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TORIC VARIETIES FROM CYCLIC MATRIX GROUPS

FRANCESCO GALUPPI AND MIMA STANOJKOVSKI

Abstract. We study cyclic groups and semigroups of matrices from an algebraic geometric viewpoint.
We prove that the irreducible components of their Zariski closures are toric varieties and study their
geometry. In many cases, we are also able to determine their ideal or, in other words, we find all
polynomials that vanish on such groups or semigroups. We present an implementation of our results
in SageMath.

Introduction

In mathematics, as well as in many applied sciences, researchers often face the problem of describing
a complicated behaviour or a sophisticated model. A common approach is to find properties that
are shared by every status of the model or, in other words, to find invariants. Roughly speaking, an
invariant is a function that attains the same value at every point of the model. Invariants are employed
with different flavours in mathematics, physics and computer science in a wide range of contexts, from
dynamical systems to control theory, from program verification to programming language semantics,
from knot theory to combinatorics. For a rich list of further applications of invariants, we refer the
interested reader to [7, Section 1].

From an algebraic viewpoint, the most meaningful invariants are polynomial functions. To compute
the polynomials that vanish on a given model or set means to compute the closure of such set in the
Zariski topology. A common approach in applied algebraic geometry is to give a model, coming from
biology, statistics or computer science, the structure of an algebraic variety, thus allowing the use
of powerful geometric techniques. On the other hand, these classes of models provide examples of
families of varieties, whose geometry is interesting in their own right.

In this paper we are interested in algebraic subgroups of GLn(C), that is, groups of matrices that
are also algebraic varieties. The study of algebraic groups has a long story and a rich literature (see
for instance the classic references [8, 12, 15]), but it is also motivated by concrete applications. For
instance, groups generated by matrices appear naturally in dynamical systems (also referred to as
automata or affine programs). One prominent question is the membership problem: given a finite
number of matrices, how to determine whether one of them is in the group generated by the others?
Despite partial results, the question is open in its full generality and a complete solution appears to
be hard. A synthetic account on the history of the problem can be found in [1, Section 2]. One way
invariants play a role here is in the following simplified version of the membership problem: given
a finite number of matrices, how to determine whether one of them is in the closure of the group
generated by the others? This leads to the computation of the Zariski closure of a finitely generated
subgroup of GLn(C) and, consequently, to the evaluation of finitely many polynomial functions.

From a computer science viewpoint, the problem becomes to find an algorithm that, given a finite
set of matrices, returns the Zariski closure of the group or the semigroup that they generate, see
for instance [4, Theorem 9] and [7, Theorem 16]. However, these results focus on computability and
do not give precise information on the geometric properties of the closure. It is our aim to better
describe the geometry of these algebraic varieties and it is only natural to start with the simplest
situation, i.e. the closure of a cyclic group or semigroup. In this case we are able to compute the
dimension and the number of irreducible components of the closure. What strikes us as remarkable
is that each such irreducible component turns out to be a toric variety. Roughly speaking, a variety
is toric if it is the image of a monomial map. A toric variety not only has very pleasant properties -
to name a few, it is irreducible, rational and its ideal is generated by binomials - but it can also be
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associated to a polytope that completely encodes its geometry. This makes toric varieties accessible
from a theoretical, combinatorial, and computational point of view. For instance, there are effective
techniques to determine their degrees and their equations. For more information on toric varieties we
refer to [3]. When dealing with non-cyclic subgroups, it is unclear whether the ideal of their closure
is still binomial. This is however the case when the generating elements are finitely many diagonal
matrices. We point out additionally that binomial ideals themselves sit in a very fertile ground between
geometry, algebra, and combinatorics. An important reference on this topic is [5].

For the sake of the reader, we state here our main contributions. Throughout the paper, for a subset

X of Matn(C), we will denote by X the Zariski closure of X in Matn(C), regarded as Cn2
. We will

write dim(X), deg(X), and irr(X) respectively for the dimension, degree, and number of irreducible
components of X. For a finitely generated abelian group G, i.e. a finitely generated Z-module, we
write Gtor for the torsion submodule of G and rk(G) for the rank of a free complement of Gtor in G.
For a finite group G, we denote by |G| its order.

Theorem 1. Let M ∈ GLn(C). Let X = 〈M〉 be the subgroup of GLn(C) generated by M and let G
be the subgroup of C∗ generated by the eigenvalues of M . Then irr(X) = |Gtor| and each irreducible
component of X is a toric variety of dimension

dimX =

{
rk(G) if M is diagonalizable,

rk(G) + 1 otherwise.

