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Interactions between discrete and continuous optimization and

critical point theory via multi-way Lovász extensions

Jürgen Jost∗, Dong Zhang†

We introduce and systematically study general discrete-to-continuous extensions, with several
applications for combinatorial problems and discrete mathematics. This provides new perspec-
tives for understanding relations and interactions between discrete and continuous worlds via
multi-way extensions.

We propose a family of one-homogeneous and piecewise linear extensions inspired by the Lovász extension
in order to systematically derive continuous analogs of problems from discrete mathematics. This will take
place in the following context:

- For combinatorial optimization problems, we systematically develop equivalent continuous versions, thereby
making tools from convex optimization, fractional programming and more general continuous algorithm like
the stochastic subgradient method available for such optimization problems. Among other applications, we
present an effective iteration scheme combining the inverse power and the steepest decent method to relax
a Dinkelbach-type scheme for solving the equivalent continuous optimization.

- Submodularity and convexity are studied in multi-way settings, in particular, a necessary and sufficient
condition for a continuous function to be a multi-way Lovász extension of some function is provided, which
generalizes a recent result of Chateauneuf et al [17].

- We establish an equivalence between Forman’s discrete Morse theory on a simplicial complex and the con-
tinuous Morse theory (in the sense of any known non-smooth Morse theory) on the associated order complex
via a Lovász extension. Furthermore, we propose a new version of the Lusternik-Schnirelman category on
abstract simplicial complexes to bridge the classical Lusternik-Schnirelman theorem and its discrete analog
on finite complexes. More generally, we can suggest a discrete Morse theory on hypergraphs by employing PL
Morse theory and Lovász extension, hoping to provide new tools for exploring the structure of hypergraphs.

This theory has several applications to quantitative and combinatorial problems, among them the following:

(1) Resorting to the multi-way extension, the equivalent continuous representations for the max k-cut problem,
variant Cheeger sets and isoperimetric constants are constructed. This also initiates a study of Dirichlet
and Neumann 1-Laplacians on graphs, in which the nodal domain property and Cheeger-type equalities are
presented. Among them, some Cheeger constants using different versions of vertex-boundary introduced
in expander graph theory [38], are transformed into continuous forms, which reprove the inequalities and
identities on graph Poincare profiles proposed by Hume [27–29].

(2) Also, we derive a new equivalent continuous representation of the graph independence number, which can
be compared with the Motzkin-Straus theorem. More importantly, an equivalent continuous optimization
for the chromatic number is provided, which seems to be the first continuous representation of the graph
vertex coloring number. Graph matching numbers, submodular vertex covers and multiway partition
problems can also be studied in our framework.

Keywords: Lovász extension; submodularity; combinatorial optimization; discrete Morse theory; Lusternik-
Schnirelman theory; Cheeger inequalities & isoperimetric problems; chromatic number
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1 Introduction and Background

The Lovász extension is a basic tool in discrete mathematics, especially for some combinatorial
optimization problems and submodular analysis [1]. It was introduced in the study of submodu-
lar functions which appear frequently in many areas like game theory, matroid theory, stochastic
processes, electrical networks, computer vision and machine learning [22].

In fact, a special form of the Lovász extension appeared already in the context of the Choquet
integral [54] which has fruitful applications in statistical mechanics, potential theory and decision
theory. Since the Lovász extension does not require the monotonicity of the set function in finite
cases of the Choquet integral, it has a wider range of applications, for instance in combinatorics,
for algorithms in computer science. Recent developments include quasi-Lovász extension on some
algebraic structures and fuzzy mathematics, applications of Lovász extensions to graph cut problems
and computer science, as well as Lovász-softmax loss in deep learning.

We shall start by looking at the original Lovász extension. For simplicity, we shall work through-
out this paper with a finite and nonempty set V = {1, · · · , n} and its power set P(V ). Also, we shall
sometimes work on P(V )k := {(A1, · · · , Ak) : Ai ⊂ V, i = 1, · · · , k} and Pk(V ) := {(A1, · · · , Ak) ∈
P(V )k : Ai ∩ Aj = ∅, ∀i 6= j}, as well as some restricted family A ⊂ P(V )k. We denote the car-
dinality of a set A by #A. Given a function f : P(V ) → R, one identifies every A ∈ P(V ) with
its indicator vector 1A ∈ RV = Rn. The Lovász extension extends the domain of f to the whole
Euclidean space1 RV . There are several equivalent expressions:

• For x = (x1, . . . , xn) ∈ Rn, let σ : V ∪ {0} → V ∪ {0} be a bijection such that xσ(1) ≤ xσ(2) ≤
· · · ≤ xσ(n) and σ(0) = 0, where x0 := 0. The Lovász extension of f is defined by

fL(x) =

n−1∑
i=0

(xσ(i+1) − xσ(i))f(V σ(i)(x)), (1)

where V 0(x) = V and V σ(i)(x) := {j ∈ V : xj > xσ(i)}, i = 1, · · · , n − 1. We can write (1)
in an integral form as

fL(x) =

∫ max
1≤i≤n

xi

min
1≤i≤n

xi

f(V t(x))dt+ f(V ) min
1≤i≤n

xi, (2)

1Some other versions in the literatures only extend the domain to the cube [0, 1]V or the first quadrant RV≥0. In
fact, many works on Boolean lattices identify P(V ) with the discrete cube {0, 1}n.
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and if we add the natural assumption f(∅) = 0,

fL(x) =

∫ 0

−∞
(f(V t(x))− f(V ))dt+

∫ +∞

0
f(V t(x))dt, (3)

where V t(x) = {i ∈ V : xi > t}. If we apply a Möbius transformation, this becomes

fL(x) =
∑
A⊂V

∑
B⊂A

(−1)#A−#Bf(B)
∧
i∈A

xi, (4)

where
∧
i∈A

xi is the minimum over {xi : i ∈ A}.

In the above formulas, fL is the unique function that is affine on each polyhedral cone Rnσ := {x ∈
Rn : xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n)}, for any permutation σ on V . It is known that fL is positively

one-homogeneous, PL (piecewise linear) and Lipschitzian continuous [1, 2]. Also, fL(x + t1V ) =
fL(x) + tf(V ), ∀t ∈ R, ∀x ∈ RV . Moreover, a continuous function F : RV → R is a Lovász extension
of some f : P(V ) → R if and only if F (x + y) = F (x) + F (y) whenever (xi − xj)(yi − yj) ≥ 0,
∀i, j ∈ V .

In this paper, we shall use the Lovász extension and its variants to study the interplay between
discrete and continuous aspects in topics such as convexity, optimization and Morse theory.

Submodular and convex functions
Submodular function have emerged as a powerful concept in discrete optimization, see Fujishige’s

monograph [22]. A Lovász extension turns a submodular into a convex function, and we can hence
minimize the former by minimizing the latter:

Theorem 1.1 (Lovász [1]). f : P(V )→ R is submodular ⇔ fL is convex.

Submodularity Convexity
Lovász extension

Theorem 1.2 (Lovász [1]). If f : P(V )→ R is submodular, then

min
A⊂V

f(A) = min
x∈[0,1]V

fL(x).

Submodular optimization Convex programming
Lovász extension

Thus, submodularity can be seen as some kind of ‘discrete convexity’, and that naturally lead
to many generalizations, such as bisubmodular, k-submodular, L-convex and M-convex, see [22, 53].
Recently, a necessary and sufficient condition for a continuously submodular function2 defined on
Rn to be representable as a Lovász extension of a submodular function defined on P(V ) has been
obtained [17].

Theorem 1.3 (Chateauneuf & Cornet [17]). A one-homogeneous function F : RV → R is a Lovász
extension of some submodular function if and only if F (x+ t1V ) = F (x)+ tF (1V ), ∀t ∈ R, ∀x ∈ RV ,
and F (x) +F (y) ≥ F (x∨ y) +F (x∧ y), where the i-th components of x∨ y and x∧ y are (x∨ y)i =
max{xi, yi} and (x ∧ y)i = min{xi, yi}.

One may want to extend such a result to the bisubmodular or more general cases. In that
direction, we shall obtain some results such as Proposition 2.7 and Theorem 2.3 in Section 2.2.

Discrete convex analysis Convex analysis
Lovász extension

2see (S2) in Subsection 2.2
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So far, research has mainly focused on ‘discrete convex’ functions, leading to ‘Discrete Convex
Analysis’ [52,53], whereas the discrete non-convex setting which is quite popular in modern sciences
has not yet received that much attention.

Non-submodular cases
Obviously, the non-convex case is so diverse and general that it cannot be directly studied by

standard submodular tools. Although some publications show several results on non-submodular
(i.e., non-convex) minimization based on Lovász extension [15], so far, these only work for special
minimizations over the whole power set. Here, we shall find applications for discrete optimization and
nonlinear spectral graph theory by employing the multi-way Lovász extension on enlarged domains.
We shall also study the Lovász extension on restricted domains, leading to a fascinating connection
between discrete and continuous Morse theory and Lusternik-Schnirelman theory. Both the enlarged
and the restricted version possess the basic feature of Lovász theory, a correspondence between
submodularity and convexity.

In summary, we are going to initiate the study of diverse continuous extensions in non-submodular
settings. This paper develops a systematic framework for many aspects around the topic. We
establish a universal discrete-to-continuous framework via multi-way extensions, by systematically
utilizing integral representations. We shall now discuss some connections with various fields.

Connections with combinatorial optimization
Because of the wide range of applications of discrete mathematics in computer sciences, combina-

torial optimization has been much studied from the mathematical perspective. It is known that any
combinatorial optimization can be equivalently expressed as a continuous optimization via convex (or
concave) extension, but often, there is the difficulty that one cannot write down an equivalent con-
tinuous object function in closed-form. For practical purposes, it would be very helpful if one could
transfer a combinatorial optimization to an explicit and simple equivalent continuous optimization
problem. Formally, in many concrete situations, it would be useful if one could get an identity of the
form

min
(A1,··· ,Ak)∈A∩supp(g)

f(A1, · · · , Ak)
g(A1, · · · , Ak)

= inf
ψ∈D(A)

f̃(ψ)

g̃(ψ)
. (5)

where f, g : A → [0,∞), D(A) is a feasible domain determined by A only, and f̃ and g̃ are suitable
continuous extensions of f and g.

So far, only situations where f : P(V )→ R or f : P2(V )→ R have been investigated, and what
is lacking are situations with restrictions, that is, incomplete data.

Also, to the best of our knowledge, the known results in the literature do not work for com-
binatorial optimization on set-tuples. But most of combinatorial optimization problems should be
formalized in the form of set-tuples, and only a few can be represented in set form or disjoint-pair
form. Whenever one can find an equivalent Lipschitz function for a combinatorial problem in the field
of discrete optimization, this makes useful tools available and leads to new connections. That is, one
wishes to establish a discrete-to-continuous transformation like the operator ∼ in (5). We will show
in Section 3 that the Lovász extension and its variants are suitable choices for such a transformation
(see Theorems B, 3.1 and Proposition 3.1 for details).

Connections with discrete Morse theory
Forman introduced a discrete Morse theory on simplicial complexes [36,37]. This theory has some

deep connections with smooth Morse theory [32–34], as well as practical applications [35], and also
admits several slight generalizations. Both this discrete Morse theory and the classical smooth one are
simple, since they exclude some complicated cases such as monkey-saddle points. We will construct
the relationship between the Morse theory of a discrete Morse function and its Lovász extension in
Section 4. Note that the standard ideas and methods cannot be directly applied because the Lovász
extension is one-homogeneous and all local flows can go along the rays from the original point and
thus all possible critical points are trivial. Therefore, we should restrict the Lovász extension fL to
a subset of its feasible domain. This will lead us to the following result.

Theorem A (Theorems 4.1, 4.2 and 4.3). For a simplicial complex with vertex set V and face set K,
let f : K → R be an injective discrete Morse function. Then the following conditions are equivalent:
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(1) σ is a critical point of f ;

(2) 1σ is a critical point of fL||SK| with index i in the sense of weak slope (metric Morse theory);

(3) 1σ is a critical point of fL||SK| with index i in the sense of Kühnel (PL Morse theory);

(4) 1σ is a Morse critical point of fL||SK| with index i in the sense of topological Morse theory;

Here the notation |SK| indicates a suitable restriction (see Subsection 4.1) for fL being well-defined.
Moreover, the discrete Morse vector (n0, n1, · · · , nd), representing the number ni of critical points

with index i, of f coincides with the continuous Morse vector of fL||SK|.
Moreover, the Lusternik-Schnirelmann category3 theorem is preserved under Lovász extension:

min
L∈Catm(K)

max
σ∈L

f(σ) = inf
S∈Catm(|SK|)

sup
x∈S

fL(x).

discrete Morse theory

continuous Morse theory

smooth Morse theory

Lovász

extension

Benedetti

Gallais
Italian/Berlin/...

In summary, Theorem A says that the Morse structures of K and |SK| are coarsely equivalent, and
one can translate all the results about ‘Morse data’ of a discrete Morse function f on K to its Lovász
extension fL restricted on |SK|. This also reflects the deep result from [33, 34] that smooth Morse
theory on a manifold is almost equivalent to the discrete Morse theory on its triangulation. The
difference is that we don’t assume the complex |K| to be a topological manifold, so that topological
results on manifolds cannot be applied directly. Fortunately, our feasible domain |SK| is a piecewise
flat geometric complex. Our proofs don’t draw heavily on the standard tools in discrete Morse theory.

Connections with Hypergraphs
The idea above allows us to establish a discrete Morse theory on hypergraphs, which helps us to

understand the structure of a hypergraph from a Morse theoretical perspective (see Section 4.2).

To reach these goals, we need to systematically study various generalizations of the Lovász ex-
tension. More precisely, we shall work with the following two different multi-way forms:

(1) Disjoint-pair version: for a function f : P2(V )→ R, its disjoint-pair Lovász extension is defined
as

fL(x) =

∫ ‖x‖∞
0

f(V t
+(x), V t

−(x))dt, (6)

where V t
±(x) = {i ∈ V : ±xi > t}, ∀t ≥ 0. For A ⊂ P2(V ) and f : A → R, the feasible domain

DA of the disjoint-pair Lovász extension is {x ∈ RV : (V t
+(x), V t

−(x)) ∈ A, ∀t ≥ 0}.

