
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Edge-based analysis of networks:

Curvatures of graphs and hypergraphs

by

Marzieh Eidi, Amirhossein Farzam, Wilmer Leal,

Areejit Samal, and Jürgen Jost

Preprint no.: 103 2020





Edge-based analysis of networks:

Curvatures of graphs and hypergraphs

Marzieh Eidi1, Amirhossein Farzam1, Wilmer Leal1,2, Areejit
Samal3, and Jürgen Jost1,4

1Max Planck Institute for Mathematics in the Sciences, 04103
Leipzig, Germany

2Bioinformatics Group, Department of Computer Science,
Universität Leipzig, 04107 Leipzig, Germany

3The Institute of Mathematical Sciences (IMSc), Homi Bhabha
National Institute (HBNI), Chennai 600113, India

4The Santa Fe Institute, Santa Fe, New Mexico 87501, USA

October 29, 2020

Abstract

The relations, rather than the elements, constitute the structure of
networks. We therefore develop a systematic approach to the analysis
of networks, modelled as graphs or hypergraphs, that is based on struc-
tural properties of (hyper)edges, instead of vertices. For that purpose,
we utilize so-called network curvatures. These curvatures quantify the
local structural properties of (hyper)edges, that is, how, and how well,
they are connected to others. In the case of directed networks, they as-
sess the input they receive and the output they produce, and relations
between them. With those tools, we can investigate biological networks.
As examples, we apply our methods here to protein-protein interaction,
transcriptional regulatory and metabolic networks.

1 Introduction

A central paradigm of structuralism [1, 2] is the analysis of structural relations
regardless of the identity of the elements involved. That is, a structure is con-
ceived in terms of the relations between elements. One wants to understand
the types of relations, rather than the nature of the elements. This paradigm is
obviously also fundamental for the analysis of empirical networks, be they from
the biological sciences or other domains. Such an analysis then again abstracts
from the specific content of the elements and concentrates on the formal rela-
tions between them. In that manner, one can both find universal features that
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hold across a wide range of networks from different domains, and properties
that are specific to particular empirical domains.

For that purpose, many different measures have been developed. Some of
these measures, like for instance the assortativity (see for instance [3, 4]), are
of a global nature, that is, associate some number to the entire network. Such
a number is usually an average or perhaps, like the diameter of a network, an
extremum of locally measured quantities. In any case, the basis for such global
measures is to first develop local measures. For a more refined analysis, one can
then also look at the statistics of those local measures, instead of lumping them
together in a single number (for instance [5, 6] for assortativity).

Some of these local measures require global computations in the network;
for instance, for computing the diameter, one needs to evaluate the distances
between any two elements. Therefore, some of these measures are difficult to
evaluate in practice for networks of more than a moderate size. Others, includ-
ing those that we shall concentrate on in this contribution, require only local
computations and can be very easy to evaluate.

Now, somewhat surprisingly in view of the above structuralist paradigm,
many of the local measures assign numbers to the elements of the network,
rather than directly to its relations. The most basic one here is the degree of an
element, the number of relations that it participates in. More global measures
for instance evaluate the robustness of the network in terms of how many or
which elements need to be eliminated in order to disconnect the network. See
for instance [7, 8].

In this situation, we and our collaborators have developed the research
paradigm of a relation based analysis of networks (for instance [9, 10, 11, 12,
13, 14, 15, 16, 17, 6]. That is, we evaluate relations and associate measures to
them whose statistics across the network then can provide structural insight.

There is another shortcoming of much of traditional network analysis. It tries
to represent all structures as graphs, that is, considers only pairwise relations.
For instance, a relation between three elements is simply broken up into three
pairwise relations. That may, however, suppress some important structural
insight. Take the example of scientific collaborations. From preprint repositories
in the internet, it is easy to extract patterns of collaborations from coauthorships
between authors. There are some single author papers, but of more interest are
those written by several authors. There may be more than two authors involved
in some paper, say A,B, and C. Of course, one could reduce it to pairwise
relations and say that any two of them are coauthors. But there may be more
structure. For instance, there may also exist a two-author paper by A and B, no
such paper between A and C, and a paper of B and C with two other authors
D and E. This is obviously not captured by the pairwise relations, and for
a more adequate model of the structure of scientific collaborations, we should
rather use a hypergraph instead of a simple graph. In a hypergraph, a hyperedge
can connect any number of elements. See for instance [18, 19, 20, 21, 22]. In
computer science, directed hypergraphs are also known as Petri nets [23, 24].
They were originally proposed by Petri as models of chemical reactions. Over
the years, while not as widely employed as graphs, they have found applications

2



in many fields, for instance recently as models of coupled dynamics in statistical
physics [25, 26, 27], of social contagion [28] and for knowledge representation in
natural language processing [29].

