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1 Introduction

The concepts of information and complexity seem to be intricately linked. Com-
plexity notions are quantified in information theoretical terms, and a general
principle might say that a structure is the more complex, the more information
is needed to describe or build it. That principle, however, needs some quali-
fication. Ome should distinguish between — usually useful — information about
regularities of a structure or a process and — often useless — information about
random details. The question is not only information about what?, but also
where is that information?, that is, whether and how it is or can be internally
stored in a system with limited capacity, at which level of a process information
is needed to predict the continuation of a process, and where it can be found in
a distributed system. In the latter case, we should, however, not only look for
information that is exclusively located somewhere or that is shared between en-
tities, but should also consider complementary or synergistic information, that
is, information that only emerges when several sources are combined.

These lecture notes describe what is currently known about these questions,
and they develop the underlying theoretical concepts and elucidate them at sim-
ple examples. Also, when we can quantify complexity concepts, we can also try
to optimize the corresponding complexity measures. This will also be system-
atically discussed.

These notes are the result of a series of lectures that one of us (JJ) delivered
at the Summer School in Como in July, 2018. They present work that we have
done jointly during the last few years. JJ thanks Elisa Mastrogiacomo and Sergio
Albeverio for organizing a very stimulating school, and the participants and the
other lecturers, in particular Luciano Boi, Ivar Ekeland and Frank Riedel, for
stimulating discussions.

2 Background: Principles of information theory

2.1 Shannon information

The basic concept is that of the Shannon Information [Shannon 1948] of a ran-
dom variable X, or equivalently, of a probability distribution p, when the possi-
ble values x; of X are realized with probabilities p; = p(z;). These probabilities
satisfy 0 < p; < 1 for all ¢, with the normalization ), p; = 1. The Shannon
information or entropy then is

H(X):H(phu-,pn):—Zpiloggpi (bits). (1)

This is the expected reduction of uncertainty, i.e., the information gain, if we
learn which concrete value x; of the random variable X from a known distribu-
tion p with probabilities p; = p(x;) is realized.

This is the basic example: When we have two possible events occurring with



equal probability 1/2 (an unbiased coin) we thus gain log, 2 =1 bit of informa-
tion when we observe the outcome.
A fair dice yields log, 6 bits of information.

2.2 Mutual and conditional information

We now consider the situation where we have an additional random variable Y.
In the example of the dice, we could let Y = 0 (resp. 1) for an odd (even) result,
each with probability 1/2. According to the basic example, we have H(Y) =1
bit. When we know Y, there remain only 3 possibilities for the value of X, each
with probability 1/3.

This leads us to the concept of conditional information; in this example, the
remaining uncertainty about X when knowing Y is

H(X|Y) = log, 3. 2)

Thus, the uncertainty about the value of X is reduced from log, 6 to log, 3 bit
when knowing Y.

The joint information is related to the conditional information by
H(X,Y) = H(X) + H(Y|X) = HY) + H(X|Y). (3)

Thus, H(X,Y) < H(X) + H(Y), and < if X and Y are not independent. In
the example, we have H(X,Y) = H(X), since the value of X determines that
of Y.

The information gain about X from knowing Y is called the mutual infor-
mation of X and Y,

MI(X:Y)=H(X)- HX|Y). (4)

In our example MI(X :Y) =log, 6 — log, 3 = log, 2 = 1 bit. From Y, we gain
1 bit of information about X.
The mutual information is symmetric,

MI(X:Y)=MIY : X). (5)

The difference structure is perhaps the most important aspect. In many re-
spects, is more important and fundamental than , because we always
have some prior knowledge, expressed here through Y, when we observe some
X. Thus, the mutual information MI(X :Y) tells us how much we can already
infer about X when we know Y. By then observing X, we only gain the addi-
tional information H(X|Y').

Summary:

H(X)=MI(X:Y)+ H(X|Y) (6)



H(X) = how much you learn from observing X
MI(X :Y) = how much you learn about X by observing YV
H(X]Y) = how much you learn from observing X when you already know Y.

We can iterate the conditioning process with another random variable Z, to
get the conditional mutual information

MI(X :Y|Z) = H(X|Z) - H(X|Y, Z). (7)

MI(X :Y|Z) quantifies how much additional mutual information between X
and Y can be gained when we already know Z.