(2) k-way version: for a function f : P(V )k → R, the simple k-way Lovász extension fL : Rkn → R
is defined as

fL(x1, · · · ,xk) =

∫ maxx

minx
f(V t(x1), · · · , V t(xk))dt+ f(V, · · · , V ) minx, (7)

where V t(xi) = {j ∈ V : xij > t}, minx = min
i,j

xij and maxx = max
i,j

xij . For A ⊂ Pk(V ) and

f : A → R, we take DA = {x ∈ Rkn≥0 : (V t(x1), · · · , V t(xk)) ∈ A, ∀t ∈ R} as a feasible domain of

the k-way Lovász extension fL.

3The definition of category classes for K is introduced in Subsection 4.1.
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All these multi-way Lovász extensions satisfy the optimal identity Eq. (5):

Theorem B (Theorem 3.1 and Proposition 3.1). Given two functions f, g : A → [0,+∞), let
f̃ and g̃ be two real functions on DA satisfying f̃(1A1,··· ,Ak) = f(A1, · · · , Ak) and g̃(1A1,··· ,Ak) =
g(A1, · · · , Ak). Then Eq. (5) holds if f̃ and g̃ further possess the properties (P1) or (P2) below.
Correspondingly, if f̃ and g̃ fulfil (P1’) or (P2), there similarly holds

max
(A1,··· ,Ak)∈A∩supp(g)

f(A1, · · · , Ak)
g(A1, · · · , Ak)

= sup
ψ∈DA∩supp(g̃)

f̃(ψ)

g̃(ψ)
.

Here the optional additional conditions of f̃ and g̃ are:
(P1) f̃ ≥ fL and g̃ ≤ gL. (P1’) f̃ ≤ fL and g̃ ≥ gL.
(P2) f̃ = ρ−1((ρ ◦ f)L) and g̃ = ρ−1((ρ ◦ g)L), where ρ : [0,∞) → [0,∞) is a homeomorphism.

For example, one can take f̃ = ((fα)L)
1
α and g̃ = ((gα)L)

1
α , where α > 0.

Here fL is either the original or the disjoint-pair or the k-way Lovász extension.

Theorem B shows that by the multi-way Lovász extension, the combinatorial optimization in
quotient form can be transformed to fractional programming. And based on this fractional optimiza-
tion, we propose an effective local convergence scheme, which relaxes the Dinkelbach-type iterative
scheme and mixes the inverse power method and the steepest decent method. Furthermore, many
other continuous iterations, such as Krasnoselski-Mann iteration, and stochastic subgradient method,
could be directly applied here.

The power of Theorem B is embodied in many new examples and applications including Cheeger-
type problems, various isoperimetric constants and max k-cut problems (see Subsections 5.2, 5.3 and
5.5). And moreover, we find that not only combinatorial optimization, but also some combinatorial
invariants like the independence number and the chromatic number, can be transformed into a
continuous representation by this scheme.

Theorem C (Subsections 5.4 and 5.6). For an unweighted and undirected simple graph G = (V,E)
with #V = n, its independence number can be represented as

α(G) = max
x∈Rn\{0}

∑
{i,j}∈E

(|xi − xj |+ |xi + xj |)− 2
∑
i∈V

(degi−1)|xi|

2‖x‖∞
,

where degi = #{j ∈ V : {j, i} ∈ E}, i ∈ V , and its chromatic number is

γ(G) = n2− max
x∈Rn2\{0}

∑
k∈V

n
∑

{i,j}∈E
(|xik − xjk|+ |xik + xjk|) + 2n‖xk‖∞ − 2n degk ‖xk‖1 − 2‖x,k‖∞

2‖x‖∞
,

where x = (xki)k,i∈V , xk = (xk1, · · · , xkn) and x,k = (x1k, · · · , xnk)T . The maximum matching
number of G can be expressed as

max
y∈RE\{0}

‖y‖21
‖y‖21 − 2

∑
e∩e′=∅ yeye′

.

Connections with spectral graph theory
Spectral graph theory aims to derive properties of a (hyper-)graph from its eigenvalues and

eigenvectors. Going beyond the linear case, nonlinear spectral graph theory is developed in terms
of discrete geometric analysis and difference equations on (hyper-)graphs. Every discrete eigenvalue
problem can be formulated as a variational problem for an objective functional, a Rayleigh-type quo-
tient. In some cases, this functional is natural and easy to obtain, since one may compare the discrete
version with its original continuous analog in geometric analysis. However, in other situations, there
is no such analog. Fortunately, we find a unified framework based on multi-way Lovász extension to
produce appropriate objective functions from a combinatorial problem (see Sections 2 and 3).
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More precisely, for a combinatorial problem with a discrete objective function of the form f(A)
g(A) ,

we might obtain some correspondences by studying the set-valued eigenvalue problem

∇fL(x)
⋂
λ∇gL(x) 6= ∅.

Hereafter we use ∇ to denote the (Clarke) sub-gradient operator acting on Lipschitz functions.

graph quantities eigenvalue problem
Spectral graph theory

We shall consider the following three versions:

• Eigenvectors and eigenvalues: We have the collection of eigenpairs
{

(λ,x)
∣∣0 ∈ ∇fL(x)− λ∇gL(x)

}
.

This enables the definition of the graph 1-Laplacian and its variants (see Section 5.3).

• Critical points and critical values: The set of critical points
{
x

∣∣∣0 ∈ ∇fL(x)
gL(x)

}
and the corre-

sponding critical values.

• Minimax critical values (i.e., variational eigenvalues in Rayleigh quotient form): The Lusternik-
Schnirelman theory tells us that the min-max values

λm = inf
Ψ∈Γm

sup
x∈Ψ

fL(x)

gL(x)
, (8)

are critical values of fL(·)/gL(·). Here Γm is a class of certain topological objects at level m,
e.g., the family of subsets with L-S category (or Krasnoselskii’s Z2-genus) not smaller than m.

There are the following relations between these three classes:

{Eigenvalues in Rayleigh quotient} ⊂ {Critical values} ⊂ {Eigenvalues}.

For linear spectral theory, the three classes above coincide. However, for the non-smooth spectral
theory derived by Lovász extension, we only have the inclusion relation.

The following picture summarizes the relations between the various concepts developed and s-
tudied in this paper.

Combinatorial

Quantities

Discrete

Optimization

Continuous

Optimization

(topological) Morse theory

(metric) critical point theory

(Nonlinear) Spectral theory

Discrete Morse theory

Continuous

Programming

& Algorithm

Submodularity Convexity

multi-way extension

Lovász

extension

k-way Lovász extension

Figure 1: The relationship between the aspects studied in this paper.

Notification 1. Since this paper contains many interacting parts and relevant results, some notions
and concepts may have slightly distinct meanings in different sections, but this will be stated at the
beginning of each section.
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2 Multi-way extension

We first formalize some important results about the original Lovász extension.

Definition 2.1. Two vectors x and y are comonotonic if (xi−xj)(yi−yj) ≥ 0, ∀i, j ∈ {1, 2, · · · , n}.
A function F : Rn → R is comonotonic additive if F (x+ y) = F (x) +F (y) for any comonotonic

pair x and y.

The following proposition shows that a function is comonotonic additive if and only if it can be
expressed as the Lovász extension of some function.

Proposition 2.1. F : Rn → R is the Lovász extension F = fL of some function f : P(V ) → R if
and only if F is comonotonic additive.

Recall the following known results:

Theorem 2.1 (Lovász). The following conditions are equivalent: (1) f is submodular; (2) fL is
convex; (3) fL is submodular.

Theorem 2.2 (Chateauneuf & Cornet). F : Rn → R is the Lovász extension F = fL of some
submodular f : P(V )→ R if and only if F is positively one-homogeneous, submodular and F (x+t1) =
F (x) + tF (1).

We should note that Theorem 2.2 is not a direct consequence of the combination of Proposition
2.1 and Theorem 2.1. We shall establish such results for the disjoint-pair version and the k-way
version of the Lovász extension.

2.1 Disjoint-pair and k-way Lovász extensions

Since it is natural to set f(∅,∅) = 0, one may write (6) as

fL(x) =

∫ ∞
0

f(V t
+(x), V t

−(x))dt, (9)

fL(x) =
n−1∑
i=0

(|xσ(i+1)| − |xσ(i)|)f(V +
σ(i)(x), V −σ(i)(x)), (10)

where σ : V ∪ {0} → V ∪ {0} is a bijection such that |xσ(1)| ≤ |xσ(2)| ≤ · · · ≤ |xσ(n)| and σ(0) = 0,
where x0 := 0, and

V ±σ(i)(x) := {j ∈ V : ±xj > |xσ(i)|}, i = 0, 1, · · · , n− 1.

We regard P2(V ) = 3V as {−1, 0, 1}n by identifying the disjoint pair (A,B) with the ternary (indi-
cator) vector 1A − 1B.

One may compare the original and the disjoint-pair Lovász extensions by writing (6) as∫ maxi |xi|

mini |xi|
f(V t

+(x), V t
−(x))dt+ min

i
|xi|f(V+, V−), (11)

where V± = {i ∈ V : ±xi > 0}. Note that (11) is very similar to (2).

Definition 2.2. Given Vi = {1, · · · , ni}, i = 1, · · · , k, and a function f : P(V1)× · · · × P(Vk)→ R,
the k-way Lovász extension fL : RV1 × · · · × RVk → R can be written as

fL(x1, · · · ,xk) =

∫ maxx

minx
f(V t

1 (x1), · · · , V t
k (xk))dt+ f(V1, · · · , Vk) minx

=

∫ 0

−∞
(f(V t

1 (x1), · · · , V t
k (xk))− f(V1, · · · , Vk))dt+

∫ +∞

0
f(V t

1 (x1), · · · , V t
k (xk))dt

where V t
i (xi) = {j ∈ Vi : xij > t}, minx = min

i,j
xij and maxx = max

i,j
xij.
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Definition 2.3 (k-way analog for disjoint-pair Lovász extension). Given Vi = {1, · · · , ni}, i =
1, · · · , k, and a function f : P2(V1)× · · · × P2(Vk)→ R, define fL : RV1 × · · · × RVk → R by

fL(x1, · · · ,xk) =

∫ ‖x‖∞
0

f(V +
1,t(x

1), V −1,t(x
1), · · · , V +

k,t(x
k), V −k,t(x

k))dt

where V ±i,t(x
i) = {j ∈ Vi : ±xij > t}, ‖x‖∞ = max

i=1,··· ,k
‖xi‖∞. We can replace ‖x‖∞ by +∞ if we set

f(∅, · · · ,∅) = 0.

Some basic properties of the multi-way Lovász extension are shown below.

Proposition 2.2. For the multi-way Lovász extension fL(x), we have

(a) fL(·) is positively one-homogeneous, piecewise linear, and Lipschitz continuous.

(b) (λf)L = λfL, ∀λ ∈ R.

Proposition 2.3. For the disjoint-pair Lovász extension fL(x), we have

(a) fL is Lipschitz continuous, and |fL(x) − fL(y)| ≤ 2 max
(A,B)∈P2(V )

f(A,B)‖x − y‖1, ∀x, y ∈ Rn.

Also, |fL(x)− fL(y)| ≤ 2
∑

(A,B)∈P2(V )

f(A,B)‖x− y‖∞, ∀x, y ∈ Rn.

(b) fL(−x) = ±fL(x), ∀x ∈ RV if and only if f(A,B) = ±f(B,A), ∀(A,B) ∈ P2(V ).

(c) fL(x+y) = fL(x)+fL(y) whenever V±(y) ⊂ V±(x̃), where x̃ has components x̃i =

{
xi, if |xi| = ‖x‖∞,
0, otherwise.

Proof. (a) and (b) are actually known results and their proofs are elementary. (c) can be derived
from the definition (10).

Definition 2.4. Two vectors x and y are said to be absolutely comonotonic if xiyi ≥ 0, ∀i, and
(|xi| − |xj |)(|yi| − |yj |) ≥ 0, ∀i, j.

Proposition 2.4. A continuous function F is a disjoint-pair Lovász extension of some function
f : P2(V )→ R, if and only if F (x)+F (y) = F (x+y) whenever x and y are absolutely comonotonic.

Proof. By the definition of the disjoint-pair Lovász extension (see (10)), we know that F is a disjoint-
pair Lovász extension of some function f : P2(V ) → R if and only if λF (x) + (1 − λ)F (y) =
F (λx+ (1−λ)y) for all absolutely comonotonic vectors x and y, ∀λ ∈ [0, 1]. Therefore, we only need
to prove the sufficiency part.

For x ∈ RV , since sx and tx with s, t ≥ 0 are absolutely comonotonic, F (sx) + F (tx) = F ((s +
t)x), which yields a Cauchy equation on the half-line. Thus the continuity assumption implies the
linearity of F on the ray R+x, which implies the property F (tx) = tF (x), ∀t ≥ 0, and hence
λF (x) + (1−λ)F (y) = F (λx+ (1−λ)y) for any absolutely comonotonic vectors x and y, ∀λ ∈ [0, 1].
This completes the proof.

For relations between the original and the disjoint-pair Lovász extensions, we further have

Proposition 2.5. For h : P(V )→ [0,+∞) with h(∅) = 0, and f : P2(V )→ [0,+∞) with f(∅,∅) =
0 4, we have:

(a) If f(A,B) = h(A) + h(V \B)− h(V ), ∀(A,B) ∈ P2(V ), then fL = hL.

(b) If f(A,B) = h(A) + h(B) and h(A) = h(V \A), ∀(A,B) ∈ P2(V ), then fL = hL.

(c) If f(A,B) = h(A), ∀(A,B) ∈ P2(V ), then fL(x) = hL(x), ∀x ∈ [0,∞)V .

(d) If f(A,B) = h(A ∪B), ∀(A,B) ∈ P2(V ), then fL(x) = hL(x+ + x−).

4In fact, if h(∅) 6= 0 or f(∅,∅) 6= 0, one may change the value and it does not affect the related Lovász extension.
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(e) If f(A,B) = h(A)± h(B), ∀(A,B) ∈ P2(V ), then fL(x) = hL(x+)± hL(x−).

Here x± := (±x) ∨ 0.

In the sequel, we will not distinguish the original and the disjoint-pair Lovász extensions, since
the reader can infer it from the domains (P(V ) or P2(V )). Sometime we work on P(V ) only, and
in this situation, the disjoint-pair Lovász extension acts on the redefined f(A,B) = h(A ∪ B) as
Proposition 2.5 states.

The next result is useful for the application on graph coloring.

