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We study the nonlocality of high dimensional quantum systems based on quantum entanglement
and projection. First, a quantitative relationship between the maximal expectation value B of
Bell operators and the quantum entanglement concurrence C is obtained for even dimensional pure
and mixed states, with the lower bounds of B governed by C. Second, by projecting the high di-
mension bipartite and tripartite quantum states to “two-qubit” and “three-qubit” quantum states,
respectively, the nonlocality of the high dimensional quantum states is revealed by the violations
of Bell inequalities of the projected qubits states. If the projected qubits states violate Bell in-
equalities but the violation is less than certain values, there exist kinds of “hidden” nonlocality of
the high dimensional states, we call it locally-preprocessed-allowed nonlocality. Examples of high
dimensional isotropic states are presented to illustrate the relationship between nonlocality and
locally-preprocessed-allowed nonlocality.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w

INTRODUCTION

Quantum nonlocality, such as that revealed by the vi-
olation of Bell inequalities by quantum entangled states
[1], is one of the most startling predictions of quantum
mechanics. Recently, as confirmed in loophole-free ex-
periments [2], nonlocality has been proven to be useful
in many quantum tasks such as device-independent cryp-
tography [3] and randomness certification [4, 5].

Although all entangled pure states can display nonlocal
correlations [6, 7], some mixed entangled states can prov-
ably satisfy all the Bell inequalities [8–12]. Namely, there
exist entangled mixed states that never lead to nonlocal-
ity by any local POVM measurements [9]. Under local
filtering operations on many copies, it was shown in Ref.
[13] that the set of bipartite quantum states violating
the Clauser-Horne-Shimony-Holt (CHSH) Bell inequal-
ity [14] is precisely the set of distillable [15] quantum
states. However, this does not imply that bound en-
tangled states [16] must satisfy all Bell inequalities [17].
Following the earlier results of [10, 18], this phenomenon
has recently been shown to be true in general for mul-
tipartite case as well: there exist genuinely multipartite
entangled states which admit a fully local hidden-variable
(LHV) model [19]. Quantum nonlocality is usually asso-
ciated with entangled states that violate at least one of
the Bell inequalities. However, separable bipartite states
can also show some nonlocal properties [20, 21]. Despite
all these progresses, the precise relationship between en-

tanglement and Bell violations has remained less known,
particularly for high dimensional bipartite and multipar-
tite cases.

Different ways to quantify the quantum nonlocality
have been presented [22–33],etc., for examples, the vol-
ume of the violation of Bell-type inequalities [27, 28].
By employing the probability of violation of local real-
ism under random measurements [34], in [30] the authors
investigated the nonlocality of entangled qudits with di-
mensions ranging from d = 2 to d = 10. In [31] the
authors proposed a machine learning approach for detec-
tion and quantification of nonlocality. Quantifying Bell
nonlocality by the trace distance has been studied in [29].

In the following we use concurrence C [35, 36] as the
measure of quantum entanglement. Let Hi denote the
Hilbert space associated with the ith subsystem. For a
pure state |ψ〉 ∈ H1 ⊗ H2, the concurrence is defined
by [37–39], C(|ψ〉) =

√
2(1− Trρ2

1), where the reduced
density matrix ρ1 = Tr2|ψ〉〈ψ| is obtained by tracing over
the second subsystem. The concurrence is then extended
to mixed states ρ by convex roof,

C(ρ) ≡ min
pi,|ψi〉

∑

i

piC(|ψi〉),

where the minimization goes over all possible ensemble
realizations ρ =

∑
i pi|ψi〉〈ψi|, pi ≥ 0 and

∑
i pi = 1.

For two-qubit states C can be calculated directly [35].
For high dimensional quantum states one has no general
results [40, 41].
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For two-qubit states, the well-known CHSH Bell in-
equality [14] has been used to detect the nonlocality.
The corresponding operator is given by B = A1 ⊗ B1 +
A1 ⊗B2 + A2 ⊗B1 − A2 ⊗B2. The CHSH inequality is
|〈B〉| ≤ 2, where 〈B〉 = Tr(Bρ), Ai = ~ai ·~σ, Bj = ~bj ·~σ, ~ai

and ~bj are three-dimensional real unit vectors, i, j = 1, 2,
~σ = (σ1, σ2, σ3) with σ1, σ2 and σ3 the standard Pauli
matrices.