Careful: While always H(X|Z) < H(X), we do not necessarily have
MIX:Y|Z)<MI(X:Y).

r oy =z
0 0 O
Example: The XOR function (exclusive or): 1 0 1
0 1 1
1 1 0

where X, Y assume their two values independently with probability 1/2 each.
Thus, MI(X :Y) = MI(X : Z) = MI(Y : Z) =0, but MI(X : Y|Z) =
MI(X : Z|Y) = MI(Y : Z|X) = 1, because knowing the values of two of the
variables determines that of the third.

2.3 Maximum entropy

E.Jaynes’ mazimum-entropy principle [Jaynes 2003]: Take the least informative
estimate possible on the given information, that is, don’t put any information
into your model that is not based on the observed data. Look for p with max-
imal entropy H(p) under the constraint that the expectation values of certain
observables f, be reproduced,

Epfa:Zf;piforazl,..‘,A. (8)
The solution is an exponential distribution
1 . , )
=7 epraj Xafl)  with Z = zijepraj Xafh)- 9)
In particular, when there are no observations,
1 .
pjzﬁforjzl,...,n. (10)

2.4 Kullback-Leibler divergence

A reference for the information geometric concepts that will be introduced and
used here and in the sequel is [Ay et al. 2017]. The Kullback-Leibler divergence



(KL-divergence for short) or relative entropy for two probability distributions
p,q
pilog, 2t ifs C su
D(pllg) = 4 2iPi1og2 g i suppp Csupp g (11)
00 else

is positive (D(pllq) > 0 if p # q), but not symmetric, as in general, D(pl||q) #
D(qllp)-

Example: The mutual information is the KL-divergence between the joint
distribution and the product of the marginals,

MI(X :Y) = D(p(x, y)|[p(z)p(y))- (12)

Among all distributions p(z, y) with the same marginals p(z) = Zy p(z,y),ply) =
Y. p(z,y), the product distribution p(x)p(y) has the largest entropy. This is,
of course, a special case of Jaynes’ principle. That is, when we only know the
marginals, Jaynes’ principle would suggest to take the product distribution as
our estimate.

Example: The space of all probability distributions on two binary vari-
ables is a 3-dimensional simplex. It contains the 2-dimensional subfamily of
product distributions. The extreme points of the simplex are the Dirac mea-
sures 8(*¥) z y = 0, 1. Maximization of the distance from the family of product
distributions leads to distributions with support cardinality two (perfect corre-
lation or anticorrelation) [Ay 2002].

The formal way of expressing Jaynes’ principle is to project a given distribution
onto the product family £ to maximize entropy while preserving the marginals,
with 7 denoting that projection,

D@pli&) = iD@plq = Dp|rp) (13)
= Hn»(X,Y) - Hy(X,Y).

3 Complexity

In this section, we want to introduce and discuss complexity concepts. But what
is complexity? Some possible answers (see [Ay et al. 2011} [Ay et al. 2017] for a
systematic discussion): Complexity is

1. the minimal effort or the minimal resources needed to describe or gen-
erate an object. Examples of such complexity concepts include algorith-
mic complexity (Kolmogorov [Kolmogorov 1965], Chaitin [Chaitin 1966],
Solomonoff [Solomonoff 1964]); computational complexities; entropy (Shan-
non [Shannon 1948]), or entropy rate (Kolmogorov [Kolmogorov 1965,
Sinai [Sinai 1959]).

2. the minimal effort or the minimal resources needed to describe or gen-
erate the regularities or the structure of an object. Examples of such
complexity concepts include Kolmogorov minimal sufficient statistics and



related notions, stochastic complexity (Rissanen [Rissanen 1989]), effec-

tive complexity (Gell-Mann and Lloyd [Gell-Mann and Lloyd 1996]), ex-

cess entropy ([Shaw 1984], also known as effective measure complexity
[Grassberger 1980]), forecasting complexity ([Zambella and Grassberger 1988]),
also introduced as statistical complexity by Crutchfield, Young, Shalizi
[Crutchfield and Young 1989, [Shalizi and Crutchfield 2001]).