In this contribution, we shall summarize relation-based measures both for
graphs, that being the simplest case, and for hypergraphs.

2 The idea of curvatures

The name curvature derives from its origin in differential geometry. Originally,
curvature was an infinitesimal quantity, obtained by taking second derivatives
of functions describing shapes of smooth objects, like curves or surfaces. In
Riemannian geometry, curvatures obtained a deeper conceptual significance, as
tensors encoding the geometric invariants of Riemannian metrics of smooth man-
ifolds [30]. In particular, the Ricci tensor is fundamental not only in Einstein’s
theory of general relativity and in elementary particle physics (the Calabi-Yau
manifolds of string theory, for instance, are characterized by the vanishing of
the Ricci tensor), but it also permeates much of modern research in Riemannian
geometry. While Ricci curvature in Riemannian geometry again is computed
infinitesimally, by taking second derivatives of the metric tensor, it essentially
encodes local property, like the average divergence of geodesics or the growth of
the volume of balls as a function of their radii. Moreover, Bochner type identi-
ties link it to other important geometric quantities, like the first eigenvalue of
the Laplace operator. See for instance [31] for a survey.

Since such objects and properties are also meaningful and important in met-
ric spaces that are more general than Riemannian manifolds, alternative defi-
nitions of Ricci curvatures have been proposed that are formulated in terms of
local quantities and no longer depend on taking derivatives. Several of these
definitions turned to be also meaning- and useful for graphs, and we have ex-
tended them to hypergraphs and are exploring their properties. Here, we shall
not recount the history in detail, but rather systematically develop a concep-
tual approach that is in line with the paradigm of structuralism described at
the beginning. We only note the curious fact that these concepts, although
extremely natural from a structuralist perspective, were not developed directly,
but inspired by concepts in a different, and more highly developed branch of
mathematics, Riemannian geometry.

3 How relations connect

Abstractly, there are different types of relations. They can vary with respect
to the number of elements involved, they can be symmetric or directed, that is,
distinguish between inputs and outputs, and they may also carry weights. The
simplest case are binary, symmetric and unweighted relations. Such a web of
relations is then modelled by an undirected and unweighted graph whose vertices
stand for the elements in question and whose edges represent the presence of a
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relation between the two vertices they connect. For simplicity, we also assume
that the graph is simple, that is, there is at most one edge between any two
vertices, and that it is connected, that is, by passing from edge to edge we
can reach any vertex from any other one, although these assumptions are not
essential for any of the sequel. So, we start with that case.

We want to assess how a relation, that is, an edge of such a graph, sits in
the web of relations, that is, how it relates to other relations. Two edges are
called neighbors when they share a vertex. We can then already define the
simplest concept, called Forman-Ricci curvature, because it was introduced by
Forman [32] as an analogy with the Ricci curvature of Riemannian geometry
(the analogy relates to the role it plays in Bochner type identities). We define
the degree of an edge e as

deg(e) := #(neighbors of e), (1)

and define its Forman-Ricci curvature as

F (e) := 2− deg(e). (2)

The 2 and the minus sign are somewhat unfortunate for our purposes, but they
are there because of the analogy with the well-established Ricci curvature of
Riemannian geometry, and they are useful from an abstract geometric perspec-
tive.

When the edge e connects the vertices v, w, we can also assess their contri-
bution to the number of neighbors of e. We let degv(e) be the number of edges
that share with e the vertex v. Then, obviously,

F (e) = 2− (degv(e) + degw(e)). (3)

Instead of the sum of the degrees, we may also consider their difference. When
the edge is not directed, there is no intrinsic structural difference between the
two vertices that it connects, and so, it is natural to take the absolute value of
the difference and define the degree difference [6] as

k(e) := |degv(e)− degw(e)|. (4)