Example 2. Let

M =

(
10 −8
6 −4

)
∈ GL2(C)

and let X be the subgroup of GL2(C) generated by M . If we set

D =

(
2 0
0 4

)
and P =

(
1 4
1 3

)
,

then M = PDP−1 and so M is diagonalizable with eigenvalues 2 and 4. The subgroup G of C∗
generated by the eigenvalues of M is G = 〈2, 4〉 = 〈2〉 ∼= Z and so Theorem 1 yields that X is an
irreducible toric curve in C4. This example was presented in [7, Section 2] in the setting of dynamical
systems. Here we determine explicit equations describing the closure of X. Denoting the coordinates
of C4 by (

x w
z y

)
,

we see that the three polynomials f = z, g = w, and h = x2 − y generate the ideal of 〈D〉. Let
φ : C4 → C4 be the linear automorphism defined by(

x w
z y

)
7→ P−1

(
x w
z y

)
P

=

(
−3x+ 4y + 4z − 3w −12x+ 12y + 16z − 9w

x− y − z + w 4x− 3y − 4z + 3w

)
.

Then φ(X) = 〈D〉, hence f ◦φ, g ◦φ and h◦φ generate the ideal of X. With this choice of coordinates,
the map φ is represented by the matrix

−3 4 4 −3
4 −3 4 3
1 −1 −1 1
−12 12 16 −9

 ,

therefore X is described by the equations
x+ w = y + z,

12x+ 9w = 12y + 16z,

(−3x+ 4y + 4z − 3w)2 = 4x− 3y − 4z + 3w.

These are the strongest polynomial invariants, so they provide the tightest polynomial conditions that
a point has to satisfy in order to belong to 〈M〉.
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The following result generalizes Theorem 1 in the cyclic semigroup case and in the context of not
necessarily invertible matrices.

Theorem 3. Let M ∈ Matn(C) and let ν ∈ Z≥0 be the largest size of a Jordan Block of M associated
to 0. Write X = {Mk | k ∈ Z>0} for the semigroup of GLn(C) generated by M . Let E denote the
collection of invertible eigenvalues of M and, if E 6= ∅, let G be the subgroup of C∗ generated by E.
Then X can be written as a disjoint union

X = X0
·
∪ X1

of closed sets where

(1) X0 is a collection of points with

irr(X0) =


0 if M ∈ GLn(C),

1 if M = 0,

ν − 1 otherwise.

(2) either X1 = E = ∅ or X1 is a union of |Gtor| toric varieties of dimension

dimX1 =

{
rk(G) if Mmax{1,ν} is diagonalizable,

rk(G) + 1 otherwise.

The present paper being strongly motivated by results in computer science, in Section 4 we give an
overview of existing algorithms and to propose a piece of code that we implemented in SageMath [17]
and that relies on the results of this paper.

1. Problem reduction

The present section collects a number of classical result, which we will apply in order to prove
Theorems 1 and 3. Recall that, given a subset X of Matn(C), we denote by X the Zariski closure of

X in Matn(C) ∼= Cn2
.

Lemma 4. Let X be a subgroup of GLn(C) and let g ∈ GLn(C). Then gXg−1 = gXg−1 and X is

isomorphic to gXg−1 as algebraic subvarieties of Matn(C).

Proof. Let φ : Matn(C)→ Matn(C) denote conjugation under g, which is a homeomorphism restricting
to an automorphism of the algebraic group GLn(C). As a consequence, X and φ(X) = gXg−1 are

isomorphic varieties. The morphism φ being a homeomorphism, we get φ(X) = φ(X). �

The following result is a combination of Lemmas 2.4.2 and 2.4.12 from [15] and is implied by the
Jordan-Chevalley decomposition for GLn(C).

Lemma 5. Let X be a subgroup of GLn(C). Then the following hold:

(1) If X is commutative, there exists g ∈ GLn(C) such that gXg−1 consists of upper triangular
matrices.

(2) If X consists of unipotent matrices, then there exists g ∈ GLn(C) such that all elements of
gXg−1 are upper unitriangular.

In the present paper, we are concerned with Zariski closures of subsets of Matn(C). However, when
the subsets in play consist of invertible matrices, their closure is classically taken in GLn(C). The next
Lemma shows that, when dealing with commutative subgroups, some important geometric properties
do not depend on this choice.

Lemma 6. Let X be a commutative subgroup of GLn(C). Then the Zariski closure X ∩GLn(C) of X
in GLn(C) is dense in X.