3. the extent to which an object, as a whole, is more than the sum of its
parts (Aristotle [Aristoteles Metaphysik]), that is, the extent to which the
whole cannot be understood by the analysis of the parts of the system in
isolation, but only by also considering their interactions.

In order to systematically explore these aspects, we start with the most ba-
sic concept, that of algorithmic complexity [Kolmogorov 1965| [Solomonoff 1964,
[Chaitin 1966] (see [Li and Vitanyi 1997] for a systematic exposition). This con-
cept expresses 1) in its purest form.

3.1 Algorithmic complexity

The algorithmic complexity of an object, such as a number or a piece of text,
is the length of the shortest computer program that generates or produces the
object as outputEl Typically, one cannot compute this complexity, but only
provide an upper bound by producing a computer program, but does not know
whether this is the shortest possible one.

From a conceptual perspective, the basic premise is that irregular or random
structures have the highest algorithmic complexity, because they do not admit
a short description. In other words, we want to characterize the complexity of a
structure by the difficulty of its description. That is, we ask the question: How
much can the description of a structure be simplified by utilizing regularities?

e Very simple structures need not be simplified any further.

e Random structures cannot be simplified.

e Computational complexity (see for instance the expositions in [Papadimitriou 2004]
and [Moore and Mertens 2011]): Running time of shortest computer pro-
gram that can generate the structure: A simple structure is produced
quickly, whereas for a random one, everything has to be explicit in the
program, and so, it does not need to run for a long time either.

e Random structures are not of interest for themselves, but only as members
of an ensemble; it therefore suffices to describe the latter (Gell-Mann and
Lloyd [Gell-Mann and Lloyd 1996]).

Ito make the complexity of different objects comparable, one needs to agree on a prede-
termined programming language; usually, one assumes some universal Turing machine, and
changing that Turing machine will introduce an additive constant in the upper bounds



3.2 External and internal complexity

The question that arises from the above concept of algorithmic complexity is how
to compute it, that is, how to find the shortest description of a given structure.
Quite apart from the fact that this depends on the choice of the device we use
to evaluate it (in theory: some universal Turing machine, and the choice of that
Turing machine then introduces an additive constant), in practice, we have only
bounded means to represent a structure. Thus: What do we want to know? We
want to

1. know a rich and complex structure,
2. but represent it most efficiently.
More formally, we want to
1. maximize external complezity,
2. but minimize internal complexity.
This perspective was introduced in [Jost 2004]. For an application in pattern
classification, see for instance [Avdiyenko et al. 2015].
3.3 Optimization principles

Organisms live in and interact with a complex environment, see for instance
[von Uexkiill 2014] (for a measure theoretical approach, see [Ay and Loehr 2015]),
and need to maintain their own autopoiesis [Maturana and Varela 1979]. A
modern society consists of several complex subsystems that follow their own
rules, but need to interact with each other [Luhmann 1984, Luhmann 1997].
With the concept of Shannon information, we can formulate some abstract
principles that either maximize or minimize some kind of complexity (we follow
[Jost 2016a] here). The basic versions, however, lead to trivial results, as we
shall now see.

1. Gain as much information as possible: Look at random patterns
2. Avoid surprises: Look at blank screen

3. Try to predict future sensory inputs as accurately as possible on the basis
of the current ones (and perhaps try to bring yourself into a state where
this is possible [Eriston 2010])

4. Try to manipulate the environment such that the results of own actions
are as accurately predictable as possible [Klyubin et al. 2005].

5. Maximize

MI(StJ’_l : Et) _MI(StJ’_l : Et|St) (14)
= H(St+1) = H(S1|Er)  —H(Se41[St) + H(Se41]Er, St)



to establish the strongest possible correlation between the current state E}
of the environment and future sensory data S41, but such that this corre-
lation can already be predicted from the current input S; [Bertschinger et al. 2008]

To proceed further, let us discuss some questions.