The concurrence C and the maximal Bell value B ≡
max〈B〉 satisfy the relation: 2

√
2C ≤ B ≤ 2

√
1 + C2 [42].

Therefore, the Bell inequality is violated if C > 1/
√

2.
Such relations have been also investigated by using ran-
domly generated two-qubit states [43]. The Bell inequal-
ity for three-qubit states has been also studied [44]. The
relationship between tripartite entanglement and gen-
uine tripartite nonlocality for three qubit Greenberger-
Horne-Zeilinger class is also investigated [45]. The au-
thors in [46, 47] studied the relation between the upper
bound of Bell violation and a generalized concurrence
for some n-qubit states. In [48] the nonlocality distribu-
tions among multiqubit systems have been studied based
on the maximal violations of the CHSH inequality of re-
duced pairwise qubit systems. Furthermore, from the re-
duced three-qubit density matrices of the four-qubit gen-
eralized Greenberger-Horne-Zeilinger (GHZ) states and
W-states, a trade-off relation among the mean values of
the Svetlichny operators associated with these reduced
states has been presented [49].

The so called hidden nonlocality has been illustrated
in [50, 51]. It is found that locally correlated states can
violate a Bell inequality under local filtering operations,
demonstrated in photonic experiments later [52]. Ref.
[53] shows how local filtering can increase the entangle-
ment. It has been also shown that the local filtering can
“activate” the CHSH-violation [51, 54], and a necessary
and sufficient condition is derived [55]. In [56] it has been
shown that all entangled states violate a Bell inequality
when combined with another state which on its own can-
not violate the same Bell inequality. Ref. [57] studies
whether all entangled states can violate a Bell inequality
after well-chosen local filtering. The answer is shown to
be negative due to that there exist entangled states with-
out hidden nonlocality. For a review on the activation of
quantum nonlocality see Ref. [58].

For high dimensional quantum systems less is known
about the relationship between concurrence and Bell vi-
olations. The main difficulty lies in finding the maximin
mean value of suitable Bell operators. In this paper,
we explore the quantitative relationship between concur-
rence C and the maximin Bell value B for high dimen-
sional quantum systems. This part of research corre-
sponds to E and e in FIG. 1. We also study the “hidden”
nonlocality of the original quantum state by means of
projection (f of FIG. 1).

                                                                                 f  E    
e 

Entanglement of 2 2⊗quantum states   Nonlocality of 2 2⊗quantum states 
Entanglement of m n⊗quantum states  Nonlocality of m n⊗quantum states F 

FIG. 1: The E corresponds to the research in Ref. [42], F
is about the research in Ref. [40, 41]. e and f are the main
researches in this article.

BELL NON-LOCALITY AND CONCURRENCE
OF BIPARTITE QUANTUM STATES

Based on Bell’s idea [1], for any given n×n real matrix
N with entries Nij , one can define a classical quantity,

J(N) = sup |
n∑

i,j=1

Nijaibj |,

where the supremum is taken over all possible assignment
ai, bj ∈ {−1, 1}, 1 ≤ i, j ≤ n. For any bipartite state ρ,
the corresponding Bell operator is defined by

B(N) =
n∑

i,j=1

NijAi ⊗Bj ,

where Ai and Bj are arbitrary observables whose abso-
lute values of all eigenvalues are less or equal to one.

A state ρ is said to be nonlocal if it violates the follow-
ing Bell inequality,

B(N) ≤ J(N),

where B(N) = tr(B(N)ρ) is the mean value of the Bell

operator. If one takes N =
(

1 1
1 −1

)
, one gets the

CHSH inequality with J(N) = 2. For given N and state,
it is still an open problem to find the maximum Bell value
B ≡ maxB(N) over all possible Ai and Bj .