Proposition 2.6. For the simple k-way Lovász extension of f : P(V1) × · · · × P(Vk) → R with
the separable summation form f(A1, · · · , Ak) :=

∑k
i=1 fi(Ai), ∀(A1, · · · , Ak) ∈ P(V )k, we have

fL(x1, · · · ,xk) =
∑k

i=1 f
L
i (xi), ∀(x1, · · · ,xk).

For f : P2(V1) × · · · × P2(Vk) → R with the form f(A1, B1 · · · , Ak, Bk) :=
∑k

i=1 fi(Ai, Bi),

∀(A1, B1, · · · , Ak, Bk) ∈ P2(V1)× · · · × P2(Vk), there similarly holds fL(x1, · · · ,xk) =
∑k

i=1 f
L
i (xi).

2.2 Submodularity and Convexity

In this subsection, we give new analogs of Theorems 2.1 and 2.2 for the disjoint-pair Lovász
extension and the k-way Lovász extension. The major difference to existing results in the literature
is that we work with the restricted or the enlarged domain of a function.

Let’s first recall the standard concepts of submodularity:

(S1) A discrete function f : A → R is submodular if f(A)+f(B) ≥ f(A∪B)+f(A∩B), ∀A,B ∈ A,
where A ⊂ P(V ) is an algebra.

(S2) A continuous function F : Rn → R is submodular if F (x) +F (y) ≥ F (x∨ y) +F (x∧ y), where
(x ∨ y)i = max{xi, yi} and (x ∧ y)i = min{xi, yi}, i = 1, · · · , n. For a sublattice D ⊂ Rn that
is closed under ∨ and ∧, one can define submodularity in the same way.

Notification 2. All discussions about algebras of sets can be reduced to lattices. Classical submodular
functions on a sublattice of the Boolean lattice {0, 1}n and their continuous versions on Rn are
presented in (S1) and (S2), respectively, while bisubmodular functions on a sublattice of the lattice
{−1, 0, 1}n are defined in (12).

Now, we recall the concept of bisubmodularity and introduce its continuous version.

(BS1) A discrete function f : P2(V )→ R is bisubmodular if ∀ (A,B), (C,D) ∈ P2(V )

f(A,B) + f(C,D) ≥ f((A ∪ C) \ (B ∪D), (B ∪D) \ (A ∪ C)) + f(A ∩ C,B ∩D). (12)

One can denoteA∨B = ((A1∪B1)\(A2∪B2), (A2∪B2)\(A1∪B1)) andA∧B = (A1∩B1, A2∩B2),
where A = (A1, A2), B = (B1, B2). For a sublattice A ⊂ P2(V ) that is closed under ∨ and ∧,
the bisubmodularity of f : A → R can be expressed as f(A) + f(B) ≥ f(A ∨ B) + f(A ∧ B),
∀A,B ∈ A.

If we were to continue the definition of submodularity stated in (S2), we would obtain nothing
new. Hence, the proof of Theorem 2.2 cannot directly apply to our situation. To overcome this issue,
we need to provide a matched definition of bisubmodularity for functions on Rn, and an appropriate
and careful modification of the translation linearity condition.

(BS2) A continuous function F : Rn → R is bisubmodular if F (x)+F (y) ≥ F (x∨y)+F (x∧y), where

(x ∨ y)i =


max{xi, yi}, if xi, yi ≥ 0,

min{xi, yi}, if xi, yi ≤ 0,

0, if xiyi < 0,

(x ∧ y)i =


min{xi, yi}, if xi, yi ≥ 0,

max{xi, yi}, if xi, yi ≤ 0,

0, if xiyi < 0.

Proposition 2.7. A function F : RV → R is a disjoint-pair Lovász extension of a bisubmodular
function if and only if F is (continuously) bisubmodular (in the sense of (BS2)) and for any x ∈
RV , t ≥ 0,

10



F (tx) = tF (x) (positive homogeneity);

F (x+ t1V +,V −) ≥ F (x) + F (t1V +,V −) for some5 V ± ⊃ V ±(x) with V + ∪ V − = V .

Henceforth, 1A,B is defined as 1A − 1B for simplicity.

Proof. Take the discrete function f defined as f(A1, A2) = F (1A1,A2). One can check the bisub-
modularity of f directly. Fix an x ∈ Rn and let σ : V ∪ {0} → V ∪ {0} be a bijection such that
|xσ(1)| ≤ |xσ(2)| ≤ · · · ≤ |xσ(n)| and σ(0) = 0, where x0 := 0, and

V ±σ(i) = V ±σ(i)(x) := {j ∈ V : ±xj > |xσ(i)|}, i = 0, 1, · · · , n− 1.

Also, we denote xV +
σ(i)

,V −
σ(i)

= x ∗ 1V +
σ(i)
∪V −

σ(i)
(i.e., the restriction of x onto V +

σ(i) ∪ V
−
σ(i), with other

components 0), where x ∗ y := (x1y1, · · · , xnyn).
For simplicity, in the following formulas, we identify σ(i) with i for all i = 0, · · · , n.
It follows from |xi+1|1V +

i ,V
−
i

∨
xV +

i+1,V
−
i+1

= xV +
i ,V

−
i

and

|xi+1|1V +
i ,V

−
i

∧
xV +

i+1,V
−
i+1

= |xi+1|1V +
i+1,V

−
i+1

that

fL(x) =
n−1∑
i=0

(|xi+1| − |xi|)f(V +
i , V

−
i )

=
n−1∑
i=0

|xi+1|
(
f(V +

i , V
−
i )− f(V +

i+1, V
−
i+1)

)
=

n−1∑
i=0

{
F
(
|xi+1|1V +

i ,V
−
i

)
− F

(
|xi+1|1V +

i+1,V
−
i+1

)}
≥

n−1∑
i=0

{
F
(
xV +

i ,V
−
i

)
− F

(
xV +

i+1,V
−
i+1

)}
= F (x).

On the other hand,

fL(x) =
n−1∑
i=0

(|xi+1| − |xi|)f(V +
i , V

−
i ) =

n−1∑
i=0

F
(

(|xi+1| − |xi|)1V +
i ,V

−
i

)
=

n−2∑
i=0

{
F ((|xi+1| − |xi|)1V +

i ,V
−
i

)− F ((|xi+1| − |xi|)1V +,V −)
}

+

{
n−2∑
i=0

F ((|xi+1| − |xi|)1V +,V −)

}
+ F

(
(|xn| − |xn−1|)1V +

n−1,V
−
n−1

)
≤

n−2∑
i=0

{
F
(
xV +

i ,V
−
i
− |xi|1V +,V −

)
− F

(
xV +

i+1,V
−
i+1
− |xi+1|1V +,V − + (|xi+1| − |xi|)1V +,V −

)}
+

{
n−2∑
i=0

(|xi+1| − |xi|)F (1V +,V −)

}
+ F

(
(|xn| − |xn−1|)1V +

n−1,V
−
n−1

)
≤

n−2∑
i=0

(
F (xV +

i ,V
−
i
− |xi|1V +,V −)− F (xV +

i+1,V
−
i+1
− |xi+1|1V +,V −)

)
+ F

(
(|xn| − |xn−1|)1V +

n−1,V
−
n−1

)
= F (x)

according to (|xi+1| − |xi|)1V +,V −
∧

(xV +
i ,V

−
i
− |xi|1V +,V −) = (|xi+1| − |xi|)1V +

i ,V
−
i

and

(|xi+1| − |xi|)1V +,V −

∨
(xV +

i ,V
−
i
− |xi|1V +,V −) = xV +

i+1,V
−
i+1
− |xi+1|1V +,V − + (|xi+1| − |xi|)1V +,V −

5This is some kind of ‘translation linearity’ if we adopt the assumption F (x+ t1V +,V−) = F (x) + F (t1V +,V−).
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for i = 0, · · · , n− 2, as well as xV +
n−1,V

−
n−1
− |xn−1|1V +,V − = (|xn| − |xn−1|)1V +

n−1,V
−
n−1

. Therefore, we

have F (x) = fL(x). The proof is completed.

Proposition 2.8. A continuous function F is a disjoint-pair Lovász extension of some function
f : P2(V ) → R if and only if F (x ∨ c1V +,V −) + F (x − x ∨ c1V +,V −) = F (x) (or F (x ∧ c1V +,V −) +
F (x− x ∧ c1V +,V −) = F (x)), for some V ± ⊃ V ±(x) with V + ∪ V − = V , ∀c ≥ 0 and x ∈ Rn.

Proof. We only need to prove that the condition implies the absolutely comonotonic additivity of F ,
and then apply Proposition 2.4. Note that the property F (x∨ c1) + F (x− x∨ c1) = F (x) implies a
summation form of F which agrees with the form of the disjoint-pair Lovász extension. Then using
the absolutely comonotonic additivity, we get the desired result.

The k-way submodularity can be naturally defined as (S1) and (S2):

(KS) Given a tuple V = (V1, · · · , Vk) of finite sets and A ⊂ {(A1, · · · , Ak) : Ai ⊂ Vi, i = 1, · · · , k},
a discrete function f : A → R is k-way submodular if f(A) + f(B) ≥ f(A ∨ B) + f(A ∧ B),
∀A,B ∈ A, where A is a lattice under the corresponding lattice operations join ∨ and meet ∧
defined by A ∨B = (A1 ∪B1, · · · , Ak ∪Bk) and A ∧B = (A1 ∩B1, · · · , Ak ∩Bk).

Theorem 2.3. Under the assumptions and notations in (KS) above, DA is also closed under ∧ and
∨, with ∧ and ∨ as in (S2). Moreover, the following statements are equivalent:

a) f is k-way submodular on A;

b) the k-way Lovász extension fL is convex on each convex subset of DA;

c) the k-way Lovász extension fL is submodular on DA.

If one replaces (KS) and (S2) by (BS1) and (BS2) respectively for the bisubmodular setting, then
all the above results hold analogously.

Proof. Note that V t(x) ∨ V t(y) = V t(x ∨ y) and V t(x) ∧ V t(y) = V t(x ∧ y), where V t(x) :=
(V t(x1), · · · , V t(xk)), ∀t ∈ R. Since x ∈ DA if and only if V t(x) ∈ A, ∀t ∈ R, and A is a lattice,
DA must be a lattice that is closed under the operations ∧ and ∨. According to the k-way Lovász
extension (7), we may write

fL(x) =

∫ N

−N
f(V t(x))dt−Nf(V )

where N > 0 is a sufficiently large number6. Note that 1A ∨ 1B = 1A∨B and 1A ∧ 1B = 1A∧B.
Combining the above results, we immediately get

f(A) + f(B) ≥ f(A ∨B) + f(A ∧B) ⇔ fL(x) + fL(y) ≥ fL(x ∨ y) + fL(x ∧ y),

which proves (a) ⇔ (c). Note that for x ∈ DA, fL(x) =
∑

A∈C(x)

λAf(A) for a unique chain C(x) ⊂ A

that is determined by x only, and the extension f convex(x) := inf
{λA}A∈A∈Λ(x)

∑
A∈A

λAf(A) is convex on

each convex subset of DA, where Λ(x) := {{λA}A∈A ∈ RA :
∑
A∈A

λA1A = x, λA ≥ 0 whenever A 6=

V }. We only need to prove fL(x) = f convex(x) if and only if f is submodular. In fact, along a standard
idea proposed in Lovasz’s original paper [1], one could prove that for a (strictly) submodular function,
the set {A : λ∗A 6= 0} must be a chain, where

∑
A∈A

λ∗Af(A) = f convex(x) achieves the minimum over

Λ(x), and one can then easily check that it agrees with fL. The converse can be proved in a standard
way: f(A) + f(B) = fL(1A) + fL(1B) ≥ 2fL(1

2(1A + 1B)) = f(1A + 1B) = f(1A∨B + 1A∧B) =
f(1A∨B) + f(1A∧B) = f(A ∨B) + f(A ∧B). Now, the proof is completed.

For the bisubmodular case, the above reasoning can be repeated with minor differences.

6Here we set f(∅, · · · ,∅) = 0

12



3 Combinatorial and continuous optimization

As we have told in the introduction, the application of the Lovász extension to non-submodular
optimization meets with several difficulties, and in this section, we start attacking those. First, we
set up some useful results.

Notification 3. In this section, R≥0 := [0,∞) is the set of all non-negative numbers. We use fL

to denote the multi-way Lovász extension which can be either the original or the disjoint-pair or the
k-way Lovász extension.

Theorem 3.1. Given set functions f1, · · · , fn : A → R≥0, and a zero-homogeneous function H :
Rm≥0 \ {0} → R ∪ {+∞} with H(a+ b) ≥ min{H(a), H(b)}, ∀a, b ∈ Rm≥0 \ {0}, we have

min
A∈A′

H(f1(A), · · · , fn(A)) = inf
x∈D′

H(fL1 (x), · · · , fLn (x)), (13)

where A′ = {A ∈ A : (f1(A), · · · , fn(A)) ∈ Dom(H)}, D′ = {x ∈ DA ∩ RV≥0 : (fL1 (x), · · · , fLn (x)) ∈
Dom(H)} and Dom(H) = {a ∈ Rm≥0 \ {0} : H(a) ∈ R}.

Proof. By the property of H, ∀ti ≥ 0 , n ∈ N+, ai,j ≥ 0, i = 1, · · · ,m, j = 1, · · · , n,

H

(
m∑
i=1

tiai,1, · · · ,
m∑
i=1

tiai,n

)
= H

(
m∑
i=1

tia
i

)
≥ min

i=1,··· ,m
H(tia

i)

= min
i=1,··· ,m

H(ai) = min
i=1,··· ,m

H(ai,1, · · · , ai,n).

Therefore, in the case of the original Lovász extension, for any x ∈ D′,

H
(
fL1 (x), · · · , fLn (x)

)
(14)

=H

(∫ maxx

minx
f1(V t(x))dt+ f1(V (x)) minx, · · · ,

∫ maxx

minx
fn(V t(x))dt+ fn(V (x)) minx

)
=H

(
m∑
i=1

(ti − ti−1)f1(V ti−1(x), · · · ,
m∑
i=1

(ti − ti−1)fn(V ti−1(x))

)
≥ min

i=1,··· ,m
H
(
f1(V ti−1(x), · · · , fn(V ti−1(x))

)
≥ min

A∈A′
H(f1(A), · · · , fn(A)) (15)

= min
A∈A′

H(fL1 (1A), · · · , fLn (1A))

≥ inf
x∈D′

H(fL1 (x), · · · , fLn (x)). (16)

Combining (14) with (15), we have inf
x∈D′

H(fL1 (x), · · · , fLn (x)) ≥ min
A∈A′

H(f1(A), · · · , fn(A)), and then

together with (15) and (16), we get the reversed inequality. Hence, (13) is proved for the original
Lovász extension fL. For multi-way settings, the proof is similar.