1. Q: Why should a system model an external probability distribution?
A: To make predictions on the basis of regularities

2. Q: How can this be achieved in an environment that is vastly more complex
than the system itself?
A: Detect regularities

3. Q: How to detect regularities?
A: Because of 2), the system is forced to compress.

These answers have some consequences in various fields:

e Psychology: Use heuristics [Simon 1955 [Simon 1956} |Gigerenzer and Todd 1999]
e Cognition: External vs. internal complexity [Jost 2004]

e Statistics: Avoid overfitting

e Statistical learning theory: Start with models with few parameters and
gradually increase as you learn (Vapnik-Chervonenkis) [Vapnik 1995| [Vapnik 1998]

3.4 Correlations in time series

We can also use the information theoretical notions to evaluate the complexity of
a time series in terms of the correlations that it exhibits. A time series X;,t € N
could possibly have

e No regularities: H(X¢|X;—1) = H(X})
e the Markov property: H(X|X;—1,X;—2,...) = H(X¢|X;—1), or
e Long term correlations, as in texts, genetic sequences, ...

To evaluate this, we quantify how much new information is gained when one
already knows n consecutive symbols and then sees the (n + 1)st. (Grassberger
|Grassberger 1986])

For which n is this largest? When n is small, one perhaps cannot predict much,
and if n is large, one may be able to guess the rest anyway.

The larger this n, the more complex the sequence.

For genetic sequences, n ~ 14 [I], for amino acid sequences (proteins) n ~ 5.
In literature analysis, such a principle can be used to evaluate the complexity
of language [Efer et al. 2015].

A more sophisticated concept is the genon concept of molecular biology

[Scherrer and Jost 20074l [Scherrer and Jost 2007b| |Jost and Scherrer 2014].




3.5 Complementarity

Instead of trying to predict the environment, one can also let the environment
do the computation itself (see [Jost 2016a]).

If you want to catch a ball, you do not use Newtonian mechanics to compute
the trajectory, but simply run so that the ball appears under a constant an-
gle. The environment computes the trajectory, and you only need to sample.
This outsourcing of computation represents one mechanism for the compression
mentioned in Section

More generally, embodied cognition has emerged as a new paradigm in
robotics [Pleifer and Bongard 2007].

3.6 Hierarchical models and complexity measures

In this section, we follow [Ay et al. 2011] and [Ay et al. 2017]. Returning to
Jaynes’ approach, we could maximize entropy while preserving marginals among
subsets of variables. For instance, for a distribution on 3 variables, we could
prescribe all single and pairwise marginals.

Assume that we have a state set V' that consists of the possible values of N
variables. We then consider the hierarchy

G, €6y C...C 6By C 6y =2, (15)

where &y, is the family of subsets of V' with < k elements, from wich we get
the set of probability distributions £g, with dependencies of order < k. For
instance, £g, is the family of distributions that are simply the products of their
marginals. In particular, for a probability distribution in this family, there are
no correlations between the probabilities of two or more of the variables. In
Es,, we then allow for pairwise correlations, but no triple or higher order ones.
We point out that one can also consider other families of subsets of V and the
corresponding probability distributions. For instance, when V' is the ordered
set of integers {1,..., N}, one could consider the family of those subsets that
consist of uninterrupted strings of length < k. This will be our choice when we
discuss the excess entropy below.

We let g, be the projection on &g, , p'¥) := 7s, (p). For instance, p!) is the
product distribution with the same marginals as p.

We have the important Pythagorean relation

-1
D" [|p™) = 3 DE*TD | pk), (16)
k=m
fori,m=1,...,N — 1, m <. In particular,
N-—1
D(pllp™M) = > DE* | p™). (17)
k=1



If we take configurations with dependencies of order < k, we get the Com-

plexity measure [Ay et al. 2011] with weight vector a = (ag, ..

RN—I

. k
with B =3, a;.

< OéN,]_) €

N—-1
ay D(p|| p*) (18)

k=1

N—-1
Bk D(p* TV || p*), (19)

k=1

p¥) is the distribution of highest entropy among all those with the same corre-

lations of order < k as p.

Thus, we consider a weighted sum of the higher order correlation structure.

Examples:

k

e Tononi-Sporns-Edelman complexity [Tononi et al. 1999]: ap = £ ad-
dresses the issue of the interplay between differentiation and integration
in complex systems (for an analysis of system differentiation from an in-
formation theoretical perspective, see also [Jost et al. 2007])

e Stationary stochastic process X,,: Conditional entropy

hy(Xp) = Hy(X,|X1,...