A pure m⊗n(m ≤ n) quantum state has the standard
Schmidt form,

|ψ〉 =
m∑

i=1

ci|aibi〉, (1)

where ci (i = 1, · · · ,m) are the Schmidt coefficients, |ai〉
and |bi〉 are the orthonormal bases in H1 and H2, respec-
tively. The concurrence of |ψ〉 is given by

C = 2
√∑

i<j

c2
i c

2
j , (2)

which varies from 0 for pure product states to√
2(m− 1)/m for maximally entangled pure states [39].



3

By selecting the matrix N as that from the CHSH in-
equality (with J(N) = 2), for any bipartite pure state
|ψ〉 as given by (1), it has been shown that [59],

Bsub(|ψ〉) = 2
√

(1− γ)2 + K2 + 2γ, (3)

where K = 2(c1c2 + c3c4 + · · · ), γ = c2
m for odd m, and

γ = 0 for even m, Bsub is not definitely the maximum
value B but obtained by choosing some specific local ob-
servables Ai and Bj .

The result of (3) has been further optimized in [60, 61].
However, one has no maximin Bell value B yet. In the
following we use (3) to obtain the following facts, which
does not depend on the optimality of (3).

Theorem 1. For any pure m⊗n(m ≤ n) quantum state
|ψ〉, with the standard Schmidt form (1), then for even
m, we have

B ≥
√

2[1 + C2]. (4)

Proof. According to the definition of B, (2) and (3), in
order to prove the inequality (4), we only need to prove
Bsub ≥

√
2[1 + C2] since B ≥ Bsub. To prove Bsub ≥√

2[1 + C2] is equivalent to prove 1+2K2 ≥ C2, namely,
we need to prove

1 + 2[4(c1c2 + c3c4 + · · ·+ cm−1cm)2] ≥ 4
∑

i<j

c2
i c

2
j .

That is, for odd k, l, we have

1 + 2[4
m−1∑

k=1,l=1

(ckck+1clcl+1)] ≥ 2
∑

i 6=j

c2
i c

2
j . (5)

Without loss of generality, we assume that the Schmidt
coefficients in (1) satisfy ci ≥ ci+1, i = 1, 2, · · · ,m. Then
we have the following facts, ckck+1clcl+1 ≥ c2

k+1c
2
l+1,

ckck+1clcl+1 ≥ c2
k+1c

2
l+2, ckck+1clcl+1 ≥ c2

k+2c
2
l+1 and

ckck+1clcl+1 ≥ c2
k+2c

2
l+2. Hence, we have

4
m−1∑

k=1,l=1,odd

(ckck+1clcl+1)

≥
m−1∑

k=1,l=1,odd

[(c2
k+1c

2
l+1) + (c2

k+1c
2
l+2)

+(c2
k+2c

2
l+1) + (c2

k+2c
2
l+2)]

and

1 = (c2
1 +

m∑

i 6=1

c2
i )

2 ≥ 4c2
1(

m∑

i 6=1

c2
i ).

Combining above relations we obtain

1 + 2[4
m−1∑

k=1,l=1

(ckck+1clcl+1)]

≥ 2
m−1∑

k=1,l=1,odd

[(c2
k+1c

2
l+1) + (c2

k+1c
2
l+2)

+(c2
k+2c

2
l+1) + (c2

k+2c
2
l+2)] + 4

m∑

i 6=1

c2
1c

2
i

≥ 2
∑

i 6=j

c2
i c

2
j ,

which gives rise to the inequality (5), and proves the
inequality (4).

From Theorem 1, it is obvious that if C > 1, the state
|ψ〉 shows non-locality. In fact, this result of pure states
can be extended to the case of mixed states.

Theorem 2. For any mixed m ⊗ n (m ≤ n) quantum
state ρ =

∑
i pi|ψi〉〈ψi|,

∑
i pi = 1, we have

B(ρ) ≥
√

2[1 + C2(|ψmin〉)] (6)

for even m, where |ψmin〉 minimizes the values Bsub(|ψi〉)
of all |ψi〉.
Proof.