Let us interpret the geometric significance of these quantities. k(e) is large when
e connects vertices of different types, a well-connected one from which many fur-
ther edges emanate, and a less well-connected one from which only fewer edges
originate. The statistics of this quantity therefore quantify to what extent the
network is assortative, that is, typically connect similar vertices (small k(e)), or
disassortative, that is, typically connect dissimilar vertices (large k(e)). This is
important, for instance, because social networks tend to be assortative [33] (well
connected people like to link with other well connected people, and this further
improves their position in social networks). In contrast, F (e) is very negative,
that is, has a particularly large absolute value when both ends of an edge are
well connected. Such edges may play a very important role in the network. In
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fact, we have found [13] that a quantity that needs a global computation, edge-
betweenness centrality (see [7]), is statistically well correlated with F (e). This
edge-betweenness centrality measures how many shortest connections between
pairs of vertices in the network pass through that particular edge. The com-
putation of that quantity is expensive because all shortest connections between
any two vertices have to be evaluated. In contrast, the computation of F (e) is
very quick and easy, because only local neighborhoods have to be evaluated.

Edges with large |F (e)| also play an important role for spreading in the
network because from its vertices many other vertices in the network can be
reached in a single step. There is one issue here, however. Edges from the
two vertices v, w of e may end at the same vertex z, that is, v, w, z may form
a triangle. In that case, they would not contribute to spreading into different
directions. Or the endpoint of an edge from v and that of an edge from w may
be connected themselves by an edge. That is, they form a quadrangle together
with v and w. Again, that does not really constitute spreading into different
directions. It is possible to address this issue by inserting two-dimensional faces
into such triangles and perhaps also into quadrangles, and then to evaluate
the Forman curvature of the resulting simplicial or polyhedral complex. Those
faces would then increase the Forman curvature and make it less negative or
even positive. See for instance [14].

This aspect is taken care of in a different way by a more refined concept
of Ricci curvature, the Ollivier-Ricci curvature introduced in [34]. For that
purpose, consider the edge e = (v, w) and let ev = (v, v1) and ew = (w,w1)
be edges emanating from v and w, respectively. We then define their distance
w.r.t. e as

de(ev, ew) := d(v1, w1) (5)

where d(v1, w1) denotes the distance between v1 and w1 in the network, that is,
the minimal edges that have to be traversed for getting from v1 to w1. Let Ev
be the set of edges that have v as a vertex, and let |Ev| be its cardinality. We
then define a probability measure µv on the set of all edges E by giving each
edge ev ∈ Ev the weight 1

|Ev| and all edges not in Ev the weight 0. We then

define the Ollivier-Ricci curvature [34] of the edge e = (v, w) as

O(e) := 1−W1(µv, µw) (6)

where W1 is the 1-Wasserstein distance between µv and µw,

W1(µv, µw) := inf
p∈Π(µv,µw)

∑
(e1,e2)∈E×E

de(e1, e2)p(e1, e2) (7)

and Π(µv, µw) is the set of measures on E ×E that project to µv and µw, resp.
We thus try to arrange the two collections Ev, Ew of edges sharing one of their
endpoints with e in an optimal manner, that is, that the average distances of the
arranged pairs become as small as possible. We note that the sets Ev and Ew
both include the edge e = (v, w) that we are evaluating. This convention is only
needed to let our definition agree with that originally proposed in the literature,
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but could otherwise be abandoned, to make the definition more natural in the
present context.

In order to evaluate (6), we have to optimize the arrangement between the
edges in Ev and Ew, to make the transportation cost as small as possible. Since
this is a quantity all edges in those two edge sets, it is not necessarily the case
that an optimal transport plan arranges each edge e1 in Ev with the edge e0

in Ew closest to it. There might be some competition, as there might be other
edges e2, e3, . . . for which e0 is closest. But even if there is no such competition,
it might be overall more beneficial to arrange e1 with an edge different from
e0. Also, because of the normalization, the edges in Ev and Ew have fractional
weights, and if the cardinalities of the two edge sets are different, also the
corresponding weights are different, necessitating an arrangement where some
part of an edge in Ev is arranged with some part of an edge in Ew, and other
parts with other ones.