Remark 1. Duality: If one replaces H(a+ b) ≥ min{H(a), H(b)} by H(a+ b) ≤ max{H(a), H(b)},
then

max
A∈A′

H(f1(A), · · · , fn(A)) = sup
x∈D′

H(fL1 (x), · · · , fLn (x)). (17)

The proof of identity (17) is similar to that of (13), and thus we omit it.

Remark 2. A function H : [0,+∞)n → R has the (MIN) property if

H

(
m∑
i=1

tia
i

)
≥ min

i=1,··· ,m
H(ai), ∀ti > 0 ,m ∈ N+, ai ∈ [0,+∞)n.

The (MAX) property is formulated analogously.
We can verify that the (MIN) property is equivalent to the zero-homogeneity and H(x + y) ≥

min{H(x), H(y)}. A similar correspondence holds for the (MAX) property.
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Remark 3. Theorem 3.1 shows if H has the (MIN) or (MAX) property, then a corresponding
combinatorial optimization is equivalent to a continuous optimization by means of the multi-way
Lovász extension.

Taking n = 2 and H(f1, f2) = f1

f2
in Theorem 3.1, then such an H satisfies both (MIN) and

(MAX) properties. So, we get

min
A∈A′

f1(A)

f2(A)
= inf

ψ∈D′
fL1 (ψ)

fL2 (ψ)
, and max

A∈A′
f1(A)

f2(A)
= sup

ψ∈D′

fL1 (ψ)

fL2 (ψ)
.

In fact, we can get more:

Proposition 3.1. Given two set functions f, g : A → [0,+∞), let f̃, g̃ : DA → R satisfy f̃ ≥ fL,
g̃ ≤ gL, f̃(1A) = f(A) and g̃(1A) = g(A). Then

min
A∈A∩supp(g)

f(A)

g(A)
= inf

ψ∈DA∩supp(g̃)

f̃(ψ)

g̃(ψ)
.

If we replace the condition f̃ ≥ fL and g̃ ≤ gL by f̃ ≤ fL and g̃ ≥ gL, then

max
A∈A∩supp(g)

f(A)

g(A)
= sup

ψ∈DA∩supp(g̃)

f̃(ψ)

g̃(ψ)
.

If ρ : [0,∞)→ [0,∞) is a homeomorphism, then f̃ := ρ−1((ρ ◦ f)L) and g̃ := ρ−1((ρ ◦ g)L) satisfy
the above two identities.

Proof. It is obvious that

inf
ψ∈DA∩supp(g̃)

f̃(ψ)

g̃(ψ)
≤ min

A∈A∩supp(g)

f̃(1A)

g̃(1A)
= min

A∈A∩supp(g)

f(A)

g(A)
.

On the other hand, for any ψ ∈ DA ∩ supp(g̃), gL(ψ) ≥ g̃(ψ) > 0. Hence, there exists t ∈ (min β̃ψ −
1,max β̃ψ+ 1) satisfying g(V t(ψ)) > 0. Here β̃ψ = ψ (resp., |ψ|), if fL represents either the original
or the k-way Lovasz extension of f (resp., either the disjoint-pair or the k-way disjoint-pair Lovasz
extension). So, the set W (ψ) := {t ∈ R : g(V t(ψ)) > 0} is nonempty. Since {V t(ψ) : t ∈ W (ψ)}
is finite, there exists t0 ∈ W (ψ) such that f(V t0 (ψ))

g(V t0 (ψ))
= min

t∈W (ψ)

f(V t(ψ))
g(V t(ψ)) . Accordingly, f(V t(ψ)) ≥

f(V t0 (ψ))
g(V t0 (ψ))

g(V t(ψ)) for any t ∈W (ψ), and thus

f(V t(ψ)) ≥ Cg(V t(ψ)), with C = min
t∈W (ψ)

f(V t(ψ))

g(V t(ψ))
≥ 0,

holds for any t ∈ R (because g(V t(ψ)) = 0 for t ∈ R \W (ψ) which means that the above inequality
automatically holds). Consequently,

f̃(ψ) ≥ fL(ψ)

=

∫ max β̃ψ

min β̃ψ
f(V t(ψ))dt+ f(V (ψ)) min β̃ψ

≥C
∫ max β̃ψ

min β̃ψ
g(V t(ψ))dt+ g(V (ψ)) min β̃ψ.

=CgL(ψ) ≥ Cg̃(ψ).

It follows that
f̃(ψ)

g̃(ψ)
≥ C ≥ min

A∈A∩supp(g)

f(A)

g(A)

and thus the proof is completed. The dual case is similar.
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For a homeomorphism ρ : [0,∞)→ [0,∞),

min
A∈A

f(A)

g(A)
= min

A∈A

ρ−1 ◦ ρ ◦ f(A)

ρ−1 ◦ ρ ◦ g(A)
= ρ−1

(
min
A∈A

ρ ◦ f(A)

ρ ◦ g(A)

)
= ρ−1

(
inf

ψ∈DA

(ρ ◦ f)L(ψ)

(ρ ◦ g)L(ψ)

)
= inf

ψ∈DA

ρ−1(ρ ◦ f)L(ψ)

ρ−1(ρ ◦ g)L(ψ)
.

This completes the proof.

Similarly, we have:

Proposition 3.2. Let f, g : A → [0,+∞) be two set functions and f := f1 − f2 and g := g1 − g2 be
decompositions of differences of submodular functions.

Let f̃2, g̃1 be the restriction of positively one-homogeneous convex functions onto DA, with f1(A) =
f̃1(1A) and g2(A) = g̃2(1A). Define f̃ = fL1 − f̃2 and g̃ = g̃1 − gL2 . Then,

min
A∈A∩supp(g)

f(A)

g(A)
= min
x∈DA∩supp(g̃)

f̃(x)

g̃(x)
.

Remark 4. Hirai et al introduce the generalized Lovász extension of f : L → R on a graded set L
(see [39, 40]). Since fL(x) =

∑
i λif(pi) for x =

∑
i λipi lying in the orthoscheme complex K(L),

the same results as stated in Theorem 3.1 and Proposition 3.1 hold for such a generalized Lovász
extension fL.

3.1 A relaxation of a Dinkelbach-type scheme

We would like to establish an iteration framework for finding minimum and maximum eigenvalues.
These extremal eigenvalues play significant roles in optimization theory. They can be found via the
so-called Dinkelbach iterative scheme [18]. This will provide a good starting point for an appropriate
iterative algorithm for the resulting fractional programming. Actually, the equivalent continuous
optimization has a fractional form, but such kind of fractions have been hardly touched in the field
of fractional programming [19], where optimizing the ratio of a concave function to a convex one is
usually considered. For convenience, we shall work in a normed space X in this subsection.

For a convex function F : X → R, its sub-gradient (or sub-derivative) ∇F (x) is defined as the
collection of u ∈ X∗ satisfying F (y) − F (x) ≥ 〈u, y − x〉, ∀y ∈ X, where X∗ is the dual of X and
〈u, y − x〉 is the action of u on y − x. The concept of a sub-gradient has been extended to Lipschitz
functions. This is called the Clarke derivative [5]:

∇F (x) =

{
u ∈ X∗

∣∣∣∣∣ lim sup
y→x,t→0+

F (y + th)− F (y)

t
≥ 〈u,h〉,∀h ∈ X

}
.

And it can even be generalized to the class of lower semi-continuous functions [11,12].

Theorem 3.2 (Global convergence of a Dinkelbach-type scheme). Let S be a compact set and let
F,G : S → R be two continuous functions with G(x) > 0, ∀x ∈ S. Then the sequence {rk} generated
by the two-step iterative scheme

xk+1 = arg opti
x∈S

{F (x)− rkG(x)}, (18)

rk+1 =
F (xk+1)

G(xk+1)
, (19)

from any initial point x0 ∈ S, converges monotonically to a global optimum of F (·)/G(·), where ‘opti’
is ‘min’ or ‘max’.

Corollary 3.1. If F/G is a zero-homogeneous continuous function, then the iterative scheme (18)(19)
from any initial point x0 converges monotonically to a global optimum on the cone spanned by S (i.e.,
{tx : t > 0,x ∈ S}).
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We note that Theorem 3.2 generalizes Theorem 3.1 in [7] and Theorem 2 in [10]. Since it is a
Dinkelbach-type iterative algorithm in the field of fractional programming, we omit the proof.

Many minimization problems in the field of fractional programming possess the form

min
convex F

concave G
,

which is not necessary to be convex programming. The original Dinkelbach iterative scheme turns
the ratio form to the inner problem (18) with the form like

min (convex F − concave G̃),

which is indeed a convex programming problem. However, most of our examples are in the form

min
convex F

convex G
,

i.e., both the numerator and the denominator of the fractional object function are convex. Since the
difference of two convex functions may not be convex, the inner problem (18) is no longer a convex
optimization and hence might be very difficult to solve.

In other practical applications, we may encounter optimization problems of the form

min
convex F1 − convex F2

convex G1 − convex G2
.

This is NP-hard in general. Fortunately, we can construct an effective relaxation of (18).
The starting point of the relaxation step is the following fact:

Proposition 3.3. For any function f : A → R, there are two submodular functions f1 and f2 on A
such that f = f1 − f2.

Proof. Taking g to be a strict submodular function and letting

δ = min
A,A′∈A

(
g(A) + g(A′)− g(A ∨A′)− g(A ∧A′)

)
> 0.

Set f2 = Cg and f1 = f + f2 for a sufficiently large C > 0. It is clear that f2 is strict submodular
and f1 is submodular. So, f = f1 − f2, which completes the proof.

Thanks to Proposition 3.3, any discrete function can be expressed as the difference of two sub-
modular functions. Since the Lovász extension of a submodular function is convex, every Lovász
extension function is the difference of two convex functions.

Now, we begin to establish a method based on convex programming for solving min F (x)
G(x) with

F = F1 − F2 and G = G1 − G2 being two nonnegative functions, where F1, F2, G1, G2 are four
nonnegative convex functions on X. Let {Hy(x) : y ∈ X} be a family of convex differentiable
functions on X with Hy(x) ≥ Hy(y), ∀x ∈ X. Consider the following three-step iterative scheme

xk+1 ∈ arg min
x∈B

{F1(x) + rkG2(x)− (〈uk,x〉+ rk〈vk,x〉) +Hxk(x)}, (20a)

rk+1 = F (xk+1)/G(xk+1), (20b)

uk+1 ∈ ∇F2(xk+1), vk+1 ∈ ∇G1(xk+1), (20c)

where B is a convex body containing 0 as its inner point. Such a scheme mixing the inverse power
(IP) method and steepest decent (SD) method can be well used in computing special eigenpairs of
(F,G). Note that the inner problem (20a) is a convex optimization and thus many algorithms in
convex programming are applicable.

Theorem 3.3 (Local convergence for a mixed IP-SD scheme). The sequence {rk} generated by the
iterative scheme (20) from any initial point x0 ∈ supp(G)∩B converges monotonically, where supp(G)
is the support of G.

If X is further assumed to be finite-dimensional, F1 and G2 are p-homogeneous with p ≥ 1, then
the limit limk→+∞ r

k is an eigenvalue of (F,G).
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Theorem 3.3 partially generalize Theorem 3.4 in [7], Theorem 6 in [8] and the first part of Theorem
3 in [10]. It is indeed an extension of both the IP and the SD method [3, 4, 16].

Proof of Theorem 3.3. It will be helpful to divide this proof into several parts and steps:

Step 1. We may assume G(xk) > 0 for any k. In fact, the initial point x0 satisfies G(x0) > 0. We will
show F (x1) = 0 if G(x1) = 0 and thus the iteration should be terminated at x1. This tells us
that we may assume G(xk) > 0 for all k before the termination of the iteration.

Note that

F1(x1) + r0G2(x1)− (〈u0,x1〉+ r0〈v0,x1〉) +Hx0(x1)

≤ F1(x0) + r0G2(x0)− (〈u0,x0〉+ r0〈v0,x0〉) +Hx0(x0),

which implies

F1(x1)− F1(x0) + r0(G2(x1)−G2(x0)) +Hx0(x1)−Hx0(x0)

≤ 〈u0,x1 − x0〉+ r0〈v0,x1 − x0〉 ≤ F2(x1)− F2(x0) + r0(G1(x1)−G1(x0)),

i.e.,

F (x1)− F (x0) +Hx0(x1)−Hx0(x0) ≤ r0(G(x1)−G(x0)) (21)

= −r0G(x0) = −F (x0).

Since the equality holds, we have F (x1) = 0, Hx0(x1) = Hx0(x0), 〈u0,x1 − x0〉 = F2(x1) −
F2(x0) and 〈v0,x1 − x0〉 = G1(x1)−G1(x0). So this step is finished.

Step 2. {rk}∞k=1 is monotonically decreasing and hence convergent.

Similar to (21) in Step 1, we can arrive at

F (xk+1)− F (xk) +Hxk(xk+1)−Hxk(xk) ≤ rk(G(xk+1)−G(xk)),

which leads to
F (xk+1) ≤ rkG(xk+1).

Since G(xk+1) is assumed to be positive, rk+1 = F (xk+1)/G(xk+1) ≤ rk. Thus, there exists
r∗ ∈ [rmin, r

0] such that lim
k→+∞

rk = r∗.

In the sequel, we assume that the dimension of X is finite.

Step 3. {xk}, {uk} and {vk} are sequentially compact.

In this setting, B must be compact. In consequence, there exist ki, r
∗, x∗, x∗∗, u∗ and v∗ such

that xki → x∗, xki+1 → x∗∗, uki → u∗ and vki → v∗, as i→ +∞.

Step 4. x∗ is a minimum of F1(x) + r∗G2(x)− (〈u∗,x〉+ r∗〈v∗,x〉) +Hx∗(x) on B.

Let g(r, y,u, v) = min
x∈B
{F1(x) + rG2(x) − (〈u,x〉 + r〈v,x〉) + Hy(x)}. It is standard to verify

that g(r, y,u, v) is continuous on R1 ×X ×X∗ ×X∗ according to the compactness of B.