B(ρ) = max Tr(B(N)ρ)

= max
∑

i

piTr(B(N)|ψi〉〈ψi|)

≥
∑

i

piBsub(|ψi〉)

≥ min
i

Bsub(|ψi〉)
≡ Bsub(|ψmin〉)
≥

√
2[1 + C2(|ψmin〉)],

where B(N) is the Bell operator admitted in [59], which
gives rise to the formula (3), the last inequality is due to
the proof of Theorem 1.

Theorem 2 says that if a mixed state ρ has a pure state
decomposition ρ =

∑
i pi|ψi〉〈ψi|, then ρ is nonlocal if

Bsub(|ψi〉) > 2 for any pure state |ψi〉. Let us consider
the following example.

Example 1: Consider the mixed state ρ =
1
d2

∑
m,n |Ψm,n〉〈Ψm,n|, where|Ψm,n〉 are generalized Bell

states [62, 63] of the form

|Ψm,n〉 =
1√
d

d−1∑

j=0

ζnj |j, j + m〉,

where ζ = e
2πi

d and m,n = 0, ..., d − 1. In this case,

we have C(|Ψm,n〉) =
√

2(1− 1
d ). Therefore, from The-

orem 2 we have B(ρ) ≥
√

2(3− 2
d ) ≥ 2, namely, ρ has

nonlocality as d > 2.
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NONLOCALITY AND
LOCALLY-PREPROCESSED-ALLOWED

NONLOCALITY OF BIPARTITE QUANTUM
STATES

It is formidably difficult to determine the nonlocal-
ity of a mixed state in general. For two-qubit sys-
tems, a necessary and sufficient condition for the vio-
lation of the CHSH inequality has been derived [64].
However, for the two-qubit Werner states [8], ρ(p) =
(1 − p)I4/4 + p|ψ−〉〈ψ−|, where I4 is 4 × 4 identity ma-
trix, |ψ−〉 = 1√

2
(|01〉 − |10〉), its nonlocality problem is

not completely solved yet. From the violation of the
CHSH inequality, one assures that ρ(p) is nonlocal if
0.7071 < p ≤ 1. The Bell inequality given in [65] im-
proves this parameter region to be 0.7056 < p ≤ 1, which
is further improved to be 0.7054 < p ≤ 1 [66].

A two-qubit mixed state ρ can be expressed in general,

ρ =
1
4
(I2⊗ I2 +~a ·~σ⊗ I2 + I2⊗~b ·~σ +

3∑
n,m=1

tm,nσm⊗σn)

where I2 is the 2×2 identity operator. Denote T the 3×3
matrix with entries given by tnm = Tr(ρσn ⊗ σm). Let
µ1 and µ2 be the two greater eigenvalues of U ≡ T tT ,
where t stands for transpose. It has been proven that for
CHSH inequality, B = 2

√
µ1 + µ2 [64].

We consider now d ⊗ d (d ≥ 3) bipartite mixed state
ρ ∈ H1 ⊗ H2. Let |eα〉, α = 0, 1, 2, · · · , d − 1, be the
basis of a d-dimensional space. Set P = P1 ⊗ P2, where
P1 = (|eα〉, |eβ〉)t for some α 6= β and P2 = (|eγ〉, |eλ〉)t

for some γ 6= λ are 2 × d matrices, which project d-
dimensional vectors to two-dimensional ones. The follow-
ing filtering projects ρ to a “two-qubit” one, ρ̃ = PρP †

k
with k = tr[PρP †] 6= 0. Analogously, induced from the
CHSH operator B, one has d2 × d2 operator B̃ = P †BP .
Correspondingly we have the induced CHSH inequalities
for high dimensional bipartite states.

We first give a theorem to judge the usual nonlocality
of high dimensional bipartite states from the “two-qubit”
projected state ρ̃.

Theorem 3. For any d ⊗ d quantum state ρ, if there
exists one “two-qubit” projected state ρ̃ which violates
CHSH inequality such that Tr(Bρ̃) ≥ 2

k , then ρ has non-
locality, where k = tr[PρP †].