Proof. Thanks to Lemmas 4 and 5(1), we assume without loss of generality that the matrices in X
are upper triangular. It is then clear that dimX ≤ n(n + 1)/2. Let ∆ = Matn(C) \ GLn(C) denote
the vanishing locus of the determinant. Assume for a contradiction that dim(X ∩GLn(C)) < dimX.
Since dim ∆ = n2− 1 > dimX, there exists an irreducible component X1 of X that is contained in ∆.
This yields that X ∩X1 = ∅, which is a contradiction to X being the minimal closed set containing
X. �
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Remark 7. Analogously to what is done in the proof of Lemma 6, we may assume in the sequel that
any commutative subgroup of GLn(C) is given in upper triangular form (see Lemma 4 and Lemma
5(1)). Indeed, thanks to Lemma 6, dimension and number of irreducible components of X are the
same, independently of whether we look at them in Matn(C) or GLn(C). This allows us to make use
of the developed theory for linear algebraic groups, e.g. [8, 12, 15].

Besides the choice of the ambient space for the closure, i.e. Matn(C) or GLn(C), other variations
of the problem are to be found in the literature. As we pointed out in the introduction, given finitely
many matrices, it is of interest to consider both the group and the semigroup they generate. The
following result, already proven in [4, Lemma 2] for orthogonal matrices, shows that, for our purposes,
it is equivalent whether we deal with groups or semigroups.

Lemma 8. Let M ∈ GLn(C) and denote by X and Y respectively the subgroup and the semigroup
generated by M in GLn(C), i.e.

X = {Mk | k ∈ Z} and Y = {Mk | k ∈ Z>0}.

Then one has X = Y .

Proof. Let UX = X ∩GLn(C) and UY = Y ∩GLn(Y ) denote respectively the closures of X and Y in
GLn(C). From [2, Lemma 1.1], we know that UY is a subgroup of UX . Since UX is the smallest closed
subgroup of GLn(C) containing M , the equality UX = UY holds. We now observe that X ⊆ UX ⊆ X
and so X = UX . An analogous stataement holds for UY and so we conclude that X = Y . �

2. Zariski closure of cyclic subgroups

The aim of Section 2 is to prove Theorem 1. As we will be dealing with cyclic subgroups of the form
X = 〈M〉 with M ∈ GLn(C), we will make implicit use, throughout the present section, of Lemma 4
by assuming that the matrix M is given in Jordan normal form.

2.1. The diagonalizable case. Let a1, . . . , an ∈ C∗ and let

M =

a1 0
. . .

0 an

 ∈ GLn(C)

be a diagonal matrix. Let X = {Mk | k ∈ Z} be the subgroup generated by M and observe that
X is contained in a maximal torus. As a consequence, the dimension of X is at most n. Define
G = 〈a1, . . . , an〉 ⊆ C∗ to be the group generated by the eigenvalues of M .

For the convenience of the reader, we collect in the following remark the facts about toric varieties
that we will be needing in this section.

Remark 9. Given a finite set A = {α1, . . . , αn} ⊂ Zr, define the map ΦA : (C∗)r → (C∗)n by

x = (x1, . . . , xr) 7→ (xαi = xαi1
1 · . . . · xαir

r | i ∈ {1, . . . , n}).

The closure of the image of ΦA is the toric variety denoted by YA. The dimension of YA is the rank
of the free group generated by A. In other words, if A ∈ Matr×n(Z) is the matrix whose columns
are α1 . . . , αn, then dimYA = rkA. Moreover, the ideal of YA is generated by the binomials xβ − xγ
whenever β, γ ∈ (Z≥0)r satisfy β − γ ∈ kerZ(A). For these facts and more, see [3, Section 1.1].

Example 10. Let us consider A = {(3,−1), (0, 1), (1, 1)}. Then ΦA : (C∗)2 → (C∗)3 is given by

(x1, x2) 7→ (x31x
−1
2 , x2, x1x2).

In the notation of Remark 9, we have

A =

(
3 0 1
−1 1 1

)
and so YA has dimension rk(A) = 2. Since kerZ(A) = Z(1, 4,−3), the toric variety YA is defined by
the equation xy4 = z3.

Proposition 11. If G is torsionfree, then X is a toric variety and dimX = rk(G).
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Proof. Set r = rk(G). By hypothesis G is a free Z-module of rank r. Let c1, . . . , cr be a Z-basis of G.
For every i ∈ {1, . . . , n} and j ∈ {1, . . . , r} there then exists αij ∈ Z such that

a1 = cα11
1 · . . . · cα1r

r ,

...

an = cαn1
1 · . . . · cαnr

r .