Notwithstanding these complications, let mi be the fraction of edges in Ev
that are moved a distance i in some optimal transport plan (such an optimal
arrangement need not be unique, but that does not matter for our discussion).
Then [35]

O(e) = m0 −m2 − 2m3. (8)

In particular, moving an edge a distance 1 does not contribute at all to O(e).
(While m1 itself does not appear in (8), its computation is nevertheless needed
as an intermediate step for computing m2 and m3.) Distance 0, that is, when
e participates in a triangle, has a positive contribution. A pentagon, that is,
distance 2, has a negative contribution, but not as a negative as the maximal
distance, that can occur in a transportation plan, which is 3. This simple
formula thus encodes the essential features of Ollivier-Ricci curvature. In fact,
we could simply take (8) as the definition of O(e), instead of utilizing the more
complicated formula (7).

More generally, the Ollivier-Ricci curvature is related to the clustering coef-
ficient, that is, the relative frequency of triangles in the network [36].

Protein-protein interaction networks

To illustrate an application of these structural measures to empirical data, we
have studied the protein-protein interaction (PPI) networks in human [37], with
8275 nodes and 52569 edges, and fission yeast S. pombe [38], with 1306 nodes and
2278 edges. The edges in these network represent binary interactions between
the pair of proteins represented as nodes. These undirected and unweighted net-
works are disconnected with several components, however, they both include a
giant component. The giant component consists of 8152 nodes and 52036 edges
in the human PPI network, and of 1306 nodes and 2278 edges in fission yeast
PPI network. We have computed the Forman-Ricci curvature, Ollivier-Ricci
curvature and degree difference of edges in these networks, and their distribu-
tions are shown in Figure 1.

In the human PPI network, while Ollivier-Ricci curvature has a unimodal
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distribution, the bimodal distribution of Forman-Ricci curvature in Figure 1
signals an evident heterogeneity in the space of protein-protein interactions in
the giant component; a major group of interactions are distributed around a rel-
atively small-valued mode, and a small group of interactions between proteins
that are, in average, involved in a signficantly larger number of interactions. The
degree difference distribution indicates that, although the majority of interac-
tions are between proteins with relatively similar degree, a noticeable proportion
of the edges have a considerably large degree difference, which can be as large
as 497. This observation is in line with the fact that this network is moderately
disassortative with assortativity value ∼ −0.119.

Unlike the Ollivier-Ricci curvature distribution of the human PPI network,
the fission yeast PPI network has a trimodal distribution of the Ollivier-Ricci
curvature, reaching its global mode at curvature value 0. In fact, in the PPI
network for fission yeast, all three measures have multimodal distributions, as
demonstrated in Figure 1. Interestingly, the peaks over highly negative values of
Forman-Ricci curvature have larger frequencies than those over the moderately
negative values. A similar phenomenon is observed in the degree difference
distribution of the fission yeast PPI network. The global degree assortativity
of the fission yeast PPI network is ∼ −0.237. This means that the fission yeast
PPI network is considerably more disassortative than the human one, which
is explained by the more substantial proportion of interactions in fission yeast
between proteins with significantly different degrees. Thus, we see that the
distribution of curvature and degree difference values can point us to biologically
relevant properties of the interaction statistics in the PPI networks of different
species.

4 Directed graphs

It is not only the case that the preceding constructions extend to directed graphs,
but in fact, they become even more natural in that context. Curvature concepts
for directed graphs have been systematically developed and evaluated in [14] (see
also see [12]). Here, we shall formulate the concepts in such a manner that they
will naturally generalize to hypergraphs.

Thus, let e = [v, w] be a directed edge with tail v and head w, that is, going
from v to w. The input of e at its tail v then are all edges that have v as their
head; let their number be degin(e). Similarly, degout(e) denotes the number of
output edges of e, that is, those that have w as their tail. We may then put [39]

F→(e) := 2− degin(e)− degout(e). (9)

We could also form alternative expressions by considering the numbers of edges
that have v as their tail and/or of those that have w as their head. Similarly
for the next expression, the directed degree difference [6]

k→(e) := degout(e)− degin(e). (10)
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F→(e) now is very negative, or equivalently, degin(e) + degout(e) is very large
for those edges that receive a lot of input and produce a lot of output. k→(e)
is positive for those edges that are productive in the sense that they produce
more output than they receive input, or that lead to more diversification. It is
negative for edges that are receptive, that is collect more input than emit as
output.

Likewise, we can define the Ollivier-Ricci curvature O→(e) of a directed edge
[35] by computing the optimal transportation distance between its input and
its output. When there are no shorter connections between inputs and outputs
than those going through e itself, then O→(e) assumes its smallest possible
value −2. In contrast, when inputs coincide with outputs, that is, if there is a
directed triangle from a vertex u to itself, where u produces both an input of
e and receives an output of e, then this yields a positive contribution. In fact,
formula (8) perfectly extends to the directed case.