Proof. Since P †1 σiP1 and P †2 σiP2 have the same eigenval-
ues as σi, for high dimensional state ρ, suppose there is
one 2⊗ 2 CHSH operator B, such that

〈Bρ̃〉 = 〈B̃ρ〉/k = s > 2,

where B̃ = P †BP induced from B, k = tr[PρP †]. Then
〈B̃ρ〉 = ks. If ks > 2, ρ violates a Bell inequality, then ρ
has nonlocality.

If there exists one “two-qubit” projected state ρ̃ which
violates CHSH inequality such that 2 < Tr(Bρ̃) < 2

k , it
implies that the state ρ still has some kind of “hidden”
nonlocalities. In the following we say that if a “two-
qubit” projected state ρ̃ violates the CHSH inequality,
2 < Tr(Bρ̃) < 2

k , then ρ has locally-preprocessed-allowed
nonlocality, even if ρ itself does not violate any Bell in-
equalities. Let us consider the d⊗ d isotropic states [67],

ρ(p) = (1− p)
Id2

d2
+ pP+,

where P+ = |ψ+〉〈ψ+|, with |ψ+〉 =
∑d

i=1 |i〉〈i|/
√

d, 0 ≤
p ≤ 1. For d = 2, the isotropy states are just Werner
states. Isotropy states are entangled iff p > Pent = 1

d+1 .
Denote PBell the critical value such that ρ(p) is Bell-
nonlocal iff p > PBell. A non-trivial upper bound of
PBell has been derived in [68]. For d = 3 one has pBell =
0.69615. Denote Psteer the value of p such that ρ(p) is
steerable iff p > Psteer. In [69] the authors presented a
lower bound on Psteer = (Hd − 1)/(d − 1), where Hd =∑d

n=1(1/n) is the harmonic series.
Denote Phb the critical point such that ρ(p) has locally-

preprocessed-allowed nonlocality if p > Phb. In the fol-
lowing, we will give a specific example to show that
how to calculate the value Phb of high dimensional
isotropic states with locally-preprocessed-allowed nonlo-
cality. Moreover, Phb will also give a lower bound of
PBell.

Consider the case of d = 3 first. Let |eα〉, α = 0, 1, 2,
be the basis of H1 and H2. Set P = P1 ⊗ P2, where

P1 = P2 = (|e0〉, |e1〉)t =
(

1 0 0
0 1 0

)
. We obtain the

projected state of ρ(p),

ρ̃2 =
PρP †

k
=

9
2p + 4

·




p
3 + 1−p

9 0 0 p
3

0 1−p
9 0 0

0 0 1−p
9 0

p
3 0 0 p

3 + 1−p
9


 ,

which can be equivalently expressed as 1
4 (I2 ⊗ I2 +

3p
2+p (σx ⊗ σx − σy ⊗ σy + σz ⊗ σz)). Therefore, ρ̃2 has
nonlocality if p > 2

3
√

2−1
≈ 0.61678. Then, ρ(p) has

locally-preprocessed-allowed nonlocality if p > 2
3
√

2−1
,

and Phb ≈ 0.61678 is a new lower bound of PBell for
3 ⊗ 3 isotropic states. One has the relation Psteer =
5/12 ≤ Phb ≤ PBell < 0.69615.

By means of the projection P1 = P2 = (|e0〉, |e1〉)t, we
can get the values of Phb for different dimensions d of
isotropic states ρ(p), see Fig. 2. They are less than the
best known values of PBell, obtained from the Collins-
Gisin-Linden-Massar-Popescu inequalities [68].
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d  2 3 4 5 6 
entp  0.3333 0.2500 0.2000 0.1667 0.1429 

steerp  0.5000 0.4167 0.3611 0.3208 0.2900 
hbp  0.7054 0.6168 0.5469 0.4913 0.4871 

Bellp  0.7054 0.6961 0.6905 0.6872 0.6849  FIG. 2: Pent, Phb, Psteer and PBell for isotropic states with
different dimension d.

