
— V(raz + )| 28 4 e o [P
|3n‘ |5n|

, |

OV ((rns + 1, 0))| 75278 + 152]%)
+p/ Vz(rnx+z;)|7+7 |**e 2””do—/ c fonl ® T Tou] se'ds
S |57 |50 L, 0s
+CV((7‘"$+5",O))||Z | —|—ﬁ|ase”"|s__p

cpn\de

/
—/+x'V(V2(Tn$+CE/n)| ) 2””dv+/ x~V(V(rnx+x’n)|—x" + x|*)el’n
D} D

|Sn | ‘ 4 sn| * |snl
1 Opn, _ 1 Opn
Y E A Ry MR R -0

we have from (63) that
C(Una @n) = C('U'rn @’rup) =0.

Since that |ﬁ + ﬂ—:lfc\za is a smooth function in D7p+, by the energy condition,

/
/ |xn |2a 2V, +‘<Pn| dU+/ | n +7m|a ”"ds<C
Df En | n| L, Isn| I8l

we can easily to check that

lim lim -V (V2 (rpota), )|

p—0n—o0 D;f

x! Tn
it [ oWVl 22l e o =0

|n| ‘Sn Isn|  |Sn

P

and

OV ((rns + sn, 0))| 125 + 1241
lim lim c lsn] lsn se’ds = 0.
p—0n—o0 L, Os

This implies that

0 = lim lim C(vn,pn,p) = lim C(v, ¢, p)
p—0

p—0n—o0

!/
— lim lim 2V (rpx + 2! )|— + 2 — V(rpz + ) In

Tn
r—0n—oo Jpt |50 |s n| EM |50
!

— lim lim cV(rpx + al,)| T4
r—0n—o0 L, |3n| |5n|

= C(’U,(p) _B~

et lpn Pdo

Tn

x|’ ds

/

B = lim lim [/ 2V2(rpz + 2, )‘7 + x| — V(rpx + o) Tn g I
Dif

r—0n—00 |s n| |s n\ snl  |snl

I‘Pn|2dv]

|a Un

+ lim lim cV(rpx + ) )|— + —:v|a Unds.

r—0n—o0 L, | | |5n |
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and C(v,¢) = C(v, ¢, p) is the Pohozaev constant of (v, ¢), i.e
Clop) = o [ g -Ivelie

f/ 2V2(0)62U—V(0)e”|g&\2dv+/ cV(0)e’ds
Dy L

P

+p V2(0)e*do + eV ((0,0))se’ |3
S5

—i/y@f @t2)- o~ 5 [ (a4 2) 0. 5o

5,,p

On the other hand, we use the fact that (v, ¢,) converges to (v, ) in CZ_(R3)N CL.(R +\{0})

loc
C2.(T(SR2)) N c;ocmz@i\{om again to get

!
/ 2V (1 + )| =2+ a6 — V()| 4 Tl e o P
/
—|—/ cV(rna:+x;L)|x—" p x|%e’ds
L, |55 |$n]
S [ 2200 — V)t |p2dv + / V(0)e"ds + B
Df L,

as n — o0o. By using Green’s representation formula for w, in D;r and then take n — co, we have

B

o) = D L () + (),

||
with ¢ being a bounded term and ~(z) being a regular term. Consenquently, we can obtain that
2
C =_—.
(v,0) =5
This implies that
62
B="
Noticing that [+ e?dx < oo, we have 8 < 7. Therefore we obtain that 5 =0, i.e. C(v,p) =0,
P

and the singularity at 0 of (v, ¢) is removed by Propostion 4.5. Forthermore, the singularity at
o of (v, ) is also removed by Theorem 5.2. Thus we get another bubble on S?, and we get a
contradiction to the assumption that m = 1. Concequently we complete the proof of Claim II.1.

Next , similarly to Case I. we can prove the following:

Claim I1.2 We can separate A;C’ r.n(Tn) into finitely many parts

Ny,
+ _ +
A rin = U Ay
such that on each part

1
|x‘2a62u" 3723 k:1327 aNk~
/AZ 4A

where N < Ny for Ny is a uniform integer for all n large enough, Aﬁ = Dﬁ,l(xn) \ D:k (zn),
=6,V =\, R, 7% <rF1for k=1,2,---, Ny, and Cj is a constant as in Lemma 6.1.