Let us recall the procedure in detail. For the directed edge e[v, w], we define
two measures,{

if e has no incoming edges: µin(e) = 1

if e has n1 incoming edges: µin(e1) = 1
n1

for each incoming edge
(11){

if e has no outgoing edges: µout(e) = 1

if e has n2 outgoing edges: µout(e2) = 1
n2

for each outgoing edge
(12)

and µin(e′) = µout(e
′) = 0 for all edges e′ not occurring in those formulae.

The first cases, that is, where there are no incoming edges at the tail or no
outgoing edges at the head, that is, where the tail is a source or the head is a
sink, represent complications that would not arise in the undirected case. As
they are easily handled, we shall mostly ignore them. In any case, both measures
are normalized to have total mass 1 and thus are probability measures. We then
define the distance between an edge e1 occurring in (11) and an edge e2 occuring
in (12) as

de(e1, e2) = minimal number of edges needed to get from the tail of e1

to the head of e2. (13)

We then put again
O→(e)→ := 1−W1(µin, µout) (14)

where W1 now is the 1-Wasserstein distance between µin and µout,

W1(µin, µout) := inf
p∈Π(µin,µout)

∑
(e1,e2)∈E×E

de(e1, e2)p(e1, e2) (15)

and Π(µin, µout) is the set of measures on E × E that project to µin and µout,
respectively. E here is the set of directed edges of the directed graph under
consideration. We again have the important formula [35]

O→(e) = m0 −m2 − 2m3, (16)
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where mi is the number of edges that have to be transported by the distance i
in an optimal transport plan. Again, for two given edges in the in- and output
of e, that distance might be larger than the distance (13).
Thus, the directed curvature notions evaluate flows through edges. As in [14],
we may also evaluate flows through vertices by taking the difference between
the sum of the Ricci curvatures of the incoming edges and that for the out-
going edges. Moreover, in [14], also notions of augmented Forman curvature
were developed for directed networks. Augmentation means that one inserts
two-dimensional faces into triangles of edges. Such triangles then increase the
curvature, and thereby decrease the difference between Forman and Ollivier
type curvatures. Here, however, we do not explore that direction.

Transcriptional regulatory networks

To illustrate an application to directed networks, we have studied the transcrip-
tional regulatory network (TRN) of the important human pathogen Mycobac-
terium tuberculosis [40], with 2547 nodes and 6581 edges. The M. tuberculosis
TRN was constructed based on ChIP-seq data for 143 transcription factors
(TFs) [40]. In this directed and unweighted network, each directed edge signi-
fies the regulatory control by a TF of a target gene. In other words, the source
nodes in this directed network are TFs while target nodes are target genes. In
Figure 2, we show the distribution of the Forman-Ricci curvature, Ollivier-Ricci
curvature and degree difference of directed edges in the M. tuberculosis TRN.
In Figure 2a, it is seen that the edges are densely concentrated around Forman-
Ricci curvature value 0, and this indicates that the majority of the edges have a
tail vertex with small in-degree and a head vertex with small out-degree. Like-
wise, most edges have zero or small value of directed degree difference, and this
indicates that the in-degree of the tail vertex and the out-degree of the head
vertex for most edges are rather similar. There are also 24 vertices with out-
degree greater than 100, which can explain the long tail in both Forman-Ricci
curvature and degree difference distributions in Figure 2. On the other hand,
the Ollivier-Ricci curvature of the edges in this TRN has a multimodal distri-
bution, with major peaks corresponding to curvature values 0, −1, −0.5, and
−0.75.

5 Weighted graphs

The extension of all discussed concepts to weighted graphs is straightforward.
One simply counts each edge with its weight. It is therefore not necessary to
develop the details here.

6 Hypergraphs

The preceding concepts are set up in such a manner that they naturally extend
to hypergraphs. We directly consider directed hypergraphs. A directed hyper-
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graph may have several nodes through which it receives inputs and several nodes
through which it produces outputs. An important example is a chemical reac-
tion whose input nodes are called educts and whose output nodes products. In
a chemical reaction, there may exist catalyzers, that is, substances that increase
the rate of a reaction without being modified by it. Formally, they should be
counted as both input and output nodes. That is, the two subsets of the nodes
of a directed hypergraph, its input and output nodes, need not be disjoint. That
will not constitute a problem for the formal concepts to be developed (see, for
instance, [17] for a discussion of directed hyperloops and their curvature).