We use this data to define the matrix

A =

α11 . . . αn1
...

...
α1r . . . αnr

 ∈ Matr×n(Z).

Let A ⊂ Zr be the set of lattice points corresponding to the columns of A and let YA be the associated
toric variety. By Remark 9, a set of generators of its ideal IYA is given by binomials derived from a
generating set of kerZ(A). Observe that every generator of kerZ(A) gives a binomial vanishing on X,
so IYA ⊂ IX . On the other hand, by [10, Proposition 5], the ideal IX is generated by binomials with
coefficients in {0,±1}. For this reason, every generator of IX gives a relation in G and therefore an
element of kerZ(A). This shows that IX = IYA , so X = YA is a toric variety. Since dimX = rkA, in
order to conclude it suffices to show that rkA = r.

Up to reordering, we assume that the first t columns of A are a basis for the Z-module spanned
by all of its columns. Since A has r rows, we clearly have that t ≤ r. On the other hand, for every
j > t, the j-th column (αj1, . . . , αjr)

> is a Z-linear combination of (α11, . . . , α1r)
>, . . . , (αt1, . . . , αtr)

>.
Hence there exist λ1j , . . . , λtj ∈ Z such that

αj1 = λ1jα11 + . . .+ λtjαt1,

...

αjr = λ1jα1r + . . .+ λtjαtr.

This means that

aj = c
αj1

1 · . . . · cαjr
r = c

λ1jα11+...+λtjαt1

1 · . . . · cλ1jα1r+...+λtjαtr
r

= c
λ1jα11

1 · . . . · cλ1jα1r
r · . . . · cλtjαt1

1 · . . . · cλtjαtr
r

= a
λ1j
1 · . . . · aλtjt .

Therefore at+1, . . . , an ∈ 〈a1, . . . , at〉 and so t ≥ r. �

We would like to point out that, in his PhD Thesis (University of Leipzig, 2020), Görlach generalizes
Proposition 11 by showing that, if X is a group generated by finitely many diagonal matrices, then
the irreducible components of X are toric varieties.

The next result implies Theorem 1 for diagonalizable matrices.

Proposition 12. The variety X has |Gtor| irreducible components, each of which is a toric variety of
dimension rk(G).

Proof. Set q = |Gtor|. For every i ∈ {0, . . . , q − 1}, define Xi = {Mkq+i | k ∈ Z}. Then X is the
disjoint union of the Xi’s and

X = X0 ∪ . . . ∪Xq−1 = X0 ∪ . . . ∪Xq−1.

Observe that Xi = {M i · (M q)k | k ∈ Z} equals the image of {(M q)k | k ∈ Z} under a linear
automorphism of Matn(C), namely multiplication by M i. Moreover, it clearly holds that

M q =

a
q
1 0

. . .

0 aqn

 .

By construction, the group 〈aq1, . . . , a
q
n〉 is torsionfree of rank equal to rk(G). Proposition 11 yields

that Xi has dimension rk(G) and, being toric, Xi is irreducible. �
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Example 13. Define M ∈ GL2(C) to be the matrix

M =

(
a 0
0 b

)
=

(
27i 0
0 − exp(2πi/7)/9

)
and let X = 〈M〉 be the subgroup of GL2(C) generated by M . It is not difficult to show that
〈a, b〉 = 〈exp(2πi/28), 3〉 ∼= Z/(28)⊕ Z and so our Proposition 12 yields that X is a union of 28 toric
plane curves.

In light of Proposition 12, we can cook up cyclic subgroups of GLn(C) whose closure has arbitrary
dimension and arbitrary number of irriducible components. The next Example shows that we can also
build varieties of any degree.

Example 14. Let d be a non-negative integer and define

M =

(
2 0
0 2d

)
∈ C2 and X = 〈M〉.

Then X is a smooth irreducible affine curve of degree d and equation y = xd. Being toric, the curve
X is rational and thus, when d ≥ 3, also singular at infinity.

It is worth to mention that, whenever X is toric, there is an effective method for computing the
degree of X. Indeed, to do so, it suffices to compute the volume of a lattice polytope, as illustrated
for example in [3, Theorem 13.4.1].

The next result shows that we can realize every toric variety as the Zariski closure of a cyclic
subgroup of GLn(C).

Proposition 15. Let Y ⊆ Cn be an affine toric variety and identify Cn with the space of diagonal
matrices. Then there exists a diagonal M ∈ GLn(C) such that Y = 〈M〉 in Cn.