Then, by using Claim II.1 and Claim II.2 we can complete the proof of the result. O



7. BLow-UP BEHAVIOR

In this section, we will show that u, — —oo uniformly on compact subset of (D;" U L,) \ ¥;
in means of the energy identity for spinors. Thus we rule out the possibility that w, is uniformly
bounded in L{ ((D;f U L,) \ ¥1) in Theorem 1.3. The following is the proof of Theorem 1.5.

loc
Proof of Theorem 1.5: We prove the results by contradiction. Assume that the conclusion of
the theorem is false. Then by Theorem 1.3, u,, is uniformly bounded in L{° ((D;f UL,)\ X;1). Thus
we know that (u,,, ¥,,) converges in C? on any compact subset of (D;7 U L,.) \ X1 to (u, ¥), which
satisfies that

—Au(z) = 2u?(z)z?*e®) — V(z)|z|*e®) | W|?, in D\ 3,
pU = —V(z)|z|*e“® @, in D\ ©p, (64)

% = cV(z)lz[*e ™), on L, \ Xy,

B(¥) = 0, on L, \ ¥1.

with bounded energy

/ (222 + |\IJ|4)dx+/ e[ et ds < +o0.
Df

r

Since the blow-up set X7 is not empty, we can take a point p € ;. Choose a small g > 0
such that p is the only point of $1 in Dags, (p) N (D;F U L,.) = {p}. If p is the interior point of D;",
then we can choose &y sufficiently small such that Das,(p) C (D;" U L,). Hence by Theorem 1.3 in
[JZZ3] we can get a contradiction.

Next we assume that p is on L,. Without loss of generality, we assume that p = 0. The case of
p # 0 can be dealed with in an analogous way.

We shall first show that the limit (u, ¥) is regular at the isolated singularity p = 0, i.e. u €
C*(DS)NCHD;FUL,) and ¥ € C*(T(XD;)) N CHT(X(D;} UL,))) for some small » > 0. To this
end, we shall using Theorem 4.5 for removability of a local singularity to remove the singularity.
We know that the Phohozaev constant, denote Cp(u, ¥), of (u, V) at p=01is

— _ Quig 1 2
Cnlu, W) = CB(u,w,p>—p/S;|ay| 2 Vuldo
(4 a)/ (2V2(@) |22 — V (2)[2]" T [2)dv — (o + 1)/ oV (2)[z]" " ds
Dy p
+p/ V3 (2)|z|**e* do —/ CM|s|ase“ds +cV (s, 0)[s|*se"|sZ2,
S;r L, Os
7/ x-V(V2(x))|z]**e*dv + / x - VV(2)|z|e*| | 2dv
D} D}
1 ov _ 1 _ ov

for any 0 < p < dp. On the other hand, since (u,,¥,) are the regular solution, the Pohozaev
constant Cg(uy, Vy,) = Cp(un, ¥y, p) satisfies
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0= C(un7\Dn) = C(’U/n,\I]nap)

B Oup, 5 1 9
- p/sj|8y| — 5 IVunPdo

—(1+a) / N 2V2(x)|:r|20‘62“" —V(x)|z|*e*
D

P

\I/n|2dvf(a+1)/ cV(x)|z|%etds
LP
AV (s,0 o~
—|—p/ Vz(x)|x|2°‘62“"da—/ C%Lﬂase“"ds—|—cV((s,O))\s\°‘se“”\‘s;ﬁp
Sy L s

—/ x-V(V2(x))|z[**e*dv + / x - VV(2)|z|e" |V, 2dv
D} DY

1 av, _ 1 _ ov,
_4‘/S:;< ay ,(fE“rm) \Iln>d0'— 4/S:;<(x+x) \Iln,w>d0'

Let n — oo and p — 0, by using that (u,,¥,) converges to (u, V) regularily on any compact
subset of 5;50 \ {0} and that the energy condition (17), to get

0 = lim lim C(up,¥,,p) = lim C(u, ¥, p)
p—0

p—0n—oo

—(1+a)lim lim { [ (2V?(x)z[**e* —V(x)\x|“e“n|\lfn|2)dx+/ oV (x)|a| e ds}

6—0n—oo D; Ls
= Cu,¥)—(1+a)b,

where

8 =lim lim {/ (2V2(z) |z — V (x)|z|¥e"
Df

§—0n—o0

U, |2 dx + / cV(x)|z|*e" " ds}.