7Xn—1)-

Entropy rate or Kolmogorov—-Sinai entropy [Kolmogorov 1965 [Sinai 1959]

hp(X) =

Ezcess entropy (Grassberger [Grassberger 1986])

where we choose &y, as the sequences of integers j+1,7+2,...

. . 1
lim_ hp(Xn) = lim ~ Hy(X1,..., Xp), (20)
nlggo ];(hp(Xk) - hp(X))
lim (Hp(Xy,...,Xn) —nhp(X)) (21)
n—o0
n—1 k}
: (k+1) (k)
nhHHéO kzz:l n—k D(pn ” Pn )7 (22)

,Jj+ £ with

¢ < k. The excess entropy measures the non-extensive part of the entropy,
i.e. the amount of entropy of each element that exceeds the entropy rate.

3.7 Interactions between levels

The question of emergence, that is, how a higher level that is (at least partially)
autonomous from lower levels, arises in many disciplines. For example, classical

10



mechanics arises from an underlying quantum structure, but the laws of classi-
cal mechanics are causally closed, in the sense that for computing trajectories
of Newtonian particles, we do not need information from the quantum level.
Likewise, human genetics rests on the laws of Mendel and does not need to
consider an underlying biochemical level. In other fields it is often not so clear,
however, to what extent laws operate autonomously at a certain level without
needing permanent or at least regular access to some lower level. For instance,
does it suffice for understanding macroeconomic processes to consider relations
between macroeconomic variables, or is an input from the microeconomic level
essentially needed? Or can one understand social dynamics without access to
the psychic and mental states of the participating individuals? For a general dis-
cussion of the issue of emergence from the perspective developed in the present
contribution, see for instance [Jost et al. 2010].

Here, we describe the approach of [Pfante et al. 2014al [Pfante et al. 2016]
(and refer to [Pfante et al. 2014a)] for references to earlier work). We consider
a structure

X’LJZ”
X —% . x

with basic level X, X’ and higher level X , X' ; an arrow Y — Y’ represents
a discrete time step where X, X’ form a Markov process, with transition kernel
¢, which can be observed at the higher level X, X’ in a lossy fashion.

The higher level could result from averaging or aggregating the lower level.
Think of X as a coarse-graining of X given by an observation map 7.

We can propose several criteria for the upper process being closed in the
sense that it depends on the lower process only through some initialization.

I Informational closure: The higher process is informationally closed, i.e.
there is no information flow from the lower to the higher level. Knowledge
of the microstate will not improve predictions of the macrostate.

MI(X':X|X)=0 (23)
where the conditional mutual information
MI(X": X|X)=HX'|X) - HX'|X) (24)

measures the reduction in uncertainty about X’ when knowing X instead

~

of only X.

Il Observational commutativity: It makes no difference whether we per-
form the aggregation first and then observe the upper process, or we ob-
serve the process on the microstate level, and then lump together the

11



states.
Kullback-Leibler divergence between the lower and the upper transition
kernel from X to X’ is 0, for some initial distribution on X.

I = II, and in deterministic case also I = I. (25)

(In I, probabilities at X, in II at X)

III Commutativity: There exists a transition kernel ¢ such that the dia-
gram commutes (Gornerup-Jacobi, 2010)

II = III, and in deterministic case also IT1T = I1. (26)

II: Transition kernels satisfy ¥ = II®II”
IIT: Transition kernels satisfy WII = I1®

1V Markovianity: X ,)?’ forms again a Markov process (Shalizi-Moore,
2003).

I =1V, but IV = III. (27)

V Predictive efficiency: A more abstract formulation is that an emergent
level corresponds to an efficiently predictable process, that is, one that
can be predicted in its own terms, without permanent recourse to a lower
level.

3.7.1 A test case: The tent map

We now evaluate the preceding concepts at the example of the tent map, fol-
lowing [Pfante et al. 2014b] (see also [Atay et al. 2009] for background).

2 fo<z<1/2
T(z) = z ifo<xz<1/
2 —2x else

The tent map is a basic example of a chaotic dynamical iteration, because at ev-
ery step differences between values can get doubled, and therefore, after several
steps, even very tiny differences between initial values can become macroscop-
ically large. The folding at 2 = 1/2 ensures that nevertheless the unit interval
is mapped to itself. Thus, some differences also get reduced. Understanding
this interplay between amplification and reduction of differences is surprisingly
subtle, as one may also see in the following.
For a threshold value « € [0,1] we define the symbolic dynamics

bo: X —>X=1{0,1}

bo(2) ::{O fo<z<a

1 else

12



The sequence z,, = T™(x), for an initial value z € X, yields the derived symbol
dynamics s, = ¢ (z,) € {0,1}.