Proof. Let {α1, . . . , αn} ⊂ Zr be a set of lattice points defining Y as a toric variety. Let

A =

α11 . . . αn1
...

...
α1r . . . αnr

 ∈ Matr×n(Z)

be the matrix with columns α1, . . . , αn. Let c1, . . . , cr be r distinct prime numbers and set

a1 = cα11
1 · . . . · cα1r

r ,

...

an = cαn1
1 · . . . · cαnr

r .

Finally, define M = diag(a1, . . . , an). Following the proof of Proposition 11 backwards, we get Y =

〈M〉. �

When it comes to groups generated by two or more matrices, computing the dimension of their
closures can become challenging. However, Proposition 12 helps to get some bounds, as the following
examples show.

Example 16. Define X = 〈A,B〉 where

A =

(
2 0
0 1

)
and B =

(
1 0
0 3

)
.

Then X contains as a subgroup

Y =

{(
2h 0
0 3h

)
| h ∈ Z

}
.

From Proposition 11, it follows that 2 = dimY ≤ dimX ≤ 2 and thus X is a surface. With the choice
of coordinates from Example 2, we see that X is the plane defined by z = w = 0 in C4.

Example 17. Define X = 〈A,B〉 where

A =

(
2 0
0 1

)
and B =

(
1 0
0 2

)
.
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In contrast to Example 16, the closure of

Y =

{(
2h 0
0 2h

)
| h ∈ Z

}
does not fill the whole space of diagonal matrices. However, X contains many more cyclic subgroups,
namely all

Yd = 〈ABd〉 =

{(
2h 0
0 2h+d

)
| h ∈ Z

}
for d ∈ Z. Thanks to Proposition 11, the closure of each Yd is a curve. In particular, X contains
infinitely many curves and therefore it has dimension 2.

2.2. The general case. In this section we prove Theorem 1. To this end, let M ∈ GLn(C) and let
X be the subgroup of GLn(C) generated by M . Denote by E ⊆ C∗ the collection of eigenvalues of M
and let G be the subgroup of C∗ generated by E . Without loss of generality, M is assumed to be given
in Jordan normal form. Let Ms and Mu be respectively the semisimple and the unipotent part of M ,
which satisfy MsMu = MuMs. In particular, M = MsMu is upper triangular, Ms is diagonal and Mu

is upper unitriangular. We remark that the eigenvalues of M are the same as the eigenvalues of Ms.

We define additionally Xs = {Mk
s | k ∈ Z} and Xu = {Mk

u | k ∈ Z}.

Lemma 18. Let λ ∈ C∗, k ∈ Z≥0, and let J(m,λ) = (bij) ∈ GLm(C) be defined by

bij =


1 if i = j,

λ if j = i+ 1,

0 otherwise.

Write J(m,λ)k = (aij). Then

aij =

{
0 if i > j,(
k
j−i
)
λj−i otherwise,

(1)

and, for each r ∈ {1, . . . ,m− 1}, the following holds:

r!a1,r+1 =

r−1∏
i=0

(a12 − iλ). (2)

Proof. Easy computation. �

The following example is meant to illustrate the ideas in the proof of Lemma 20, in which we deal
with the unipotent part of our starting matrix.

Example 19. Define

M =


−i 1 0 0 0 0
0 −i 0 0 0 0
0 0 1

5 1 0 0
0 0 0 1

5 1 0
0 0 0 0 1

5 1
0 0 0 0 0 1

5

 ∈ GL6(C),

which is already in Jordan normal form. In this case

Ms =


−i 0 0 0 0 0
0 −i 0 0 0 0
0 0 1

5 0 0 0
0 0 0 1

5 0 0
0 0 0 0 1

5 0
0 0 0 0 0 1

5

 , Mu =


1 i 0 0 0 0
0 1 0 0 0 0
0 0 1 5 0 0
0 0 0 1 5 0
0 0 0 0 1 5
0 0 0 0 0 1

 .
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By Lemma 18(1), for each k ∈ Z one has

Mk
u =



1 ki 0 0 0 0
0 1 0 0 0 0

0 0 1 5k 52 · k(k−1)2 53 · k(k−1)(k−2)6

0 0 0 1 5k 52 · k(k−1)2
0 0 0 0 1 5k
0 0 0 0 0 1

 .

If we denote by xij the 36 independent variables corresponding to the entries of a matrix in Mat6(C),
we see that Xu is contained in the 4-dimensional linear space L defined by the equations

(1) xij = 0 for i < j,
(2) x1j = x2j = 0 for j ≥ 3,
(3) xii = 1 for i ∈ {1, . . . , 6},
(4) x56 = x45 = x34,
(5) x35 = x46,
(6) 5x12 = ix56.