Since g(rki ,xki ,uki , vki) = rki+1, taking i→ +∞, one obtains g(r∗,x∗,u∗, v∗) = r∗.

By Step 3, x∗∗ attains the minimum of F1(x) + r∗G2(x)− (〈u∗,x〉+ r∗〈v∗,x〉) +Hx∗(x) on B.
Suppose the contrary, that x∗ is not a minimum of F1(x) + r∗G2(x) − (〈u∗,x〉 + r∗〈v∗,x〉) +
Hx∗(x) on B. Then

F1(x∗∗) + r∗G2(x∗∗)− (〈u∗,x∗∗〉+ r∗〈v∗,x∗∗〉) +Hx∗(x
∗∗)

< F1(x∗) + r∗G2(x∗)− (〈u∗,x∗〉+ r∗〈v∗,x∗〉) +Hx∗(x
∗),

and thus F (x∗∗) < r∗G(x∗∗) (similar to Step 1), which impliesG(x∗∗) > 0 and F (x∗∗)/G(x∗∗) <
r∗. This is a contradiction. Consequently, x∗ is a minimizer of F1(x) + r∗G2(x) − (〈u∗,x〉 +
r∗〈v∗,x〉) +Hx∗(x) on B.
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Step 5. F1(x) + r∗G2(x)− (〈u∗,x〉+ r∗〈v∗,x〉) ≥ 0, ∀x ∈ B, and the equality holds when x = x∗.

In fact, a small modification of Step 4 shows that x∗ is also a minimizer of F1(x) + r∗G2(x)−
(〈u∗,x〉+ r∗〈v∗,x〉) on B, and the minimum value is 0.

We now add the further assumption that F1 and G2 are p-homogeneous with p ≥ 1.

Step 6. (r∗,x∗) is an eigenpair.

Since B contains 0 as its inner point, we have {αx : x ∈ B, α ≥ 1} = X. Keeping α ≥ 1 and
p ≥ 1 in mind, for any α ≥ 1 and x ∈ B,

F1(αx) + r∗G2(αx)− (〈u∗, αx〉+ r∗〈v∗, αx〉)
= α (F1(x) + r∗G2(x)− (〈u∗,x〉+ r∗〈v∗,x〉)) + (αp − α)(F1(x) + r∗G2(x))

(by Step 5) ≥ (αp − α)(F1(x) + r∗G2(x)) ≥ 0.

Consequently, x∗ is a minimizer of F1(x) + r∗G2(x)− (〈u∗,x〉+ r∗〈v∗,x〉) on X, and thus

0 ∈ ∇|x=x∗ (F1(x) + r∗G2(x)− (〈u∗,x〉+ r∗〈v∗,x〉))
= ∇F1(x∗) + r∗∇G2(x∗)− u∗ − r∗v∗

⊂ ∇F1(x∗)−∇F2(x∗) + r∗∇G2(x∗)− r∗∇G1(x∗)

= ∇F (x∗)− r∗∇G(x∗),

which implies that (r∗,x∗) is an eigenpair of (F,G).

Another solver for the continuous optimization min F (x)
G(x) is the stochastic subgradient method:

xk+1 = xk − αk(yk + ξk), yk ∈ ∇F (xk)

G(xk)
,

where {αk}k≥1 is a step-size sequence and {ξk}k≥1 is now a sequence of random variables (the “noise”)
on some probability space. Theorem 4.2 in [44] shows that under some natural assumptions, almost
surely, every limit point of the stochastic subgradient iterates {xk}k≥1 is critical for F/G, and the
function values {FG(xk)}k≥1 converge.

4 Discrete Morse theory and its Lovász extension

Morse theory [20, 21] enables us to analyze the topology of an object M by studying functions
f : M → R. In the classical case, M is a manifold and f is generic and differentiable. There are,
however, many extensions of Morse theory in modern mathematics that do not require a smooth
structure, such as the metric and topological Morse theory by the Italian school [11–14], the PS
(piecewise smooth) or stratified Morse theory by Thom, Goresky and MacPherson [51], the PL
Morse theory by Banchoff [45], Kühnel [47, 48] and the Berlin school, as well as the discrete Morse
theory by Forman [36,37].

In all such cases, a typical function f on M will reflect the topology quite directly, allowing one
to find CW structures on M and to obtain information about their homology. The following results
embody the abstract content of Morse theory, and they hold in continuous as well as in discrete cases.

Morse fundamental theorem. If f has ni critical points of index i, i = 0, 1, · · · , d, then M is
homotopy equivalent to a cell complex (called Morse complex) with ni cells of dimension i. One can
write it as

M ' cell complex with ni cells of dim i
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Morse relation. Denote by P (X,A)(·) the Poincare polynomial7 of the pair of topological spaces
(X,A) over a given field F, where X ⊃ A. Then∑

a<f(x)<b

P ({f ≤ f(x)}, {f ≤ f(x)} \ {x})(t) = P ({f < b}, {f ≤ a})(t) + (1 + t)Q(t)

where a < b, Q(·) is a polynomial with nonnegative coefficients.
The main aim of this section is to study the Lovász extension of a discrete Morse function on

a simplicial complex, and to provide equivalences between discrete Morse theory and its Lovász
extension.

For this purpose, we first clarify the notions and concepts and summarize the various Morse
theories mentioned above.

- Metric Morse theory: Let M be a metric space and F a continuous function on M . For a
point a ∈M , there exists ε ≥ 0 such that there exist δ > 0 and a continuous map

H : Bδ(a)× [0, δ]→M

satisfying
F (H(x, t)) ≤ F (x)− εt, dist(H(x, t),x) ≤ t

for any x ∈ Bδ(a) and t ∈ [0, δ]. The weak slope [12–14] denoted by |dF |(a) is defined as the
supremum of such ε above. A point a is called a critical point of F on M , if it has vanishing
weak slope, i.e., |dF |(a) = 0.

The local behaviour of F near a is described by the so-called critical group Cq(F,a) := Hq({F ≤
c}∩Ua, {F ≤ c}∩Ua\{a}), q ∈ Z, where H∗(·, ·) is the singular relative homology. So the Morse
polynomial p(F,a)(t) :=

∑d
q=0 rankCq(F,a)tq can be defined. If Cq(F,a) is non-vanishing, then

we say q is an index of a metric critical point a, and the number p(F,a)(1) is called the total
multiplicity of a.

- Topological Morse theory: Let M be a topological space and F a continuous function on M .
A point a ∈M is a Morse regular point of F if there exist a neighborhood U and a continuous
map

H : U × [0, 1]→M, H(x, 0) = x

satisfying
F (H(x, t)) < F (x),

for any x ∈ U and t > 0. We say a is a Morse critical point of F on M if it is not Morse regular.
The index with multiplicity of a critical point is same as in the metric setting above [11].

A symmetric homological critical value [49] of F is a real number c for which there exists an
integer such that for all sufficiently small ε > 0, the map Hk({F ≤ c− ε}) ↪→ Hk({F ≤ c+ ε})
induced by inclusion is not an isomorphism [50]. Here Hk denotes the k-th singular homology
(possibly with coefficients in a field).

A real number c is a homological regular value of the function F if there exists ε > 0 such that for
each pair of real numbers t1 < t2 on the interval (c−ε, c+ε), the inclusion {F ≤ t1} ↪→ {F ≤ t2}
induces isomorphisms on all homology groups [50]. A real number that is not a homological
regular value of F is called a homological critical value of F .

- Piecewise-Linear Morse theory: Similar to the smooth setting, the PL (piecewise linear)
Morse theory introduced by Banchoff requires working with a combinatorial manifold which
is both a PL manifold and a simplicial complex. Here we will use the notions developed by
Kühnel [47] and later by Edelsbrunner [48].

Denote by star−(v) the subset of the star of v on which the PL function F takes values not
greater than F (v). Similarly, one can define link−(v).

Let M be a combinatorial manifold, and let F be a PL (piecewise linear) function on M .

7Formally, P (X,A)(t) :=
∑
n≥0 rankHn(X,A)tn, where Hn(X,A) is the relative cohomology of the pair (X,A).
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Definition 4.1 (Kühnel [47]). A vertex v of M is said to be a PL critical point of F with
index i and multiplicity ki if βi(star−(v), link−(v)) = ki, where βi is the i-th Betti number of
the relative homology group.

Equivalently, let β′j be the rank of the reduced j-th homology group of link−(v). Using this
notation, we have

Definition 4.2 (Edelsbrunner [48]). A vertex v is a PL critical point of F with index i and
multiplicity ki if β′i−1 = ki.

Clearly, a PL critical point may have many indices and multiplicities. A vertex v is called
non-degenerate critical if its total multiplicity

∑d
i=0 ki is equal to 1. The PL function F is

called a PL Morse function if all critical vertices are non-degenerate.

- Discrete Morse theory: A discrete Morse function on an abstract simplicial complex (V,K)
is a function f : K → R satisfying for any p-dimensional simplex σ ∈ Kp, #U(σ) ≤ 1 and
#L(σ) ≤ 1, where

U(σ) := {τp+1 ⊃ σ : f(τ) ≤ f(σ)} and L(σ) := {νp−1 ⊂ σ : f(ν) ≥ f(σ)}.

Definition 4.3 (Forman [36,37]). We say that σ ∈ Kp is a critical point of f on K if #U(σ) = 0
and #L(σ) = 0. The index of a critical point σ is defined to be dimσ.

The main results in this section can be summarized by:

Discrete Morse data of a

typical discrete Morse function f

on a finite simplicial complex K

Continuous Morse data of the

Lovász extension fL

restricted on a suitable domain

equivalent

While the discrete Morse data are taken here in the sense of Forman, the continuous Morse data
can be in the metric, topological or PL category as described above.

Precise statements are presented in the following subsection.

4.1 Relations between discrete Morse theory and its continuous extension

A finite simplicial complex K with vertex set V can be the power set P(V ). But this case is
trivial. For simplicity, we always assume {{i} : i ∈ V } ⊂ K $ P(V ) in this section.

Definition 4.4. The order complex of K is defined by

SK := {C ⊂ K : C is a chain},

where C is a chain if for any σ1, σ2 ∈ C, either σ1 ⊂ σ2 or σ2 ⊂ σ1. It is clear that SK is a simplicial
complex with the vertex set K. Define the special geometric realization of SK by

|SK| =
⋃
C∈SK

conv(1σ : σ ∈ C).

Fact: For any function f : K → R, the feasible domain DK of its Lovász extension fL is
⋃
t≥0

t|SK|. It

means that the Lovász extension fL is well-defined on |SK|.
Observation:

|SK| = DK ∩ S∞ =
⋃

maximal chain C⊂K
conv(1σ : σ ∈ C),

where S∞ = {x ∈ Rn : ‖x‖∞ = 1} is the unit l∞-sphere. Maximal chains from K have a one-to-one
correspondence with facets of |SK|.

Lemma 4.1. Given a discrete Morse function f on a finite simplicial complex K, we have:
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(1) If σ is critical, then f(τ) > f(σ) > f(ν), whenever τ ⊃ σ ⊃ ν.

(2) If f is an injective Morse function and (σ, τ) is a regular pair (i.e., σ ⊂ τ with dim τ = dimσ+1
and f(σ) > f(τ)), then

(2.1) for all τ ′ ⊃ σ with τ ′ 6⊃ τ \ σ, f(τ ′) > f(σ);

(2.2) for any σ′ ⊂ τ with σ′ ⊃ τ \ σ, f(σ′) < f(τ);

(2.3) for each σ′′ ⊂ σ, f(σ′′) < f(σ).

Proof of Lemma 4.1. Let c = f(σ). Note that f(νp−1) < c for all νp−1 ⊂ σ. If there exists νp−2 ⊂ σ
such that f(νp−2) ≥ c, then f(νp−2) ≥ f(σ) > f(νp−1) for all νp−1 ⊃ νp−2 with νp−1 ⊂ σ. Since
there are two νp−1 in σ containing νp−2, this is not compatible with the definition of a discrete Morse
function. In this way, we can prove by induction on the dimension of faces of σ that every face ν ⊂ σ
satisfies f(ν) < c.

The other proofs are similar.

Notification 4. We use ∼= and ' to express homeomorphism equivalence and homotopy equivalence,
respectively. The link and star of some σ ∈ K will be taken on SK. The operation ∗ is the geometric
join operator.

Lemma 4.2. Given an injective Morse function, we have:

link−(σ) '

{
Sdimσ−1, if σ is critical,

pt, if σ is regular.

Proof. The link of σ in the order complex |SK| is the geometric join of

S−(1σ) :=
⋃

chain C⊂P(σ)\{σ}

conv(1ν : ν ∈ C) ∼= Sdimσ−1

and ⋃
chain C⊂{τ∈K|τ%σ }

conv(1τ : τ ∈ C).

According to Lemma 4.1 and the definition of link−(σ), we obtain that if σ is critical, then

link−(σ) := link−(1σ) = S−(1σ) ∼= Sdimσ−1.

If (σ, τ) is a regular pair, we note that link−(σ) is the join of S−(1σ) and⋃
chain C∈[σ,τ ]f

conv(1τ ′ : τ ′ ∈ C) ' 1τ ,

where [σ, τ ]f := {τ ′ ⊃ τ : f(τ ′) < f(σ)}. That means, link−(σ) ' Sdimσ−1 ∗ 1τ ∼= Bdimσ ' pt.
Similarly, one can check that link−(τ) ∼= Bdim τ−1 ' pt. The proof is completed.

Lemma 4.3 (Kühnel [46]). Given a PL function fPL on a simplicial complex |K|, then the induced
subcomplex of K on {v ∈ K0 : fPL(v) ≤ t} is homotopic to the sublevel set {fPL ≤ t}.

Lemma 4.4. Given an injective Morse function, denote by ε0 = min{|f(σ)− f(σ′)| : σ 6= σ′} > 0.
If σ is critical, then

|SK| ∩ {fL ≤ t} ∩ B1σ '

{
Sdimσ−1, if f(σ)− ε0 < t < f(σ),

Bdimσ, if f(σ) ≤ t < f(σ) + ε0.

And 1σ is a topological/metric critical point of fL||SK|, and f(σ) is a (symmetric) homological critical
value.
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Proof. Denote by

|Sσ| =
⋃

maximal chain C⊂P(σ)

conv(1ν : ν ∈ C).