The probability of finding s,, in the state 0 is the probability that z,, lies in
the interval [0, @] (which is « for the tent map).
We consider the symbolic dynamics derived from consecutive time steps

(5n+m7 Sn4+m—1y+--» Sn) )

with £k € N
=10 if TF(z) < a
=1 i TR) > a

For comparison, we take a random sequence &, € [0,1] (uniformly, i.i.d.),
and consider the corresponding symbolic dynamics

0 ifé&, <a
Op =
1 ifg, > a.

The question now is: Are there systematic differences between the symbolic
sequence s, derived from iterations of the tent map and o,,7

For a« = 1/2, they look the same (in fact, we simply have a Bernoulli se-
quence: the values 0 and 1 occur with equal probability 1/2; p(0) = p(1) = 1/2).
If we don’t know z, s, looks as random as o,,. The transition probabilities are

p(0[0) = p(1]0) = p(0[1) = p(1]1) = 1/2.

We next consider a = 2/3. Put x,, :== T"(z).
o, = 0 and 0, = 1 occur independently with probabilities 2/3 and 1/3.

When s,, =1, that is, 2/3 < z,, <1, then 0 < x,,41 < 2/3, that is 5,41 = 0.
Thus, there is no transition from 1 to 1. For the state s,, = 0, both transitions
are equally likely: when 0 < x,, < 1/3, we have 0 < x,41 < 2/3, that is,
Snt1 = 0, while for 1/3 < x < 2/3, we get s,+1 = 1. Thus, for s,,

p(0]0) = p(1]0) = 1/2, p(0]1) =1, p(1[1) =0

while for o,
p(0]0) = p(0[1) = 2/3, p(1]0) = p(1|1) = 1/3.

This leads us to the concept of forbidden sequences. While for the threshold
a = 1/2, the symbolic dynamics of the tent map cannot be distinguished from
that of a random sequence, and is Markovian, in contrast, for the threshold
a = 2/3, the sequence 11 does not occur, and the symbolic dynamics is differ-
ent from a random one, but still Markovian.

For other thresholds, we can also get longer forbidden sequences and non-
Markovian symbolics.

13



Even from a random sequence &,, we can derive non-Markovian symbolic
dynamics.
Let 21, 2% € [0,1]; we consider the symbolic rule

L2 = 0 ifa! <a?
1 ifz? <2l

For our random sequence, take 2! = &, 22 = &,,1. Thus, we draw the points
z', 2% randomly and independently.
The state probabilities are again p(0) = p(1) = 1/2, but the transition proba-
bilities now depend on the history. The more 1s we have seen, the less likely it
is to see another 1, because then &, is expected to be very small, hence most
likGIY7 gn-‘rl > gn-

We now analyze the information flow of this example. The information flow
between the micro-level corresponding to state x,, and the coarse-grained level
Sy, is the conditional mutual information

MI(spa1: Tnlsn) = H(snx1|8n) — H(Sn+1]8n, Tn) -

Since s,11 is fully determined by z,,, the second term vanishes,

MI($p41: Tnl|Sn) = H(Spt1l8n) ,

i.e., the information flow = conditional entropy on the coarse grained level,
which has a local minimum at o = 2/3.

Instead of drawing information from below, the upper level system
relies on its memory.

4 Information decomposition

We finally turn to the concept of information decomposition. To motivate it,
we start with the transfer entropy [Schreiber 2000]E|

TE(Z — X) = MI(X, : Z_|X_) (28)

where the subscript — refers to the past and + to the future. TE(Z — X)
quantifies the amount of information contained in Z about the future of X that
cannot be obtained from its own past.