We identify L with the affine space C4, with coordinates x1, x2, x3, x4 corresponding to the entries
x33, x34, x35, x36 of the first row of the second (and largest) block of Mk

u . Then Xu is in the image of
the map C→ L defined by

t 7→
(

1, 5t,
25t(t− 1)

2
,
125t(t− 1)(t− 2)

6

)
.

Since the image is a curve and Xu is infinite, the image actually coincides with Xu. After applying
the change of coordinates

(x1, x2, x3, x4) 7→
(
x1,

x2
5
,
2x3
25

,
6x4
125

)
,

Xu is parametrized by t 7→
(
1, t, t2 − t, t3 − 3t2 + 2t

)
. After the further change of coordinates

(x1, x2, x3, x4) 7→ (x1, x2, x3 − x2, x4 + 3x3 + x2) ,

we see that Xu is the image of t 7→ (1, t, t2, t3), so Xu is the twisted cubic curve in the hyperplane
defined by x1 = 1 in L.

Lemma 20. Assume that Mu 6= 1 and let m be the biggest size of a Jordan block of M . Then Xu is
a degree m− 1 rational normal curve.

Proof. Let d denote the number of Jordan blocks of M , arbitrarily ordered. For each index l ∈
{1, . . . , d}, let λl and m(l) denote respectively the eigenvalue and size corresponding to the l-th Jordan
block of M . Set Jl = J(m(l), λ−1l ) so that, for every k ∈ Z, one has

Mk
u = diag(Jk1 , . . . , J

k
d ).

Fix now k ∈ Z and write al,ij for the (i, j)-th entry of Jkl . By Lemma 18(1), all entries of Jkl are linear

functions of entries in the first row of Jkl and thus, by Lemma 18(2), polynomials in al,12. Furthermore,
by Lemma 18(1), two different blocks are compared via

al,12 = kλ−1l =
λs
λl
· kλ−1s =

λs
λl
· as,12.

Fix J ∈ {J1, . . . , Jd} to be an element of maximal size m. Then Xu is contained in a linear space L
of dimension m, with coordinates x1, . . . , xm corresponding to the entries of the first row of J . More
precisely, Xu is contained in the image of the map f̃ : C→ L defined by

t 7→

1, tλ−1,
t(t− 1)

2
λ−2, . . . ,

1

(m− 1)!

m−2∏
j=0

(t− j)λ−m+1

 .

The image of f̃ being an irreducible curve and Xu being infinite, f̃(C) = Xu. After applying the first
linear change of coordinates

(x1, x2, x3, . . . , xm) 7→ (x1, λx2, 2λ
2x3, . . . , (m− 1)!λm−1xm),



TORIC VARIETIES FROM CYCLIC MATRIX GROUPS 9

Xu is parametrized by

f(t) =

1, t, t(t− 1), . . . ,
m−2∏
j=0

(t− j)

 .

In order to see that Xu is a degree m − 1 rational normal curve, we show that there are linear
polynomials

l1(x1), l2(x1, x2), . . . , lm(x1, . . . , xm)

such that, for each r ∈ {1, . . . ,m}, the map φr : Cm → Cm defined by

φr(x1, . . . , xm) = (l1(x1), . . . , lr(x1, . . . , xr), xr+1, . . . , xm)

has the property that the first r entries of f ◦ φr(x1, . . . , xm) equal (1, t, t2, . . . , tr−1). We define
l1, . . . , lm recursively. Set l1(x1) = x1 and l2(x1, x2) = x2. Assume now that l1 . . . , lr are given and let
us define lr+1. By the induction hypothesis, the change of variables

(x1, . . . , xm) 7→ (l1(x1), . . . , lr(x1, . . . , xr), xr+1, . . . , xm)

turns f into

t 7→

1, t, t2, . . . , tr−1,
r−1∏
j=0

(t− j), . . . ,
m−2∏
j=0

(t− j)

 .

Now the (r + 1)-th entry is of the form tr + cr−1t
r−1 + . . . + c1t + c0 for some c0, . . . , cr−1 ∈ C. We

conclude by defining

lr+1(x1, . . . , xr+1) = xr+1 − cr−1xr − . . .− c1x2 − c0x1,

which is linear in x1, . . . , xr+1 and satisfies by construction the required inductive property. �

Proposition 21. The following equalities hold:

dimX = dimXs + dimXu and irr(X) = irr(Xs).