Ls
Moreover, we can also assume that
(2V2(x) |z — V (x)|z|e" | ¥, |*)dx + ¢V (z)|z|“e " ds
— v=2V(z)|z]**e* — V(z)|z|*e"|¥|?)dz + ¢V (x)|z]|*e“ds + Bdp=0
in the sense of distributions in D; U Lg for any small § > 0. Then, applying similar arguments

as in the proof of the local singularity removability in Claim 1.1, Theorem 1.4, we can show that
Cp(u,¥) =0, 8 =0 and hence (u, ¥) is a regular solution of (4) on D;'(SO with bounded energy

/ (|z**e? 4 |W|*)da —|—/ |z|%e“ds < +00.
hy L

250 26

Hence, we can choose some small 6; € (0,g) such that for any ¢ € (0,61),

1 1
/ (2V2(x)|z|?*e® — V(x)|z|*e"|¥|?)dx Jr/ cV(x)|z|*e"ds < min{ ta }. (65)
Dy

L, 10 10

Next, as in the proof of Theorem 1.4, we rescale (u,,¥,) near p = 0. We let z,, € 5;{1 such
that u,(z,) = max+ un (). Write x,, = (sp,t,). Then x,, — p = 0 and wu,(x,) — +00. Define
51
Un (Tn)

Ap = € el . It is clear that \,, |z,| and ¢, converge to 0 as n — 0. we will proceed by
distinguishing the following three cases:

Case 1. ‘i”‘ =0(1) as n — +oo.

In this case, the rescaling functions are

Un(x) = up(Mpz)+ (14 a)lni,
To(x) = AU, (M)
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for any = € ﬁl. Moreover, by passing to a subsequence, (ﬂn,\in) converges in C?_(R%) N
Tx

CL.(R%) x C? (T(ZR2)) N CL(T(XR%)) to some (, U) satisfying
-Au = 2V2(O)|x|20‘~62~ﬁ —V(0)|z]|*e"|W|?, in R%,
pu = —V(0)[x|*e" ¥, in R%,
%Z = cV(0)[z]*e, on IR%,
BY = 0, on 8R2+

and

J

Then for ¢ € (0,0;1) small enough, R > 0 large enough and n large enough, we have

(2V2(0)|z[2*€X" — V(0)|z|*e™|F|?)dz + / V (0)|z|%edo = 2r(1 + a).

2
¥ ORY

/ (2V2(x)\ac|2"e2“"—V(x)|x|ae“”\\lln|2)dx+/ cV(z)|z|*e" ds
Dy

Ls

= / (2V2(x)\x|2“e2“" —V(x)|;v|ae“"\\lln|2)dx+/ cV(z)|z|*e" ds
Dy, r

Ly, r
+/ 2V (z)|x[**e?n — V (z)|z|%e" ¥, |*)dz —|—/ cV(x)|z|*e ds
D;\Dj:n}?. Ls\Lx,r
> / 2V (M) |z2%e®n — V (Apz)|z]|e™ [0, |?) +/ V() |z et ds
Df Lr
[ v@llren
DI\D/ .
1
> 2r(l4+«) — ;;)a. (66)

Here in the last step, the fact from Theorem 1.4 that the neck energy of the spinor field V¥, is
converging to zero. We remark that in the above estimate, if there are multiple bubbles then we
need to decompose D;\Df{n g further into bubble domains and neck domains and then apply the
no neck energy result in Theorem 1.4 to each of these neck domains.

On the other hand, we fix some § € (0,07) small such that (66) holds and then let n — oo to
conclude that

1+«
10 -

- _ Au,, = _/ Oun
Df oB; On

— —/ u =— Auy
oD} on DY

1
= / (2V2(z)|z|?**e® — V (x)|z|*e"|¥|?)dx —|—/ cViz)|x|%e"ds < ta
D;' Ls 10

2r(l1+ ) —

/ 2V (z)|z|2Ye® " — V (z)|z|e" |V, |?)dx —|—/ cVx)|z|“e*ds
Dy

Ls

Here in the last step, we have used (65). Thus we get a contradiction and finish the proof of the
Theorem in this case.

Case I1. % — 400 as n — +0o0.

In this case, as in the arguments in Theorem 1.4, we can rescale twice to get the bubble. First,
we define the rescaling functions

{ un(z) = Un(|1xn|x) + (a+1)In |z,
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for any € Dt 5, . Set y, := ﬁ—"‘ Due to @, (y,) — 400, we set that §, = e~ UnWn) and define

2|zn |

the rescaling function

Un(x) = Up(dpz+yn)+1nd,

for any 6,2 +y, € DT 5. Denote that p, = etnlen) An( )"f‘)a and x,, = (sp,tn).

on] |z |

Case I1.1 Z—f‘ — 400 as 1 — 0.