Then it can be checked that |Sσ| is homeomorphism to the closed geometric simplex |σ| in |K|, and
thus it is homotopic to the disc Bdimσ. Hence, |Sσ| ∩ B1σ ∩ {f

L < t} is homotopic to Sdimσ−1.
Together with the piecewise linearity of fL, one gets that |SK| ∩ B1σ ∩ {f

L < t} is homotopic to
|Sσ| ∩ B1σ ∩ {f

L < t} and thus the proof is completed.
For more details, we may apply Lemma 4.3 to fL on |SK|. Then we only need to check the

homotopy type of star−(σ) in |SK| for t ≥ f(σ) and link−(σ) for t < f(σ). According to Lemma 4.1
and similar to the proof of Lemma 4.2, we obtain that for a critical point σ, star−(σ) is⋃

chain C⊂P(σ)

conv(1ν : ν ∈ C) ∼= Bdimσ,

and link−(σ) ∼= Sdimσ−1. The proof is completed.

Lemma 4.5. If (σ, τ) is a regular pair, then
∣∣dfL||SK|∣∣ (1σ) > 0 and

∣∣dfL||SK|∣∣ (1τ ) > 0.

Proof. By the definition of weak slope, we should construct a locally decreasing flow from a neigh-
borhood of 1σ to a neighborhood of 1τ .

Case 1. Locally decreasing flow near 1σ: For any chain containing the pair (σ, τ), consider the
decreasing vector

−−→
1σ1τ . Then with the help of Lemma 4.1 (2), the neighborhood of 1σ on

|SK| can be decreased uniformly along the direction
−−→
1σ1τ with a small modification. Slight

perturbations and concrete approximations in the construction of the locally decreasing flow
are necessary, but we omit the tedious and elementary process.

Case 2. Locally decreasing flow near 1τ : The construction depends on Lemma 4.1 (2), as in Case 1.

By the deformation lemma, 1σ is Morse regular, and by the piecewise linearity of fL, 1σ is not a
critical point in the sense of weak slope. Moreover, points on |SK| other than vertices of |SK| cannot
be critical points of fL if f is injective.

Theorem 4.1. Given a finite simplicial complex with vertex set V and face set K, let f : K → R be
a discrete Morse function.

If σ is a critical point of f , then 1σ is a critical point of fL||SK| with the same index in the sense
of topological/metric/PL critical point theory, and the converse holds if f is further assumed to be
injective.

Proof. The proof is a combination of Lemmas 4.2, 4.4 and 4.5.

Definition 4.5. If a generic discrete Morse function f : K → R has ni critical points of index i, we
say that K has discrete Morse vector c = (n0, n1, · · · , nd). Similarly, for a generic Lipschitz function
on a piecewise flat metric space M having ni critical points of index i, we say that M has Morse
vector c = (n0, n1, · · · , nd).

Now we verify that the discrete Morse structure on a simplicial complex is equivalent to the
continuous Morse structure on the restricted domain of its Lovász extension. The key idea is to
translate it into PL Morse theory by barycentric subdivision. This discovers the relation between
the discrete Morse vectors of K and the Morse vectors of |SK|. Such a result is relevant for the main
results in [34], but we develop it here in a wider context.

Theorem 4.2. Given a finite simplicial complex with vertex set V and face set K, let f : K → R be
an injective discrete Morse function. Then the discrete Morse vector of f agrees with the continuous
Morse vector of fL||SK|.
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Proof. It can be checked that the simplicial complex (K, SK) is simplicially equivalent to the simplicial
complex obtained by the barycentric subdivision of (V,K):

(K, SK) ks
simplicially

equivalent
+3 sd(V,K)+3ks

where sd(V,K) is the barycentric subdivision of the complex (V,K). Here two complexes are called
simplicially equivalent (or combinatorial equivalent) if their face posets8 are isomorphic as posets.

Thus, one may redefine a discrete function f̂ on the vertex set of the barycentric subdivision

f̂ : V(sd(K))→ R f : K → R
equivalent

via f̂(vσ) = f(σ), ∀σ ∈ K, where V(sd(K)) is the vertex set of sd(K).
Then the Lovász extension fL is piecewise-linearly equivalent to the piecewise linear extension

f̂PL defined by

f̂PL(
∑
v∈F

tvv) =
∑
v∈F

tvf̂(v)

for any face F of the refined barycentric complex and any tv ≥ 0 with
∑

v∈F tv = 1. Combining the
above observations, we get the following commutative diagram:

f ks +3

Lovász extension
��

f̂+3ks

PL extension
��

fL||SK| ks PL equivalent
+3 f̂PL+3ks

from which we derive that the Morse data of fL||SK| and f̂PL are entirely equivalent, and furthermore,
the (continuous) Morse structures of |SK| and |sd(K)| essentially agree with each other.

It is clear that {fL||SK| ≤ t} is homeomorphic to {f̂PL ≤ t}. Applying Lemma 4.3, {f̂PL ≤ t} is

homotopic to the induced subcomplex on the sublevel set {f̂ ≤ t}. Note that the level subcomplex
induced by {f ≤ t} could collapse onto the induced subcomplex on the sublevel set {f̂ ≤ t}. So we
have

|K({f ≤ t})| ' |SdK({f̂ ≤ t})| ' {f̂PL ≤ t} ∼= {fL||SK| ≤ t}

and thus the statement is proved.

Theorems 4.1 and 4.2 establish a correspondence between the geometric data of a discrete Morse
function and the geometric information of its Lovász extension.

We shall now introduce the concept of a category in the sense of critical point theory on an
abstract simplicial complex (V,K) at level m. We recall the classical Lusternik-Schnirelman category

cat(S) := min{k ∈ N+ : ∃k + 1 contractible sets U0, U1, · · · , Uk with ∪ki=0 Ui ⊃ S},

where we call Ui contractible if the inclusion map Ui ↪→ |SK| is null-homotopic. We then put

Catm(K) = {L ⊂ K : cat(|SK(L)|) ≥ m}

where SK(L) is the induced subcomplex of SK on L. Note that this is a family of subsets of P(K)
(not P(V )!). Similarly,

Catm(|SK|) = {S ⊂ |SK| : cat(S) ≥ m}

We are now ready to establish a Lusternik-Schnirelman category theorem relating a discrete Morse
function and its Lovász extension:

8The face poset of a complex is the set of all of its simplices, ordered by inclusion.
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Theorem 4.3 (L-S category theorem for a discrete Morse function and its Lovász extension). Let
f : K → R be an injective discrete Morse function. Then we have a sequence of critical values:

min
L∈Catm(K)

max
σ∈L

f(σ) = inf
S∈Catm(|SK|)

sup
x∈S

fL(x), m = 0, 1, · · · , dimK.

Proof. For any S ∈ Catm(|SK|), fL achieves a maximum on S at some point s, that is, fL(s) =
sup
x∈S

fL(x). If s does not belong to the vertex set of |SK|, then s is not an inner point of S according

to the definition of fL. So s ∈ ∂S \Vertex(|SK|), and thus we can take a small perturbation S′ of S
such that S′ ∈ Catm(|SK|) and sup fL(S′) < f(s) = sup fL(S). Therefore, we only need to consider
such S with the property that maxx∈S f

L(x) is achieved at some vertex points of |SK|. For such S,
there exists v ∈ S satisfying fL(v) ≥ fL(x), ∀x ∈ S. Consider the sublevel set {fL ≤ f(v)}. It is
clear that cat({fL ≤ f(v)}) ≥ cat(S) ≥ m and max fL({fL ≤ f(v)}) = f(v) = max fL(S).

Claim. cat({fL ≤ a}) = cat(SK|{σ∈K:f(σ)≤a}), where SK|{σ∈K:f(σ)≤a} is the induced closed
subcomplex of SK on the vertices {σ ∈ K : f(σ) ≤ a} of SK.

Proof. In fact, by Lemma 4.3, there is a homotopy equivalence between {fL ≤ a} and SK|{σ∈K:f(σ)≤a}.

By the above claim, we establish the following identities

inf
S∈Catm(|SK|)

sup
x∈S

fL(x) = inf
a∈R s.t. {fL≤a}∈Catm(|SK|)

sup
x∈{fL≤a}

fL(x)

= min
a∈R s.t. SK|{σ∈K:f(σ)≤a}∈Catm(K)

max
σ∈SK|{σ∈K:f(σ)≤a}

f(σ)

= min
L∈Catm(K)

max
σ∈L

f(σ).

We point out that our notion of discrete Lusternik-Schnirelman category for abstract simplicial
complexes is different from that of Definition 4.3 in [55]. We also remark that other recent Lusternik-
Schnirelman category theorems for discrete Morse theory do not lead to a result like Theorem 4.3.

4.2 Discrete Morse theory on hypergraphs

In the preceding, we have established a correspondence between discrete Morse theory on a
simplicial complex K with vertex set V and continuous Morse theory on the associated order complex
SK. Now, since the order complex SE is still a simplicial complex when E is only a hypergraph with
vertex set V , we can use the continuous Morse theory on that complex to define a discrete Morse
theory on E . That is what we shall now do.

A hypergraph is a pair (V, E) with E ⊂ P(V ). In other words, E is a general set family on V . We
consider the combinatorial structure of a hypergraph from a topological perspective.

Topologies on hypergraph. There are several ways to endow a finite hypergraph (V, E) with
a topology.

1) The finite topology (E , T ) is generated by the base {Ue}e∈E , where Ue = {e′ ∈ E : e′ ⊂ e}.

2) The associated simplicial complex (V,KE) is the smallest simplicial complex KE ⊃ E . Note that
each edge e corresponds to an open simplex |e| in the geometric realization |KE |. Hence, we can
define the geometric realization |E| as

⋃
e∈E
|e| in the geometric simplicial complex |KE |.

3) The order complex SE and its geometric realization |SE | are defined by replacing the simplicial
complex (V,K) by the hypergraph (V, E) in Definition 4.4.

Fact: (E , T )
weak' |E| ' |SE |.

Here two topological spaces are weakly homotopy equivalent (denoted by
weak' ) if there exists a

continuous map between these topological spaces which induces isomorphisms between all homotopy
groups. The Lovász extension fL is well-defined on |SE | for any f : E → R.
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Remark 5. Indeed, the original Lovász extension fL of f : E → R is always well-defined on⋃
t≥0

t|SE | ⊂ RV≥0. Precisely, the domain of fL is
⋃
t≥0

t|SE | if the set V is not a hyperedge (other-

wise, the domain of fL could be
⋃
t≥0

t|SE |+ R1V ).

Definition 4.6. An edge pair (e′, e) is called sequential if e′ $ e and there is no other e′′ with
e′ $ e′′ $ e. A function f : E → R is a simple discrete Morse function if it has the property
that for any e ∈ E, #{sequential pair (e′, e) : f(e′) ≥ f(e)} ≤ 1 and #{sequential pair (e, ẽ) :
f(e) ≥ f(ẽ)} ≤ 1. An edge e is called a critical point of a simple discrete Morse function f if
{sequential pair (e′, e) : f(e′) ≥ f(e)} = ∅ = {sequential pair (e, ẽ) : f(e) ≥ f(ẽ)}. We say that e
has height k if there are at most k edges, e1, · · · , ek, in a chain of the form e1 $ e2 $ · · · $ ek $ e.
A critical point e of f has index k if the height of e is k.

We have a preliminary result for special hypergraphs and the corresponding typical functions,
which is a straightforward generalization of Forman’s discrete Morse theory.

Theorem 4.4. For a finite hypergraph (V, E), assume that E has the properties that the geometric
realization |{e′ ∈ E : e′ $ e}| is homotopic to a sphere for any e, and the geometric realization
|{e′′ ∈ E : e′′ ⊂ e, e′′ 6∈ {e′, e}}| is contractible for any sequential edge pair (e′, e). Let f : E → R be a
simple discrete Morse function with a critical point of index k. Then the geometric realization |E| is
homotopy equivalent to a CW-complex with one k-cell.

Let
Catm(E) = {E′ ⊂ E : cat(|SE(E′)|) ≥ m}

where SE(E
′) is the induced subcomplex of SE on E′. Other results like Theorems 4.1, 4.2 and 4.3

can also be generalized to this setting:

Theorem 4.5. For a hypergraph (V, E) under the assumptions of Theorem 4.4, let f : E → R be an
injective discrete Morse function. Then the following conditions are equivalent:

(1) e is a critical point of f ;

(2) 1e is a critical point of fL||SE | with index i in the sense of weak slope (metric Morse theory);

(3) 1e is a critical point of fL||SE | with index i in the sense of Kühnel (PL Morse theory);

(4) 1e is a Morse critical point of fL||SE | with index i in the sense of topological Morse theory;

Moreover, the discrete Morse vector (n0, n1, · · · , nd), representing the number ni of critical points
with index i, of f coincides with the continuous Morse vector of fL||SE |.

Moreover, the Lusternik-Schnirelmann category theorem is preserved under Lovász extension:

min
E′∈Catm(E)

max
e∈E′

f(e) = inf
S∈Catm(|SE |)

sup
x∈S

fL(x),

The details of a general Morse theory on hypergraphs and applications will be developed in [57].
The key idea is that the definition of critical points of a general function f on E is translated into
the PL critical point theory of its restricted Lovász extension fL||SE |.

Definition 4.7. Given a finite hypergraph (V, E) and a function f : E → R, we say that e ∈ E is a
critical point of f if 1e is a critical point of fL||SE | in the sense of PL Morse theory.
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Table 1: Original Lovász extension of some objective functions.

Set function f(A) = Lovász extension fL(x) =

#E(A, V \A)
∑

{i,j}∈E
|xi − xj |

C C maxi xi
vol(A)

∑
i degi xi

min{vol(A), vol(V \A)} min
t∈R
‖x− t1‖1

#A ·#(V \A)
∑
i,j∈V

|xi − xj |

#V (E(A, V \A))
n∑
i=1

( max
j∈N(i)

xj − min
j∈N(i)

xj)

Table 2: Set-pair Lovász extension of several objective functions.