A directed hypergraph H = (V,E) consists of a set V of nodes or vertices
and a set E of ordered pairs of subsets of V , not both of them being empty,
called hyperedges. For a hyperedge e = (e1, e2) ∈ E, e1 ⊂ V is the head of e,
and e2 ⊂ V is its tail. We let |f | be the number of vertices in f ⊂ V . We let
degin(e) of a hyperedge be the number of hyperedges that have an input node
of e as their head, and degout(e) the number of hyperedges that have an output
node of e as their tail. Since an input edge might connect to more than one
input node of e, input hyperedges are counted with the number of input nodes
of e that they connect to, and analogously for output edges. As in (9), we then
define the Forman-Ricci curvature of a hyperedge e = (e1, e2) as [39]

F→(e) = |e1|+ |e2| − degin(e)− degout(e). (17)

(For a different definition of the Forman-Ricci curvature of a directed hyper-
graph, see [41].) Thus, here we count the number of inputs received through
input nodes and the number of outputs produced at output nodes. As in [39],
one can also define different types of Forman-Ricci curvature of a directed hy-
peredge by arranging inputs and outputs differently.

Similarly, as in (10), we can put

k→(e) := degout(e)− degin(e). (18)

Following [35], we can also define the Ollivier-Ricci curvature of a directed
hyperedge via the Wasserstein distance between two probability measures as-
sociated to a directed hyperedge. As in (11) and (12), we need to define the
corresponding measures µin, µout. In (11) and (12), the principle that was that
the total measure 1 is evenly split among the inputs or the outputs, resp., un-
less we had a source or a sink. Now, there are more demands for splitting. A
directed hyperedge may in general have more than one tail or head node, and
at each of them, several incoming resp. outgoing hyperedges might be found,
and each them may again have more than one tail or head. The principle then
is to split the available measure at each step evenly among all the possible re-
cipients. We shall explain the resulting splitting procedure for µin as the one
for µout is analogous. Let the tail e1 of the hyperedge e = (e1, e2) have ηin
elements. A source, that is, an element of e1 without incoming hyperedges, gets
the weight µin(v) = 1

ηin
. To handle the others, we define the set M of masses

of e = (e1, e2) as the union of the tails of hyperedges that come in at an element
w ∈ e1, that is, have w in their head set. We then first divide the measure 1

ηin
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that we can distribute at such a w evenly among all those incoming hyperedges,
and for each such hyperedge, we divide the measure associated with it in that
manner evenly in its tail. In that manner, we assign a measure to every element
inM. Thus, we have distributed the total measure 1 among the sources and the
masses of our hyperedge. This yields µin, and as mentioned, µout is constructed
analogously by assigning measures to the sinks, that is, those members of e2

and the holes, that is, the heads of hyperedges that have an element of e2 in
their tail set. The (directed) distance d(u, v) between a mass u and a hole v of a
hyperedge e = (e1, e2) is defined as the minimal number of directed hyperedges
connecting them. Again, it is at most 3, and this value is attained if u → e1,
e2 → v and there is no shorter way to move from u to v than to go through e.
It is 0 when u = v is at the same time a mass and a hole of e, and it is 1 if u is
an input of a hyperedge and v is an output. Again, formally, we want to solve
an optimal transport problem for moving the first probability measure to the
second one. We thus minimize∑

u→ei

∑
ej→v

d(u, v)E(u, v) (19)

over the set of all matrices E (transport plans) whose entries E(u, v) represent
the amount of mass from µM(u) moved from vertex u to vertex v.

If mδ is the amount of mass that is moved at distance δ in an optimal
transport plan, the directed Ollivier-Ricci curvature of e is defined as in (12)
and becomes again as in (13)

O→(e) = m0 −m2 − 2m3. (20)