Proof. By Remark 7, the dimension and the number of irreducible components of X remain invariant
when intersecting X with GLn(C). For this proof only, we will write X to mean the Zariski closure
of X in GLn(C). This applies analogously to Xs and Xu. Recall that X, Xs, and Xu are in this case
subgroups of GLn(C), see for example [15, Lemma 2.2.4].

We start by showing that X is abelian. Denote by Dn(C) and Un(C) respectively the closed
subgroups of diagonal and upper unitriangular matrices of GLn(C). Since Xs ⊆ Dn(C) and Xu ⊆
Un(C), we have Xu∩Xs = {1}. Since Ms and Mu commute, the commutator map Xs×Xu → GLn(C)
is trivial on a dense subset of Xs ×Xu and so, being continuous, it is trivial. In particular, Xs and
Xu commute and, being X contained in the internal direct product XsXu, the group X is abelian.

The group X being abelian, [8, Theorem 15.5] yields that X ∼= Xs × Xu (see also [12, Chapter
3.2, Problem 15]). In particular, we get dimX = dimXs + dimXu. Lemma 20 ensures that Xu is
irreducible and thus we also have that irr(X) = irr(Xs). �

We are finally ready to prove Theorem 1. From Proposition 21 we know that the equalities dimX =
dimXs+dimXu and irr(X) = irr(Xs) are satisfied. By Proposition 12, we have irr(X) = |Gtor|, while
its combination with Lemma 20 yields

dimX = rk(G) + dimXu =

{
rk(G) if Mu = 1,

rk(G) + 1 otherwise.

Corollary 22. Let q ∈ Z. If G is torsionfree, then X = 〈M q〉.

Proof. Let a1, . . . , an be the eigenvalues of M and assume that G is torsionfree. Then the eigenvalues
of M q are aq1, . . . , a

q
n and 〈aq1, . . . , a

q
n〉 is a free Z-submodule of G of the same rank as G. By Theorem

1, the varieties 〈M〉 and 〈M q〉 are both irreducible of the same dimension. Since 〈M〉 ⊇ 〈M q〉, they
are the same. �
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3. Zariski closure of cyclic semigroups

The purpose of this section is to prove Theorem 3. We start by an example, meant once again as
an exemplification of the more general proof.

Example 23. Let M ∈ Matn(C) be defined by

M =

0 1 0
0 0 0
0 0 2


and write X = {Mk | k ∈ Z>0} for the semigroup of GLn(C) generated by M . Then M2 = diag(0, 0, 4)
and thus we have

X = {M}
·
∪ {diag(0, 0, 2k) | k ≥ 2}.

We observe that the set {diag(0, 0, 2k) | k ≥ 2} is clearly embeddable in C and, consisting of infinitely
many points, its closure has dimension 1. In particular, we get that

X = {M}
·
∪ {diag(0, 0, z) | z ∈ C} .

and so X is the disjoint union of a point and a line.

Until the end of this section, we will work under the hypotheses of Theorem 3. We proceed by
considering disjoint cases.

Assume first that E = ∅. In this case the only eigenvalue of M is 0, which implies that M is
nilpotent and so X = X consists of finitely many points. If M = 0 then X = {M}, so we assume that
M 6= 0. It is not difficult to show that, in this case, Mν is the smallest power of M that is equal to
0 and so X consists of ν ≥ 0 points. To conclude define X0 = X and X1 = ∅. Assume now that M
is invertible, equivalently ν = 0 and E 6= ∅. Define X0 = ∅ and X1 = X. We are now done thanks to
Theorem 1.

To conclude, assume that M is not invertible and E 6= ∅. In this case, ν ≥ 1 and there exist m
and p positive integers and matrices N ∈ Matm(C) strictly upper triangular and M1 ∈ GLp(C) upper
triangular such that M has the following block shape:

M =

(
N 0
0 M1

)
.

Fix such matrices N and M1. Then N is nilpotent and ν is the smallest exponent annihilating N . It
follows then that

X = {Mk | k ∈ {1, . . . , ν − 1}}
·
∪
{(

0 0
0 Mk

1

)
| k ≥ ν

}
.

Write X0 = {Mk | k ∈ {1, . . . , ν − 1}} and

Y1 =

{(
0 0
0 Mk

1

)
| k ≥ ν

}
.

Then X0 is a closed variety consisting of ν − 1 points. Set X1 = Y1. We observe that the semigroup
generated by M1 in GLp(C) is the image of Y1 under a linear automorphism of Matn(C). It follows
from Lemma 8 that X1 is isomorphic to the Zariski closure of 〈M1〉 in Matp(C). We conclude this
case thanks to Theorem 1 and the proof of Theorem 3 is now complete.