Objective function f(A,B) = Set-pair Lovász extension fL(x) =

#E(A, V \A) + #E(B, V \B)
∑

{i,j}∈E
|xi − xj |

#E(A,B) 1
2

(∑
i∈V

degi |xi| −
∑

{i,j}∈E
|xi + xj |

)
C C‖x‖∞
vol(A) + vol(B)

∑
i∈V

degi |xi|

min{vol(A), vol(V \A)}+ min{vol(B), vol(V \B)} min
α∈R
‖(|x1|, · · · , |xn|)− α1‖

#E(A ∪B,A ∪B)
∑

i∼j min{|xi|, |xj |}
#(A ∪B) ·#E(A ∪B,A ∪B)

∑
k∈V,i∼j min{|xk|, |xi|, |xj |}

#(A ∪B) ·#(V \ (A ∪B))
∑

i>j ||xi| − |xj ||

5 Examples and Applications

Tables 1 and 2 and Propositions 5.1, 5.2 and 5.3 present a general correspondence between set or
set-pair functions and their Lovász extensions. We shall make use of several of those in this section.
Note that the first four lines in Table 1 for the original Lovász extension, and the first five lines in
Table 2 for the disjoint-pair Lovász extension are known (see [10,15]).

Proposition 5.1. Suppose f, g : P(V ) → [0,+∞) are two set functions with g(A) > 0 for any
A ∈ P(V ) \ {∅}. Then

min
A∈P(V )\{∅}

f(A)

g(A)
= min

(A,B)∈P(V )2\{(∅,∅)}

f(A) + f(B)

g(A) + g(B)
= min

(A,B)∈P2(V )\{(∅,∅)

f(A) + f(B)

g(A) + g(B)
,

where the right identity needs additional assumptions like f(∅) = g(∅) = 09 or the symmetric
property10 of f and g. Replacing f(B) and g(B) by f(V \ B) and g(V \ B), all the above identities
hold without any additional assumption. Clearly, replacing ‘min’ by ‘max’, all statements still hold.

Proposition 5.2. Suppose f, g : P(V ) → [0,+∞) are two set functions with g(A) > 0 for any
A ∈ P(V ) \ {∅}. Then

min
A∈P(V )

f(A)

g(A)
= min

(A1,··· ,Ak)∈P(V )k

∑k
i=1 f(Ai)∑k
i=1 g(Ai)

= min
(A1,··· ,Ak)∈P(V )k

k

√∏k
i=1 f(Ai)∏k
i=1 g(Ai)

= min
(A1,··· ,Ak)∈Pk(V )

∑k
i=1 f(Ai)∑k
i=1 g(Ai)

,

where the last identity needs additional assumptions like f(∅) = g(∅) = 0.

9This setting is natural, as the Lovász extension doesn’t use the datum on ∅.
10A function f : P(V )→ R has symmetric property if f(A) = f(V \A), ∀A ⊂ V .
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Proposition 5.3. Suppose f, g : P2(V ) → [0,+∞) are two set functions with g(A,B) > 0 for any
(A,B) ∈ P2(V ) \ {(∅,∅)}. Then

min
A∈P2(V )

f(A,B)

g(A,B)
= min

(A1,B1··· ,Ak,Bk)∈P2(V )k

∑k
i=1 f(Ai, Bi)∑k
i=1 g(Ai, Bi)

= min
(A1,B1,··· ,Ak,Bk)∈P2k(V )

∑k
i=1 f(Ai, Bi)∑k
i=1 g(Ai, Bi)

,

where the last identity needs additional assumptions like f(∅,∅) = g(∅,∅) = 011.

Together with Propositions 2.5 and 5.1, one may directly transfer the data from Table 1 to Table
2. Similarly, by employing Propositions 2.6, 5.2 and 5.3, the k-way Lovász extension of some special
functions can be transformed to the original and the disjoint-pair versions.

5.1 Submodular vertex cover and multiway partition problems

As a first immediate application of Theorem B, we obtain an easy way to rediscover the famous
identity by Lovász, and the two typical submodular optimizations – submodular vertex cover and
multiway partition problems.

Example 5.1. The identity min
A∈P(V )

f(A) = min
x∈[0,1]V

fL(x) discovered by Lovász in his original paper

[1] can be obtained by our result. In fact,

min
A∈P(V )

f(A) = min
A∈P(V )

f(A)

1
= min
x∈[0,∞)V

fL(x)

max
i∈V

xi
= min
x∈[0,1]V

fL(x)

max
i∈V

xi
= min
x∈[0,1]V ,max

i
xi=1

fL(x).

Checking this is easy: if f ≥ 0, then min
x∈[0,1]V ,max

i
xi=1

fL(x) = 0; if f(A) < 0 for some A ⊂ V , then

min
x∈[0,1]V ,max

i
xi=1

fL(x) = min
x∈[0,1]V

fL(x).

Vertex cover number A vertex cover (or node cover) of a graph is a set of vertices such that
each edge of the graph is incident to at least one vertex of the set. The vertex cover number is
the minimal cardinality of a vertex cover. Similarly, the independence number of a graph is the
maximal number of vertices not connected by edges. The sum of the vertex cover number and the
independence number is the cardinality of the vertex set.

By a variation of Motzkin-Straus theorem and Theorem C, the vertex cover number thus has at
least two equivalent continuous representations similar to the independence number.

Submodular vertex cover problem Given a graph G = (V,E), and a submodular function
f : P(V )→ [0,∞), find a vertex cover S ⊂ V minimizing f(S).

By Theorem B,

min{f(S) : S ⊂ V, S is a vertex cover} = min
x∈D

fL(x)

‖x‖∞
= min
x∈D̃

fL(x)

where D = {x ∈ [0,∞)V : V t(x) vertex cover, ∀t ≥ 0} = {x ∈ [0,∞)V : xi + xj > 0,∀{i, j} ∈ E, {i :

xi = maxj xj} vertex cover}, and D̃ = {x ∈ D : ‖x‖∞ = 1} = {x ≥ 0 : xi + xj ≥ 1, ∀{i, j} ∈ E, {i :
xi = maxj xj} vertex cover}. Note that

conv(D̃) = {x : xi + xj ≥ 1, ∀{i, j} ∈ E, xi ≥ 0,∀i ∈ V }.

Therefore, min
x∈conv(D̃)

fL(x) ≤ min{f(S) : vertex cover S ⊂ V }, which rediscovers the convex

programming relaxation.

11This setting is natural, as the disjoint-pair Lovász extension doesn’t use the information on (∅,∅).
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Submodular multiway partition problem This problem is about to minimize
∑k

i=1 f(Vi) sub-
ject to V = V1 ∪ · · · ∪ Vk, Vi ∩ Vj = ∅, i 6= j, vi ∈ Vi, i = 1, · · · , k, where f : P(V ) → R is a
submodular function.

Letting A = { partition (A1, · · · , Ak) of V : Ai 3 ai, i = 1, · · · , k}, by Theorem B,

min
(A1,··· ,Ak)∈A

k∑
i=1

f(Ai) = inf
x∈DA

∑k
i=1 f

L(xi)

‖x‖∞
= inf
x∈D′

k∑
i=1

fL(xi),

where DA = {x ∈ [0,∞)kn : (V t(x1), · · · , V t(xk)) is a partition, V t(xi) 3 ai, ∀t ≥ 0} = {x ∈
[0,∞)kn : xi = t1Ai , Ai 3 ai, ∀t ≥ 0}, and D′ = {(x1, · · · ,xk) : xi ∈ [0,∞)V , xi = 1Ai , Ai 3 ai}.
Note that

conv(D′) = {(x1, · · · ,xk) :
∑
v∈V

xiv = 1, xiai = 1, xiv ≥ 0}.

So one rediscovers the corresponding convex programming relaxation min
x∈conv(D′)

∑k
i=1 f

L(xi).

5.2 Max k-cut problem

The max k-cut problem is to determine a graph k-cut by solving

MaxCk(G) = max
partition (A1,A2,...,Ak) of V

∑
i 6=j
|E(Ai, Aj)| = max

(A1,A2,...,Ak)∈Ck(V )

k∑
i=1

|∂Ai|, (22)

where Ck(V ) = {(A1, . . . , Ak)
∣∣Ai ∩Aj = ∅,

⋃k
i=1Ai = V }. We may write (22) as

MaxCk(G) = max
(A1,A2,...,Ak−1)∈Pk−1(V )

k−1∑
i=1

|∂Ai|+ |∂(A1 ∪ · · · ∪Ak−1)|.

Taking fk(A1, · · · , Ak) =
∑k

i=1 |∂Ai|+ |∂(A1 ∪ · · · ∪Ak)|, the k-way Lovász extension is

fLk (x1, · · · ,xk) =

k∑
i=1

∑
i∼j
|xki − xkj |+

∑
j∼j′

∣∣∣∣ max
i=1,··· ,k

xij − max
i=1,··· ,k

xij′

∣∣∣∣ .
Applying Theorem B, we have

MaxCk+1(G) = max
xi∈Rn≥0\{0}, supp(xi)∩supp(xj)=∅

∑k
i=1

∑
i∼j |xki − xkj |+

∑
j∼j′

∣∣∣∣ max
i=1,··· ,k

xij − max
i=1,··· ,k

xij′

∣∣∣∣
max
i,j

xij

5.3 Relative isoperimetric constants on subgraph with boundary

Given a finite graph G = (V,E) and a subgraph, we consider the Dirichlet and Neumann eigen-
value problems for the corresponding 1-Laplacian. For A ⊂ V , put A = A ∪ δA, where δA is the set
of points in Ac that are adjacent to some points in A (see Fig. 2).

Given S ⊂ A, denote the boundary of S relative to A by

∂AS = {(u, v) ∈ E : u ∈ S ∩A, v ∈ δA \ S or u ∈ S, v ∈ A \ S}.

If S ⊂ A, then ∂AS = {(u, v) ∈ E : u ∈ S, v ∈ A \ S}.
The Cheeger (cut) constant of the subgraph A of G is defined as

h(A) = min
S⊂A

|∂AS|
min{vol(A ∩ S), vol(A \ S)}

.

A set pair (S,A \ S) that achieves the Cheeger constant is called a Cheeger cut.
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Figure 2: In this graph, let A be the set of solid points, δA the set of hollow points. We only consider
the edges between A and A (solid lines). We will ignore the dashed lines in δA, and the dotted lines
outside A.

The Cheeger isoperimetric constant12 of A is defined as

h1(A) = min
S⊂A

|∂AS|
vol(S)

,

where a set S achieving the Cheeger isoperimetric constant is called a Cheeger set.
According to our generalized Lovász extension, we have

h1(G) = inf
x∈Rn\{0}

∑
i∼j |xi − xj |+

∑
i∈A pi|xi|∑

i∈A di|xi|
(23)

and

h(G) = inf
x∈Rn\{0}

∑
i∼j,i,j∈A |xi − xj |+

∑
i∼j,i∈A,j∈δA |xi − xj |

infc∈R
∑

i∈A di|xi − c|
.

Note that the term on the right hand side of (23) can be written as

inf
x|V \S=0,x6=0

R1(x)

which is called the Dirichlet 1-Poincare constant (see [56]) over S, where

R1(x) :=

∑
{i,j}∈E

|xi − xj |∑
i di|xi|

is called the 1-Rayleigh quotient of x.
We can consider the corresponding spectral problems.

• Dirichlet eigenvalue problem: {
∆1x ∩ µD Sgnx 6= ∅, in A

x = 0, on δA

that is, {
(∆1x)i − µdi Sgnxi 3 0, i ∈ A
xi = 0, i ∈ δA

whose component form is: ∃ ci ∈ Sgn(xi), zij ∈ Sgn(xi − xj) satisfying zji = −zij and∑
j∼i

zij + pici ∈ µdi Sgn(xi), i ∈ A,

in which pi is the number of neighbors of i in δA.

12Some authors call it the Dirichlet isoperimetric constant.
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Figure 3: In this example, there are 3 nodal domains of an eigenvector corresponding to the first
Dirichlet eigenvalue of the graph 1-Laplacian. Each nodal domain is the vertex set of the 4-order
complete subgraph shown in the figure.
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Figure 4: In this example, there are 4 nodal domains of an eigenvector corresponding to the second
Neumann eigenvalue of the graph 1-Laplacian. Each nodal domain is the vertex set of the 3-order
subgraph after removing the center vertex and its edges.

• Neumann eigenvalue problem: There exists ci ∈ Sgn(xi), zij ∈ Sgn(xi − xj) with zji = −zij
such that {∑

j∼i,j∈A zij − µdici = 0, i ∈ A∑
j∼i,j∈A zij = 0, i ∈ δA.

For a graph G with boundary, we use ∆D
1 (G) and ∆N

1 (G) to denote the Dirichlet 1-Laplacian and
the Neumann 1-Laplacian, respectively. Then

Proposition 5.4.
h1(G) = λ1(∆D

1 (G)) and h(G) = λ2(∆N
1 (G)).

For a connected graph, the first eigenvector of ∆N
1 (G) is constant and it has only one nodal

domain while the first eigenvector of ∆D
1 (G) may have any number of nodal domains.

Proposition 5.5. For any k ∈ N+, there exists a connected graph G with boundary such that its
Dirichlet 1-Laplacian ∆D

1 (G) has a first eigenvector (corresponding to λ1(∆D
1 (G))) with exactly k

nodal domains; and its Neumann 1-Laplacian ∆N
1 (G) possesses a second eigenvector (corresponding

to λ2(∆N
1 (G))) with exactly k nodal domains.

5.4 Independence number

The independence number α(G) of an unweighted and undirected simple graph G is the largest
cardinality of a subset of vertices in G, no two of which are adjacent. It can be seen as an optimization
problem max

S⊂V s.t. E(S)=∅
#S. However, such a graph optimization is not global, and the feasible

domain seems to be very complicated. But we may simply multiply by a truncated term (1−#E(S)).
The independence number can then be expressed as a global optimization on the power set of vertices:

α(G) = max
S⊂V

#S(1−#E(S)), (24)

and thus the Lovász extension can be applied.
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Proof of Eq. (24). Since G is simple, #S and #E(S) take values in the natural numbers. Therefore,

#S(1−#E(S))

{
≤ 0, if E(S) 6= ∅ or S = ∅,
≥ 1, if E(S) = ∅ and S 6= ∅.

Thus, max
S⊂V

#S(1−#E(S)) = max
S⊂V s.t. E(S)=∅

#S = α(G).