It is bounded above by 1. This is reached when m0 = 1, i.e., when each mass
coincides with a hole of the same size. It is bounded below by −2, reached
when m3 = 1, i.e., when there are no shortcuts available and each mass has to
be moved through e to reach a hole. Again, (20) can be taken as the definition of
O→(e). While it depends on identifying an optimal transport plan, the formula
as such is obviously very simple. For applications, see [42].
For instance, we can consider the red hyperedge in Fig. 6. Bullets represent ver-
tices. The green bullet in the left is a source since it has no incoming hyperedge
while the blue bullet in the right is a sink since it has not outgoing hyperedges.
For representing masses and holes we use triangles and squares respectively. As
the red hyperedge has two vertices in its tail set and each of them has at most
one vertex as an incoming neighbour, the size of the masses is 1/2. In contrast,
the sizes of the four holes are different. The biggest one is the sink, with mass
1/2. Another hole with the size 1/4 is the top middle vertex which already got
1/2 of the total mass. The size of the remaining hole is 1/4, divided equally
among the two vertices in the top right of the figure. Thus, both the triangles
and the squares have total size 1, and the task now is to move the triangles to
the squares with least total cost. There are two optimal plans, leading to the
negative curvature value -1/4; In one plan, m0 = 1/4, m1 = 1/2, m2 = 0 and
m3 = 1/4, while in the other m0 = 1/4, m1 = 1/4, m2 = 1/2 and m3 = 0. Note
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that there are also transfer plans with m2 = 1, and all other values 0, but they
are not optimal.

These two different curvature notions represent complementary tools for
detecting local geometry and connectivity patterns in directed hypergraphs.
Forman curvature monotonically decreases with the number of incoming and
outgoing neighbours of input and output nodes, resp., and it therefore detects
hyperedges joining highly connected nodes. Ollivier curvature, on the other
hand, is controlled by the overlap of the set of masses and holes (e.g. directed
triangles) and by shortcuts between them (e.g. directed quadrangles and pen-
tagons). We illustrate these principles in Fig. 4. We want to evaluate the
curvatures of the black hyperedge in the left and the right figure in various con-
stellations. Without any of the colored hyperedges, F→(e) = |ei| + |ej |, while
O→(e) = 0. When the red edges are present, we get F→(e) = 0 in both the left
and the right figure, whereas O→(e) is negative in the left case, because there
are no shortcuts, but positive in the right case, when the inputs of the tail coin-
cide with the outputs of the head. The presence of the blue edges on the right,
however, makes a difference for F→(e), but not for O→(e), that is, the former,
but not the latter distinguishes between those cases. In contrast, while F→(e)
does not distinguish between the presence of the blue and the green edges in
the right figure, O→(e) sees the effect, as it is more negative in the presence of
the green than in that of blue edges (the blue edges contribute to m1, but the
green ones to m2).