Then, by passing to a subsequence, (U, V,) converges in C? (R?) x C? (I'(XR?)) to some
(w, ¥) satisfying

—AT = 2V2(0)eX — V(0)e"| 0|2, in R2,
Py = —V(0)e" ¥, in R?,

with the bubble energy
/ (2V2(0)e27 — V(0)eP[B[2)da = 4r.
R2

Therefore, for 6 € (0,071) small enough, S, R > 0 large enough and n large enough, the fact that
the neck energy of the spinor field ¥,, is converging to zero, we have

/ (2V2(x)|z|?Ye?n — V (z)|z|Yetn \Iln|2)d:c+/ cV(z)|z|*e" ds
Dy Ls

[, @l Vi folafe 02+ [ (aala)lsitends
s )

[zn] EX

= / @V3(|znla)|z**e® ™ =V (|zn|a)|z]*e™ | ¥, |*)da
D 5 \D (yn)

/Dﬂ o )(2V2(|$n\fﬂ)|x|2a€2a" = V(|anlz)lz|“e™ [, [*)dz
Yn pn R yn

2V2(|xn|x)|x\2°‘e%" — V(\mn\x)|x|“eﬂ"|@n|2)du’c +/ eV (|zp|z)|z|*e  ds

P'n. R Ly, R (yn)
\In\ [Tn

/ V(\xn|x)|z|aeﬁ"ds+/ cV(|zn|x)|z|*e  ds
s(Un)\L pn & (yn) L s \Ls(yn)

B [Znl

In n a 2u,(x T a un(x
> 2V (@ + po)| o + L4200 @) (1, 4 pa)| o 4 LT 0T, ) der
Drn{t>—te} [Zn|  |2n |Zn|  |2nl
*/ (V (2 + )| o 4 L |oreln @)
DrN{t=—1n} |Zn| |20
- V()] e T, |* / V(t)|z] e [T,
D‘I ‘s(zn)\Dp R(zn) DT(; ‘\D;(yn)
4 1
= T 10

Then, applying similar arguments as in Case I, we get a contradiction, and finish the proof of the
Theorem in this case.

CaseIIZ Ly —>Aasn—>oo
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Then, by passing to a subsequence, (i, ¥,,) converges in C? _(R% , )NCL (R? ,)xCE (T(XR2 )N
CL_(ZR2 ) to some (@, ¥) satisfying

—AT = 2V(0)e* — V(0)eT| W2, inR?,
U= —V(0)e" W in R%
% = (O)e“, on OR? , |
BU = 0, on OR? ,,

with the bubble energy
/ (2V2(0)e*™ — V(0)e™| 0 |?)dz + / cV(0)eldo = 2.
RZ_A BRQ_A

Then, applying similar arguments as in Case II.1, we can get a contradiction, and finish the proof
of the Theorem. O

8. BLOW-UP VALUE

By means of Theorem 1.5, we can further compute the blow-up value at the blow-up point p,
which is defined as
m(p) = lim lim {/ (2V2(z)|z|?*>e* n — V(x)|x\o‘e“"|\11n\2)dx+/ cV(z)|z|%e"ds}.
§—0n—oo0 Ls(p)
We know from Theorem 1.5 that m(p) > 0. Now we shall determine the precise value of m(p)
under a boundary condition.

Proof of Theorem 1.6: When p ¢ Ls,(p), It is clear that we can choose §y sufficiently small
such that D;; (p) = Ds,(p). Then we have m(p) = 47 according to the arguments in [JZZ3]. Next
we assume that p € Ls, (p). Without loss of generality, we assume p = 0. The case of p # 0 can be
handled analogously.

By using the boundary condition, it follows that

0<wu, —minu, <C
S+

%0

on Sgg. Let w,, be the unique solution of the following problem

—-Aw, = 0, in Dg;,

ow
Sr = 0 on Lim
Wy = Uy — mlnsgro Up, ON 550.