Corollary 24. The dimension of X ⊂ Matn(C) is at most n.

Proof. The dimension of X is computed by Theorem 3. If M has n distinct eigenvalues, then it is
diagonalizable. In this case Mmax{1,ν} is diagonalizable as well, so dim(X) = rk(G) = n. If M has a
repetead eigenvalue, then dim(X) ≤ rk(G) + 1 ≤ n. �

4. Effective computation of closures of matrix groups

The present section is devoted to the question of effectively computing the Zariski closure of matrix
groups. Ideally, we seek an algorithm that takes as input a list of matrices M1, . . . ,Mt ∈ Matn(Q) and
returns as output the ideal of the Zariski closure of the group or semigroup generated by M1, . . . ,Mt.
If this were the case, we would have an algorithm computing the strongest polynomial invariants of
〈M1, . . . ,Mt〉.
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A diverse literature on the subject is available and already several authors have produced algorithms
in this direction. We discuss here briefly some of these results.

When all the matrices are invertible, it makes sense to consider the group they generate: an al-
gorithm computing the closure of such group in GLn(C) is presented in [4]. The computation of the
closure in Matn(C) or Matn(R) of the generated semigroup is worked out in [7]. In [4] and [10] one
can find ways to determine the equations of the group generated by one diagonal matrix. A large
group of mathematicians and computer scientists have worked on related problems; see for example
[1, 9, 13, 16].

As far as we know, no complexity analysis has been run in [4, 7, 10]. It is however worth to mention
that all these algorithms rely on a polynomial-time algorithm of Ge [6, Theorem 1.1], dealing with
units in number fields. The last author’s work is generalized in [11, Theorem 1.11] to any Q-algebra.
To our knowledge, among the discussed algorithms, the only one that has been implemented is [10,
Algorithm 3], in the software Mathematica 5 [18]. Its purpose is to find algebraic relations among
recurrence sequences. In particular, when the sequences encode the powers of the eigenvalues of a
diagonal matrix M , the algorithm outputs the ideal of 〈M〉.

In this section, we present a first step in the direction of implementing these algorithms in favour
of the interested community. We propose here a short algorithm based on the results stated in this
paper and implemented in the software SageMath [17].

Given a square matrix M defined over Q, our goal is to compute the Zariski closure of the semigroup
generated by M over a suitable number field K. In light of what is discussed in Section 3, it is not
restrictive to assume that M is invertible, so we do. Thanks to Lemma 8, moreover, the closure of the
group and of the semigroup generated by M are the same. As a further simplifcation, we also assume
that M is diagonalizable over the algebraic closure. Again, this assumption is not too strong, because
the set of diagonalizable matrices is dense in Matn(Q) - in other words, the set of non diagonalizable
matrices has measure zero.

Algorithm:

Input:: n ∈ Z>0, M ∈ GLn(Q) diagonalizable
Output:: the ideal of the closure of 〈M〉 in Matn(K)

Algorithm steps:

(1) Use implemented SageMath commands to compute
• the characteristic polynomial f of M ,
• a splitting field K of f over Q,
• a Jordan normal form C of M and P ∈ GLn(K) such that C = P−1MP ,
• a vector E of eigenvalues of M in K;

(2) Define a (minimal) set S of prime ideals of the ring of integers OK such that for p ∈ S and
e ∈ E one has p - OKe;

(3) Use implemented SageMath command to compute the finitely generated subgroup US of S-
units of K∗ [then the group G ⊆ C∗ generated by E is contained in US . A good reference on
S-units is [14]];

(4) Compute an integer q with |Gtor| | q | |(US)tor|;
(5) Compute the matrix A of the projection of G to the free part of US given by SageMath [see

Proposition 12];
(6) Compute the ideal of the toric variety associated to A in K[x0, . . . , xn−1] [see Proposition 11.

Here we refine the ToricIdeal command in SageMath to deal with incorrect cases, e.g. when
A = (1 0)];

(7) For i ∈ {1, . . . , q}, multiply the n× n coordinate matrix by Ci to get the ideals of M i+qk [see
Proposition 12];

(8) Compute the ideal of 〈C〉 in K[x0, . . . , xn2−1];

(9) Apply the change of variables induced by P to get the ideal of 〈M〉 in K[x0, . . . , xn2−1].

We remark that our implemented algorithm is actually broader: it takes as input any invertible matrix
M and works with its semisimple part Ms, computing the Zariski closure of the group generated by
Ms.
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