However, Eq. (24) is difficult to calculate. By the disjoint-pair Lovász extension, it equals to

α(G) = max
x6=0

‖x‖1 −
∑

k∈V,i∼j
min{|xk|, |xi|, |xj |}

‖x‖∞
,

but we don’t know how to further simplify it.
So, we provide a simpler optimization which is a tight relaxation:

Proposition 5.6. The independence number α(G) of a finite simple graph G = (V,E) satisfies

α(G) = max
S⊂V

(#S −#E(S)) . (25)

Proof. Let A be an independent set of G, then α(G) = #A = #A −#E(A) ≤ max
S⊂V

(#S −#E(S))

because there is no edge connecting points in A.
Let B ⊂ V satisfy #B−#E(B) = max

S⊂V
(#S −#E(S)). Assume the induced subgraph (B,E(B))

has k connected components, (Bi, E(Bi)), i = 1, · · · , k. Then B = tki=1Bi and E(B) = tki=1E(Bi).
Since (Bi, E(Bi)) is connected, #Bi ≤ #E(Bi) + 1 and equality holds if and only if (Bi, E(Bi)) is a
tree. Now taking B′ ⊂ B such that #(B′ ∩Bi) = 1, i = 1, · · · , k, then B′ is an independent set and
thus

α(G) ≥ #B′ = k =
k∑
i=1

1 ≥
k∑
i=1

(#Bi −#E(Bi)) =
k∑
i=1

#Bi −
k∑
i=1

#E(Bi)

= #(∪ki=1Bi)−#(∪ki=1E(Bi)) = #B −#E(B) = max
S⊂V

(#S −#E(S)) .

As a result, Eq. (25) is proved.

According to Lovász extension, we get

α(G) = max
x 6=0

‖x‖1 −
∑
i∼j

min{|xi|, |xj |}

‖x‖∞
. (26)

By the elementary identities:
∑

i∼j |xi+xj |+
∑

i∼j |xi−xj | = 2
∑

i∼j max{|xi|, |xj |} =
∑

i∼j ||xi| − |xj ||+∑
i degi|xi| and

∑
i degi|xi| =

∑
i∼j max{|xi|, |xj |}+

∑
i∼j min{|xi|, |xj |}, Eq. (26) can be reduced to

α(G) = max
x 6=0

2‖x‖1 + I−(x) + I+(x)− 2‖x‖1,deg

2‖x‖∞
, (27)

where I±(x) =
∑

i∼j |xi ± xj | and ‖x‖1,deg =
∑

i degi|xi|. One would like to write Eq. (27) as

α(G) = max
x 6=0

I−(x) + I+(x)− 2‖x‖1,deg′

2‖x‖∞
, (28)

where ‖x‖1,deg′ =
∑
i∈V

(degi − 1)|xi|.

Chromatic number of a perfect graph Berge’s strong perfect graph conjecture has been proved
in [23]. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H equals
the size of the largest clique of H. The complement of every perfect graph is perfect.

So for a perfect graph, we have an easy way to calculate the chromatic number. In a general
simple graph, we refer to Section 5.6 for transforming the chromatic number.
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Maximum matching A matching M in G is a set of pairwise non-adjacent edges, none of which
are loops; that is, no two edges share a common vertex. A maximal matching is one with the largest
possible number of edges.

Consider the line graph (E,R) whose vertex set E is the edge set of G, and whose edge set is
R = {{e, e′} : e ∩ e′ 6= ∅, e, e′ ∈ E}. Then the maximum matching number of (V,E) coincides
with the independence number of (E,R). So, we have an equivalent continuous optimization for a
maximum matching problem.

Hall’s Marriage Theorem provides a characterization of bipartite graphs which have a perfect
matching and the Tutte theorem provides a characterization for arbitrary graphs.

The Tutte-Berge formula says that the size of a maximum matching of a graph is

1

2
min
U⊂V

(
#V + #U −# odd connected components of G|V \U

)
.

Can one transform the above discrete optimization problem into an explicit continuous optimization
via some extension?

k-independence number The independence number admits several generalizations: the maxi-
mum size of a set of vertices in a graph whose induced subgraph has maximum degree (k − 1) [41];
the size of the largest k-colourable subgraph [42]; the size of the largest set of vertices such that any
two vertices in the set are at short-path distance larger than k (see [43]). For the k-independence
number involving short-path distance, one can easily transform it into the following two continuous
representations:

αk = max
x∈RV \{0}

‖x‖21
‖x‖21 − 2

∑
dist(i,j)≥k+1

xixj
= max
x∈Rn\{0}

∑
dist(i,j)≤k

(|xi − xj |+ |xi + xj |)− 2
∑
i∈V

(degk(i)− 1)|xi|

2‖x‖∞
,

where degk(i) = #{j ∈ V : dist(j, i) ≤ k}, i = 1, · · · , n.

5.5 Various and variant Cheeger problems

Several Cheeger-type constants on graphs have been proposed that are different from the classical
one.

Multiplicative Cheeger constant For instance

h = min
∅6=A$V

#E(A, V \A)

#A ·#(V \A)
.

By Proposition 3.1, it equals to

min
〈x,1〉=0,x 6=0

∑
i∼j |xi − xj |∑
i<j |xi − xj |

.

Isoperimetric profile The isoperimetric profile IP : N→ [0,∞) is defined by

IP (k) = inf
A⊂V,#A≤k

#E(A, V \A)

#A
.

Then by Lovász extension, it equals to

inf
x∈RV , 1≤#supp(x)≤k

∑
{i,j}∈E |xi − xj |
‖x‖1

= min
x∈CHk(RV )

∑
{i,j}∈E |xi − xj |
‖x‖1

,

where CHn := {x ∈ RV , #supp(x) ≤ k} is the union of all k-dimensional coordinate hyperplanes in
RV .
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Modified Cheeger constant On a graph G = (V,E), there are three definitions of the vertex-
boundary of a subset A ⊂ V :

∂extA := {j ∈ V \A | {j, i} ∈ E for some i ∈ A} (29)

∂intA := {i ∈ A | {i, j} ∈ E for some j ∈ V \A} (30)

∂verA := ∂outA ∪ ∂intA = V (E(A, V \A)) = V (∂edgeA) (31)

The external vertex boundary (29) and the internal vertex boundary (30) are introduced and studied
recently in [30,31]. Researches on metric measure space [28] suggest to consider the vertex boundary
(31).

Denote by N(i) = {i}∪{j ∈ V : {i, j} ∈ E} the 1-neighborhood of i. Then the Lovász extensions
of #∂extA, #∂intA and #∂verA are

n∑
i=1

( max
j∈N(i)

xj − xi),
n∑
i=1

(xi − min
j∈N(i)

xj) and
n∑
i=1

( max
j∈N(i)

xj − min
j∈N(i)

xj),

respectively. They can be seen as the ‘total variation’ of x with respect to V in G, while the usual
edge boundary leads to

∑
{i,j}∈E

|xi − xj | which is regarded as the total variation of x with respect to

E in G. Their disjoint-pair Lovász extensions are

n∑
i=1

max
j∈N(i)

|xj | − ‖x‖1, ‖x‖1 −
n∑
i=1

min
j∈N(i)

|xj |,
n∑
i=1

(
max
j∈N(i)

|xj | − min
j∈N(i)

|xj |
)
.

Comparing with the graph 1-Poincare profile (see [27–29])

P 1(G) := inf
〈x,1〉=0,x6=0

∑
i∈V max

j∼i
|xi − xj |

‖x‖1
,

we easily get the following

Proposition 5.7.

1

2
max{hint(G), hext(G)} ≤ P 1(G) ≤ hver(G) := min

A∈P(V )\{∅,V }

#∂verA

min{#(A),#(V \A)}

where hint(G), hext(G) and hver(G) are modified Cheeger constants w.r.t. the type of vertex-boundary.

Cheeger-like constant Some further recent results [25] can be also rediscovered via Lovász ex-
tension.

A main equality in [25] can be absorbed into the following identities:

max
edges (v,w)

(
1

deg v
+

1

degw

)
= max

γ:E→R

∑
v∈V

1
deg v ·

∣∣∣∣∑ein:v input γ(ein)−
∑

eout:v output γ(eout)

∣∣∣∣∑
e∈E |γ(e)|

= max
Γ̂⊂Γ bipartite

∑
v∈V

degΓ̂(v)

degΓ(v)

|E(Γ̂)|
, (32)

where the left quantity is called a Cheeger-like constant [25].
In fact, given ci ≥ 0, i ∈ V ,

max
{i,j}∈E

(ci + cj) = max
E′⊂E

∑
{i,j}∈E′(ci + cj)

#E′
,

and then via Lovász extension, one immediately gets that the above constant equals to

max
x∈[0,∞)E\{0}

∑
e={i,j}∈E

xe(ci + cj)∑
e∈E xe

= max
x∈[0,∞)E\{0}

∑
i∈V ci

∑
e3i xe∑

e∈E xe
= max
x∈RE\{0}

∑
i∈V ci

∣∣∑
e3i xe

∣∣∑
e∈E |xe|
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Thus, for any family E ⊂ P(E) such that E′ ∈ E ⇒ E′ ⊃ {{e} : e ∈ E}, we have

max
{i,j}∈E

(ci + cj) = max
x∈RE\{0}

∑
i∈V ci

∣∣∑
e3i xe

∣∣∑
e∈E |xe|

= max
E′∈E

∑
{i,j}∈E′(ci + cj)

#E′
,

which recovers the interesting equality (32) by taking ci = 1
deg i and E the collections of all edge sets

of bipartite subgraphs.
A similar simple trick gives

min
(v,w)

∣∣N (v) ∩N (w)
∣∣

max{deg v,degw}
= min
x∈RE\{0}

∑
i∈V

∑
e3i |xe| ·# triangles containing e∑
e={i,j}∈E |xe|max{di, dj}

.

5.6 Chromatic number

The chromatic number (i.e., the smallest vertex coloring number) of a graph is the smallest
number of colors needed to color the vertices so that no two adjacent vertices share the same color.
Given a simple connected graph G = (V,E) with #V = n, its chromatic number γ(G) can be
expressed as a global optimization on the n-power set of vertices:

γ(G) = min
(A1,··· ,An)∈Pn(V )

n
n∑
i=1

#E(Ai) +
n∑
i=1

sign(#Ai) + n

(
n−

n∑
i=1

#Ai

)2
 (33)

and similarly, we get the following

Proposition 5.8. The chromatic number γ(G) of a finite simple graph G = (V,E) satisfies

γ(G) = min
(A1,··· ,An)∈P(V )n

{
n

n∑
i=1

#E(Ai) +
n∑
i=1

sign(#Ai) + n

(
n−#

n⋃
i=1

Ai

)}
(34)

Proof. Let f : P(V )n → R be defined by

f(A1, · · · , An) = n
n∑
i=1

#E(Ai) +
n∑
i=1

sign(#Ai) + n

(
n−#

n⋃
i=1

Ai

)
.

Let {C1, · · · , Cγ(G)} be a proper coloring class of G, and set Cγ(G)+1 = · · · = Cn = ∅. Then
we have E(Ci) = ∅, # ∪ni=1 Ci = n, #Ci ≥ 1 for 1 ≤ i ≤ γ(G), and #Ci = 0 for i > γ(G).
In consequence, f(C1, · · · , Cn) = γ(G). Thus, it suffices to prove f(A1, · · · , An) ≥ γ(G) for any
(A1, · · · , An) ∈ P(V )n.

If
⋃n
i=1Ai 6= V , then f(A1, · · · , An) ≥ n+ 1 > γ(G).

If there exist at least γ(G) + 1 nonempty sets A1, · · · , Aγ(G)+1, then f(A1, · · · , An) ≥ γ(G) + 1 >
γ(G).

So we focus on the case that
⋃n
i=1Ai = V and Aγ(G)+1 = · · · = An = ∅. If there further

exists i ∈ {1, · · · , γ(G)} such that Ai = ∅, then by the definition of the chromatic number, there is
j ∈ {1, · · · , γ(G)} \ {i} with E(Aj) 6= ∅. So f(A1, · · · , An) ≥ n + 1 > γ(G). Accordingly, each of
A1, · · · , Aγ(G) must be nonempty, and thus f(A1, · · · , An) ≥ γ(G).

Also, when the equality f(A1, · · · , An) = γ(G) holds, one may see from the above discussion that
A1, · · · , Aγ(G) are all independent sets of G with

⋃n
i=1Ai 6= V .

Note that

#
n⋃
i=1

V t(xi) = #{j ∈ V : ∃i s.t. xi,j > t} =
n∑
j=1

max
i=1,··· ,n

1xi,j>t =
n∑
j=1

1 max
i=1,··· ,n

xi,j>t

So the n-way Lovász extension of #
⋃n
i=1Ai is∫ maxx

minx
#

n⋃
i=1

V t(xi)dt+ minx#

n⋃
i=1

V (xi) =

n∑
j=1

∫ maxx

minx
1 max
i=1,··· ,n

xi,j>tdt+ minx#V
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=
n∑
j=1

( max
i=1,··· ,n

xi,j −minx) + nminx

=

n∑
j=1

max
i=1,··· ,n

xi,j

And the n-way disjoint-pair Lovász extension of #
⋃n
i=1Ai is

∑n
j=1 max

i=1,··· ,n
|xi,j | =

∑n
j=1 ‖x,j‖∞.

The n-way Lovász extension of sign(#Ai) is∫ maxx

minx
sign(#V t(xi))dt+ minx sign(#V (xi)) =

∫ maxxi

minx
1dt+ minx sign(#V )

= max
j=1,··· ,n

xi,j −minx+ minx = max
j=1,··· ,n

xi,j

and the n-way disjoint-pair Lovász extension of sign(#Ai) is ‖xi‖∞. Similarly, the n-way disjoint-pair
Lovász extension of #E(Ai) is

∑
j∼j′ min{|xi,j |, |xi,j′ |}. Thus

fL(x) = n
n∑
i=1

∑
j∼j′

min{|xi,j |, |xi,j′ |}+
n∑
i=1

‖xi‖∞ + n

n‖x‖∞ − n∑
j=1

‖x,j‖∞


= n

n∑
i=1

(
‖xi‖1,deg − (I+(xi) + I−(xi))/2

)
+

n∑
i=1

‖xi‖∞ + n

n‖x‖∞ − n∑
j=1

‖x,j‖∞


= n2‖x‖∞ + n‖x‖1-deg,1 + ‖x‖∞,1 − nI±,1(x)− n‖x‖∞,1.

According to Proposition 3.1 on the multi-way Lovász extension, we get

γ(G) = n2 − sup
x∈Rn2\{0}

nI±,1(x) + n‖x‖∞,1 − n‖x‖1-deg,1 − ‖x‖∞,1
‖x‖∞

. (35)

Clique covering number The clique covering number of a graph G is the minimal number
of cliques in G needed to cover the vertex set. It is equal to the chromatic number of the graph
complement of G. Consequently, we can explicitly write down the continuous representation of a
clique covering number by employing Theorem C.
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