It follows from the maximum principle and the Hopf Lemma that w,, is uniformly bounded in Dig;,
and consequently w,, is CQ(D({)) N Cl(Dgg U Ls,). Now we set that v, = u, — mins% Uy — Wy
Then v,, satisfies that

—Avy, = 2V3(z)|z[**e*r — V(z)|z|*"" W, |?, in Df,

%”; = cV(x)|z|¥e¥, on Ls,,
=0, on Sfﬁ
with the energy condition
/ 2V2(z)|z*Ye®n — V (z)|z|e" |, |*)dz —|—/ cV(x)|z|*e"ds < C. (67)
Dy, Ls,
By Green’s representation formula, we have
1 1
w@) = [ st @G -Vl 8, Py
7)o Ty
1 1 o
+— [ log———cV(y)ly|*e“ dy + Ry (x) (68)
T JLs, lz =yl
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where R, (z) € C’l(Dg:J U Ls,) is a regular term. By using Theorem 1.5, we know

m 1
o) =+ PP L4 Ra), i (D), U Ls,)\ (0] (69)
for R(z) € C* (D(}Z U Ls,). On the other hand, we observe that (v, ¥,,) satisfies
—Av, = 2K2(z)|x[**e*"n — K, (z)|x|*e""|¥,|?, in D;},
Dy, = —-K,(zx)e"V¥,, in Dg:)7
% = cKy(z)lz|e"n, on Ls,,
B(v,) = 0, on Ls,,
min Up+wWn
where K,, = V(z)e o . Noticing the Pohozaev identity of (v, ¥,,) in D;; for 0 < § < dg

is

Ovp 9 1 9
5
= (1+ a){/ (2K (x)|x[>*e®n — Ky (x)|z]e™ |, [*)dv +/ cKy(z)|z|*e’ds}
Dy Ls

0K, (s,0 _
—(5/ Kﬁ(m)|x|2“62”"d0+/ c¢|s|“se”"(s’o)d5—cKn(s,O)|s|ase”"(s’0)|§;‘i(;
S;r Ls 88

),

x-V(Kg(x))\x|2%2vndv—/ 2 VI (2)|z]"e [0, 2dv
+ +

5 D6
1 v, 1 0¥,
1 )0, Vdo + — ) -0, do.
#3  Gaa) o+ [ (o a) -, o (70)
We will take n — oo first and then 6 — 0 in (70). By using (69) we get
m(p) 1
v 1 10(=%= Inrg) 1
I I ni2 1 2 — i - 4 |=z]/ 2 - 2 .
i i 0 st 5y |~ 3|Vonlido = lim o o 2 g A= gm )
By using u,, — —oo uniformly on S;’, we also have
lim lim ¢ K2(z)|z|**e*"do = lim lim & V2(x)|z[**e*rdo = 0,
§—0n—o00 s 5—0 n—o0 st

and

. . . Un(s,0)s=6 __
}13% nh_{{.lo cK,(s,0)|s]%se [5=% s =0.

By using the energy condition (67), we have
lim lim (|Jz[**e*mx - V(K2(x)) — |z|%" |V, %z - VK, (z))dz = 0,

§—0n—oo D;

and
0K, (s,0 ,
lim lim cﬁ\s\ase”"(é’o)ds =0.
§—0n—o0 fr 0s
Since u,, — —oo uniformly in any compact subset of (D;Z ULs,)\{0}, and |, | is uniformly bounded
in any compact subset of (Dj. U Ls,)\{0}, we know
p¥ = 0, inDy,
BU = 0, onLg )\ {0

We extend ¥ a harmonic spinor ¥ on Ds, \ {0} with bounded energy, i.e., H@||L4(D50) < oo. Since
the local singularity of a harmonic spinor with finite energy is removable, we have VU is smooth in

Ds,. It follows that ¥ is smooth in D;; U Ls,. Therefore we obtain that

| ov, _ 1 _ ov,, B
lim lim (- /S;< 5 Jx+2)- W, )do + 4/93(@—1—95) W, Wﬁla) =0.

§—>0n—oo 4
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Putting all together, we obtain that

1
3 (p) = (1+ a)m(p).
T
It follows that m(p) = 27(1 + «). Thus we finish the proof of Theorem 1.6. O

9. ENERGY QUANTIZATION FOR THE GLOBAL SUPER-LIOUVILLE BOUNDARY PROBLEM

In this section, we will show the quantization of energy for a sequence of blowing-up solutions
to the global super-Liouville boundary problem on a singular Riemann surface. Let (M, A4, g) be
a compact Riemann surface with conical singularities represented by the divisor A = YT 54,
a; > 0 and with a spin structure. We assume that OM is not empty and (M, g) has conical singular
points 1,42, , Gm such that q1,q2,--- ,q are in M° for 1 <1 <m and q;41,qi42, - , ¢m are on
OM. Writing g = €2?gy, where go is a smooth metric on M, we can deduce from the results for
the local super-Liouville equations:

Proof of Theorem 1.1: Since g = e2?gq with gy being smooth, then by the well known properties
of ¢ (see e.g. [T1] or [BDM], p. 5639), we know that (uy, ) satisfies

_Ago (un + ¢) = 262(u"+¢) — €u"+¢ <e%¢na e%wn> — Kgo — Z;:l 271'0[]‘5%. in ]\407
go

Do) = —eto(eiy,) in M,

o(ug:w —  ceUnTd _ By + Z;n=1+1 T, 5%’ on OM,

Bi(egdjn) = 0 on OM,

with the energy conditions:
o
[ bl + s <o
M oM

If we define the blow-up set of u,, + ¢ as
¥ = {z € M, there is a sequence y,, — x such that (u, + ¢)(yn) — +o0},

then by Remark 3.4 and Remark 3.3 in [JZZ3], we have ¥; = ¥}. By the blow-up results of the
local sytem, it follows that one of the following alternatives holds:

i) wu, is bounded in L (M).
ii) w, — —oo uniformly on M.
iii) 3 is finite, nonempty and

U, — —oo uniformly on compact subsets of M\%;.

Furthermore,
U, Un 4 Un
[ (et - ensolct vy, + [ e togdo, 5 3 mipelp)
M oM )
Pi€X1
for any smooth function ¢ on M.
Next let p = (;%1 > 2. Notice that
IV (un + &)l La(a1,90)

< sup{| /M V(un + ¢)Vipdvg, || € WP (M, go), /M pdvg, = 0, ||@llwr(ar,g) = 13-
42



Due to ||| Lo (a1,g9)<c for any o € WHP(M, go) with [, ¢dvg, = 0 and ||@|[wis(ar,g) = 1 by the
Sobolev embedding theorem, we get that

| /M V(un + 6)Vipdug|

O(uy, +
= 1= [ A+ opptng, + [ N2 ED g,
M oM n

U u Q u
< / (26*(#n ) 4 untoleB a2 +|Kgo\)|¢|dgo+/ (ce™™ 9+ [hy,|)|pldog,
M oM
+Z|/ 2maj0q; pdvg, | + Z |/ Tj0q; pdog, |
j=1+1
< C.

This means that u, + ¢ — IJV%I Jas (tn 4 @)dvg, is uniformly bounded in Wh4(M, go).

We define the Green function G by

l
8GAgOG ZpEM"ﬂEl m(p)dy — Kgo — Zj:l 27raj54j7
on ZpeaMﬂEl m(p)dp — hg, + Zj:lJrl Tl ,
Jy; Gdvg, = 0.

It is clear that G € W4(M, go) N C7 (M\X1) with [,, Gdgo =0for 1 < ¢ < 2.
Now we take R > 0 small such that, at each blow-up point p € ¥, the geodesic ball of M,

B} (p), satisfies BY (p) N (51 U{q1,q2, -+ ;qm}) = {p}. Then we also have

—5=m(p)logd(x,p) + g(x), if peM°nN(E1\{q1,q " qm}),

G(z) = (%%m( p) —aj)logd(z,p) + g(z), if p=¢; € M°NE1N{q,q, -, a},
—(zm(p))logd(z,p) + g(x), if pedMNO (S \{@+1, @42, 1 qm}),
—(5m(p) + a;)log d(z,p) + g(z), if p=q; € OMNE 0 {@41,A+2," " sqm}s

for z € BM(p)\{p} with g € C*(B}(p)), where d(x,p) denotes the Riemannian distance between
x and p with respect to go and

— Tim i 2un+9) _ Juntd| S 2 Untp _
m(p) 1%1310“113;0{ B%(p)(Ze e leznly, Kgo)dvg0+/aMmBM(p)(ce hgy)dog, }.

On the other hand, since for any ¢ € C*(M)

/ V(un + ¢ — G)Vdug,
M

0(un, -G
= _/ Ago<un+¢_G)‘Pdvgo+/ C —g(b )wdago
M oM n
u u é u
= [t et = Y medvg, + [ (et S m()a)pda,
M peEMoNS, oM pEAMNE,

— 0, asn— oo,

by using the fact that wu, 4+ ¢ — ﬁ J3s (un + @)dgo is uniformly bounded in Wh9(M, go), we get

1
Up + P — M/M(Un-f'fb)dgo -G

stronly in C?_(M\X;) and weakly in W1%(M, go). Consequently we have

max — Up — min  wu, <C.
MendBM (p) MendBM (p)
Therefore we get the blow-up value m(p) = 4w when p € M°N(Z1\{q1,492," - ,qm}), m(p) = 4n(1+

aj) Whenp =qj S Monzlﬂ{qlaq%’ o 7ql}7 m(p) =27 Whenp € aMﬂ(El\{QH-l?qH-Qa e aqM})7
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and m(p