Metabolic networks

Metabolic networks are evocative examples of directed hypergraphs, where metabo-
lites react with others to produce products. Both, reactants, e1, and products,
e2, typically contain more than one substance (|e1| ≥ 1 or |e2| ≥ 1) and the reac-
tions may not be reversible. This directed relationship between sets is therefore
naturally modelled by a directed hyperedge (e1 → e2). Since metabolic net-
works have been extensively studied, they present an ideal setting to illustrate
how to use the hypergraph tools described here. For this, let us consider the
metabolic network of Mycobacterium tuberculosis H37Rv (version iNJ661) [43]
modelled as a directed hypergraph. This network contains 939 reactions and
743 metabolites, of which 256 are reversible. Each reversible reaction (e1 � e2)
was divided into two, a forward reaction (e1 → e2), and its reverse reaction
(e1 ← e2). As a result, the network contains 1195 directed hyperedges. Most
substrates of this metabolic network are consumed or produced by one reaction
only. Also, a few are involved in more than half of the reactions (∼ 50% require
h, h2o, atp or nadhp, and ∼ 57% produce h, pi, h2o, adp, or co2), the distri-
butions of indegree and outdegree in Figure 6 a) summarize this behavior.
Suppose that we want to investigate whether starting materials that are pro-
duced in several different ways (large indegree in e1) produce substances that
also serve as starting materials for many reactions (large outdegree in e2), that
is, whether targets are transformed into key precursors. There are two aspects
relevant for this question. First, we must find out if the network is assortative.
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Since it is a hypergraph, we use the degree difference and its distribution shows
that this is mostly the case (see Figure 5 b)). Notoriously, the degree difference
is ∼ 0 for 217 (∼ 18%) reactions. Second, we have to locate which of those 217
reactions involve metabolites of large degree. For that, instead of looking at the
difference between out- and indegrees, we need to look at their sum and turn
to the distribution of F→(e). Figure 5 a) shows that the dominant mode is rep-
resented by curvature around zero. There are also secondary humps associated
with more negative curvature values. Perhaps the most important reactions,
however, are those that have very low (negative) curvature values, but a degree
difference near zero. In fact, the first reaction on the list is the fundamental re-
action that creates the energy storage molecule adenosine triphosphate (ATP),
e: adp+h+pi→ atp+h+h2o, with F→(e) = −1347 and k→(e) = 1. Furthermore,
the associated mass setM shows that there are 400 precursors for the substrates
of this reaction, and, based on the set of holes H, there are 464 derived metabo-
lites. This pair of values correspond to the upper right blue mark in Figure 6
c). Notice that this information is not given by node degree. With few excep-
tions, precursors and derivatives are at distances shorter than three, and mostly
around zero, as shown by O→(e) (see Figure 5 c)). For the reaction discussed
here, O→(e) = 0.35 and it corresponds to the the left most blue mark of Figure
6 d). The preceding already illustrates how a combination of the three measures
that we have developed, F→(e), O→(e) and k→(e), can reveal the fundamental
structural properties of specific reactions inside the metabolic network. Both
evaluating the statistical distributions of these three quantities and comparing
them for different networks, and analyzing those reactions that produce partic-
ularly prominent values for them in more detail should yield deeper insight into
the structure of metabolic networks.
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Figure 1: The distribution of (a,b) Forman-Ricci curvature, (c,d) degree dif-
ference, and (e,f) Ollivier-Ricci curvature in the giant components of the binary
protein interaction networks in human (left) and fission yeast (right), respec-
tively. In each case, protein-protein interactions are represented via an undi-
rected and unweighted graph. The nodes and edges represent proteins and
binary interactions between them, respectively. The giant component of the hu-
man network has 8152 nodes and 52036 edges, while of the fission yeast network
has 1306 nodes and 2278 edges.
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Figure 2: The distribution of (a) Forman-Ricci curvature, (b) degree difference,
and (c) Ollivier-Ricci curvature in the transcriptional regulatory network of
Mycobacterium tuberculosis. There are 6581 unweighted directed edges and
2547 unweighted nodes. The source in each directed edge is a transcription
factor (TF) and the target is a target gene controled by the TF.
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Figure 3: The red hyperedge is negatively curved as in an optimal transference
plan, the size of coincident masses (triangles) and holes (quadrangles), located
on the top middle vertex, is less than the size of the masses which need to be
moved with distance 2. Also the two colored vertices in the left and the right of
the figure are a source and a sink since they have no incoming resp. outgoing
hyperedges.
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Figure 4: Illustration of the different connectivity patterns that affect F (e) and
O(e). Well-connected hyperedges often play a key role in a network. Said hy-
peredges are identified by F→(e) = |e1| + |e2| − degin(e) − degout(e), since it
decreases monotonically with the number of incoming neighbors to the tail and
outgoing neighbors from the head of e. Nevertheless, F→(e) is not affected by
the presence of arcs from the former to later. O→(e) = m0 −m2 − 2m3 cap-
tures this complementary information. On the right, we find directed triangles,
which contribute to m0 (black and red hyperedges), directed quadrangles to m1

(black and blue hyperedges), and directed pentagons to m2 (black and green
hyperedges). In the figure on the left, the shortest path between any incoming
and any outgoing neighbor, is 3. Such a connectivity pattern contributes to m3.

20



a)

−1200−900−600−300 0
0

50

100

150

200

F→(e)

F
re
qu
en
cy

b)

−600 −300 0 300 600
0

50

100

150

200

k→(e)

F
re
qu
en
cy

c)

−2−1.5−1−0.5 0 0.5 1
0

20

40

60

80

100

120

O→(e)

F
re
qu
en
cy

Figure 5: The distribution of (a) Forman-Ricci curvature, (b) degree difference,
and (c) Ollivier-Ricci curvature in the metabolic network of Mycobacterium
tuberculosis H37Rv, which is represented as a directed hypergraph with nodes
as M. tuberculosis metabolites and directed hyperedges as chemical reactions.
The network has 743 nodes and 1195 hyperedge edges.
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ues in the metabolic network of Mycobacterium tuberculosis H37Rv, which is
represented as a directed hypergraph with nodes as M. tuberculosis metabolites
and directed hyperedges as chemical reactions. The network has 743 nodes and
1195 hyperedge edges.
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