Problem: X, = XOR(X_,Z_):

Here, the information in Z_ is only useful together with that of X_. The
transfer entropy cannot distinguish this situation from one where X_ does not

2Such a principle had already been introduced by the econometrician Granger
|Granger 1969] who wrote “We say that Y; is causing X; if we are better able to pre-
dict X; using all available information than if the information apart from Y: had been
used.” In the econometric literature, this principle was applied only in linear settings. As
[Barnett et al. 2009], explained, the transfer entropy can be seen as an operationalization of
this principle in a general context.

14



contribute and Z_ determines X by itself.

This problem is addressed by information decomposition. It was started by
Williams and Beer [Williams and Beer 2010] (but their measure Iy, of shared
information does not distinguish whether different random variables carry the
same information or just the same amount of information), and continued by
Harder, Salge, Polani [Harder et al. 2013], Griffith and Koch |Griffith and Koch 2014],
Bertschinger, Rauh, Olbrich, Ay, Banerjee, Jost [Bertschinger et al. 2012| Bertschinger et al. 2014}
Rauh et al. 2014l [Rauh et al. 2017], and taken up by many other people (see
for instance the references in [Lizier et al. 2018]), with applications in different
fields, like neuroscience [Wibral et al. 2017]. There is no optimal solution, but
that of Bertschinger, Rauh, Olbrich, Jost, Ay [Bertschinger et al. 2014] (called
the BROJA decomposition in the community) is currently the most widely ac-
cepted.

To describe our approach, we consider three random variables X7, X5 and S.
The (total) mutual information MI(S : X1, X5) quantifies the total information
that is gained about S if the outcomes of X; and X5 are known. How do X; and
X5 contribute to this information? For two explanatory variables, we expect
four contributions to MI(S : X1, X5):

MI(S:Xy,Xs) = SI(S:X;p;X3) shared information
+UI(S: X1\X2) unique information of 1
+UI(S: X2\X1) unique information of 2

+CI(S: X1;X5) complementary or synergistic information.

Here, UI(S : X;\X>) is the information that X; has, but X5 does not have,
SI(S: X1; X5) is the information that both of them have individually. Perhaps
the most interesting term is the last, CI1(S : X;; X2), the information that only
emerges if X; and X5 pool their knowledge. This term is best illustrated in the
XOR example discussed below.

CI(S: X1;X2)

Gray: MI(S : X1,X5)
Blue: MI(S: X;)
Orange: MI(S : X5)
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Ty T2 S ‘ p(z1,72,5)

0 0 O 1/4
We consider some exampless. AND 1 0 0 1/4

0 1 0 1/4

1 1 1 1/4

Here, 1 and z2 jointly determine s, but cannot be fully recovered from s.

When 1 has the value ;1 = 0, she can exclude s = 1, and analogously for 2.
Thus, when they both see 0, they share the information that s = 0.
The mechanism loses some information. When X;, X5 are i.i.d.,

H(Xl,Xg) =2 bitS7

but
1

1
H(S)=MI(S: X1,X2) = _ZIOgZ — glog% ~ .811 bits.

In general, we may have both correlations between the input variables and
relations created by the mechanism that computes S.
We next recall XOR from Section 2.2}

T i) S
0 0 O
1 0 1
0 1 1
1 1 0

Neither 1 nor 2 can determine the value of S by herself, but the value of the
other is needed for that. This is a clear case of synergistic information only.

Our approach: Unique and shared information should only depend on the

marginal distribution of the pairs (S, X;) and (S, X2). This idea can be ex-
plained from an operational interpretation of unique information: Namely, if
X1 has unique information about S (with respect to X3), then there must be
some way to exploit this information. More precisely, there must be a situation
in which X; can use this information to perform better at predicting the out-
come of S.
In this interpretation, 1 possesses unique information about S compared with
2, if there exists a reward function for which 1 can achieve a higher expected
reward based on her value x; and her knowledge of the conditional distribution
p(s]z1) than if she knew and utilized instead the conditional distribution of 2.
Thus, unique and shared information depend only on pairwise marginals. Only
the synergistic information includes higher order dependencies. In that sense,
synergy becomes a measure of higher order interactions, in the sense of infor-
mation geometry.
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From a conceptual perspective, and independently of the way the different
terms in the decomposition are quantified, it is important to understand synergy,
in order to clarify discussions that have become quite sterile, like the relative
importance of genes and environment in biology. For a perspective in this
direction, see [Jost 2020].
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