/ 262un _ eln
M

) =2m(1+ ;) when p=¢q; € OM N1 N {q+1, Qi4+2, - ,¢m}- By using that

)
1/1n|f]dvg —|—/ ce'rdog = / 2e2(unte) _ e“’”Jr"ﬁ|e2 d)n@odvgo —|—/ ce'dog,,
oM M oM

we get the conclusion of the Theorem. O

Acknowledgements

Chungin Zhou was supported partially by NSFC of China (No. 11771285). Miaomiao Zhu was
supported in part by National Natural Science Foundation of China (No. 11601325).

[ARS]
(BM]
(B]
[BCLT]
[BDM]

[BaMo]

[BT]
[BT1]
[BWZ]
[DJLW]
[DM]
[CL1]
[CL2]
[DT)

[FH]
[GL]

[HMR]

[Jo]
[TWZ1]

[TWZ2]
[(TWZZ1]
[(TWZZ2]
[J221]
[1222]
[1223]

(LM]

REFERENCES

C. Ahn, C. Rim, M. Stanishkov, Fzact one-point function of N = 1 super-Liouville theory with boundary,
Nucl. Phys. B 636 [FS] (2002) 497-513.

H. Brezis, F. Merle, Uniform estimates and blow-up behavior for solutions of —Au = V(x)e* in two
dimensions. Comm. Partial Differential Equations 16 (1991), no. 8-9, 1223-1253.

D. Bartolucci, A compactness result for periodic multivortices in the electroweak theory, Nonlinear Analysis
53 (2003) 277-297.

D. Bartolucci, C. C. Chen, C.-S. Lin, G. Tarantello, Profile of blow-up solutions to mean field equations
with singular data, Comm. PDE 29 (2004) 1241-1265.

D. Bartolucci, F. De Marchis, A. Malchiodi, Supercritical conformal metrics on surfaces with conical
singularities, Int. Math. Res. Not. 24 (2011), 5625-5643.

D. Bartolucci, E. Montefusco, Blow-up analysis, existence and qualitative properties of solutions of the
two-dimensional Emden-Fowler equation with singular potential. Math. Methods Appl. Sci., 30 (2007),
pp. 2309-2327.

D. Bartolucci, G. Tarantello, Liouville type equations with singular data and their applications to periodic
multivortices for the electroweak theory, Commun. Math. Phys. 229 (2002) 3-47.

D. Bartolucci, G. Tarantello, The Liouville Equationwith Singular Data: A Concentration-Compactness
Principle via a Local Representation Formula, Journal of Differential Equations 185, 161-180 (2002).

J. Bao, L. H. Wang, C. Q. Zhou, Blow-up analysis for solutions to Neumann boundary value problem. J.
Math. Anal. Appl. 418 (2014), 142-162.

W. Y. Ding, J. Jost, J. Y. Li, G. F. Wang, Ezistence results for mean field equations, Ann. Inst. Henri
Poincare, Anal. Non Lineaire 16 (1999), 653-666.

Z. Djadli, A. Malchildi, Existence of conformal metrics with constant Q-curvature, Ann. Math. 168 (2008),
813-858.

W. Chen, C. Li, Prescribing Gaussian Curvatures on Surfaces with Conical Singularities, J.Geom.Anal.
1 (1991) 359-372.

W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991),
615-623.

W. Y. Ding, G. Tian, Energy identity for a class of approrimate harmonic maps from surfaces, Comm.
Anal. Geom. 3(1996), 543-554.

T. Fukuda, K, Hosomichi, Super-Liouville theory with boundary, Nucl. Phys, B 635 (2002) 215-254.

Y. X. Guo, J. Q. Liou, Blow-up analysis for solutions of the laplacian equation with exponential Neumann
boundary condition in dimension two. Commun. Contemp. Math. 8 (2006), 737-761.

O. Hijazi, S. Montiel, A. Rolddn, Eigenvalue boundary problems for the Dirac operator. Comm.Math.Phys.
231(2002), no.3, 375-390.

J. Jost, Riemannian Geometry and geometric analysis, 6th edition, Springer, 2011.

J. Jost, G. Wang and C. Q. Zhou, super-Liouville equations on closed Riemann surface, Comm. PDE, 32
(2007) 1103-1128.

J. Jost, G. Wang and C. Q. Zhou, Metrics of constant curvature on a Riemann surface with two corners
on the boundary, Ann. I.H. Poincare-AN, 26 (2009) 437-456.

J. Jost, G. Wang, C. Q. Zhou, M. M. Zhu, Energy identities and blow-up analysis for solutions of the
super Liouville equation, J. Math. Pures Appl. 92 (2009), 295-312.

J. Jost, G. Wang, C. Q. Zhou, M. M. Zhu, The boundary value problem for the super-Liouville equation,
Ann. Inst. H. Poincare Anal. Non Lineaire. Volume 31, Issue 4, 2014, 685-706.

J. Jost, C. Q. Zhou, M. M. Zhu, The qualitative boundary behavior of blow-up solutions of the super-
Liouville equations, J. Math. Pures Appl. 101 (2014), no. 5, 689-715.

J. Jost, C. Q. Zhou, M. M. Zhu, A local estimate for the super-Liouville equations on closed Riemann
surfaces, Calc. Var. Partial Differ. Equ., Volume 53, Issue 1-2, 2015, 247-264.

J. Jost, C. Q. Zhou, M. M. Zhu, Vanishing pohozaev constant and removability of singularities, J. Differ-
ential Geometry, Vol. 111, No. 1 (2019), pp. 91-144.

H. B. Lawson, M. Michelsohn, Spin geometry. Princeton Mathe. Series, 38. Princeton University Press,
Princeton (1989).

44



[LS]

(L]
[Lion]

[Liou]
:
[Ta]
(1]
(2]
PW]
[Ye]
1]
2]
2]

(222)

Y. Y. Li, I. Shafrir, Blow-up analysis for solutions of —Au = Ve in dimension two, Indiana Univ. Math.
J., 43 (1994), 1255-1270.

Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys. 200(1999), 421-444.
P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part I.
Revista Matemética Iberoamericana, 1(1), 1985, 145-201.

J. Liouville, Sur l’équation aux différences partielles #{2111 log A + ﬁ = 0, J. Math. Pures Appl. 18, 71
(1853).

J. N. G. N. Prata, The super-Liouville equation on the half-line, Phys. Lett. B 405 (1997) 271-279.

M. Struwe, Variational methods, Springer, 4th ed., 2008.

G. Tarantello, A quantization property for blow-up solutions of singular Liouville-type equations, Journal
of Functional Analysis 219 (2005) 368-399.

M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math.
Soc. 324 (1991), 793-821.

M. Troyanov, Metrics of constant curvature on a sphere with two conical singularities, Differential geom-
etry (Peniscola, 1988), 296-306, Lecture Notes in Math., 1410, Springer, Berlin, 1989.

T. H. Parker and J. G. Wolfson, Pseudo-holomorphic maps and bubble trees, J. Geom. Anal.3 (1993),
63-98.

R. G. Ye, Gromov’s compactness theorem for pseudo-holomorphic curves, Trans. Am. Math. Soc. 342 (2),
671-694 (1994).

M. M. Zhu, Dirac-harmonic maps from degenerating spin surfaces I: the Neveu-Schwarz case, Calc. Var.
Partial Differ. Equ. 35 (2009), no. 2, 169-189.

M. M. Zhu, Quantization for a mnonlinear Dirac equation, Proc. Amer. Math. Soc., 144 (2016), no. 10,
4533-4544.

T. Zhang, C. Q. Zhou, Liouville type equation with exponential Neumann boundary condition and with
stngular data. Calc. Var. Partial Differential Equations, 57 (2018), 163-195.

T. Zhang, C. L. Zhou, C. Q. Zhou, Quantization of the blow-up value for the Liouville equation with
exponential Neumann boundary condition. Commun. Math. Stat. 6 (2018) 29-48.

MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES, INSELSTR. 22, 04103 LEIPZIG, GERMANY
Email address: jjost@mis.mpg.de

DEPARTMENT OF MATHEMATICS AND MOE-LSC, SHANGHAI JIAOTONG UNIVERSITY, 200240, SHANGHAI, P. R.

CHINA

Email address: cqzhou@sjtu.edu.cn

SCHOOL OF MATHEMATICAL SCIENCES, SHANGHAI JIAO TONG UNIVERSITY, DONGCHUAN RoAD 800, 200240,
SHANGHAI, P. R. CHINA
MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES, INSELSTR. 22, 04103 LEIPZIG, GERMANY

Email address: mizhu@sjtu.edu.cn

45