NONLOCALITY AND
LOCALLY-PREPROCESSED-ALLOWED

NONLOCALITY OF TRIPARTITE QUANTUM
STATES

The two-qubit Bell operator BCHSH can be extended
to n-qubit one [70],

Bn = Bn−1 ⊗ 1
2
(An + A′n) + B′n−1 ⊗

1
2
(An −A′n), (7)

where An and A′n are the observableson the n-th qubit.
The operators 1

2Bn−1 and 1
2B

′
n−1 act on the rest n − 1

qubits. For an n-qubit system, one has B = Tr(ρBn) ≤
2

n+1
2 [70].
The nonlocality of three-qubit systems can be inves-

tigated by Mermin’s inequality [71] and Svetlichny’s in-
equality [72]. One of the Mermin inequalities for tripar-
tite systems is of the following form,

〈M〉 = 〈A0B0C1 + A0B1C0 + A1B0C0 −A1B1C1〉 ≤ 2,

where A0, A1, B0, B1 and C0, C1 are observables on sys-
tems H1, H2 and H3, respectively.

One of the Svetlichny inequalities reads

〈S〉 = 〈A0B0C1 + A0B1C0 + A1B0C0 −A1B1C1〉
+〈A0B1C1 + A1B0C1 + A1B1C0 −A0B0C0〉 ≤ 4.

This inequality can detect the genuine tripartite nonlo-
cality [72].

In [73], the authors derived an analytical formula for
the maximum expectation value of the Mermin opera-
tor M for three-qubit pure and mixed states. A tight
upper bound is also obtained for the maximal quantum
value of the Svetlichny operators for three-qubit systems
[74]. More recently, the violations of the Mermins and
Svetlichnys inequalities for three-qubit W-state and GHZ
states have been studied by the IBMs cloud computing
platform [75].

Let |ei〉, i = 0, 1, 2, · · · , d − 1, be a local basis of H1,
H2 and H3. Set P = P1 ⊗ P2 ⊗ P3, where Pi, i = 1, 2, 3,
are 3× d matrices of the form (|eα〉, |eβ〉, |eγ〉)t for some
α 6= β 6= γ. We can project the tripartite state ρ to be
a “three-qubit” state ρ̂ = PρP †

l with l = tr[PρP †] 6= 0.
Correspondingly, induced from the Mermin (Svetlichny)

operator for three-qubit states, we have the operators
M̂ = P †MP (Ŝ = P †SP ) for high dimensional tripartite
states. We have

Theorem 4. For any d⊗d⊗d quantum state ρ, if there
exists one “three-qubit” projected state ρ̂ which violates
the Mermin (Svetlichny) inequality such that 〈M〉 > 2

l
(〈S〉 > 4

l ), then ρ has tripartite nonlocality (genuine tri-
partite nonlocality).

Proof. Since P †1 σiP1 and P †2 σiP2 and P †3 σiP3 have the
same eigenvalues as σi. If one “three-qubit” projected
state ρ̂ violates an induced Mermin inequality, we have
Tr(M̂ρ) = Tr(P †MPρ) = Tr(MPρP †) = l · Tr(Mρ̂) =
ls with s > 2. If s > 2

l that is Tr(M̂ρ) > 2, then
ρ violates the Mermin inequality. The result for the
Svetlichny’s inequality can be obtained similarly.

The nonlocality of tripartite quantum states is more
complicated than that of bipartite ones. For any d⊗d⊗d
quantum state ρ, if there exists a “three-qubit” projected
state ρ̂ which violates the Mermin inequality such that
2 < 〈M〉 ≤ 2

l , then ρ has locally-preprocessed-allowed
tripartite nonlocality. If there exists an “three-qubit”
projected state ρ̂ which violates the Svetlichny inequality
such that 4 < 〈S〉 ≤ 4

l , then ρ has locally-preprocessed-
allowed genuine tripartite nonlocality.

CONCLUSIONS AND DISCUSSIONS

Quantum nonlocality is a fundamental feature in quan-
tum mechanics. We have investigated the relation be-
tween the maximal expectation value of Bell operators B
and the entanglement concurrence C. The lower bounds
of B have been derived based on C. Such relations be-
tween C and B play important roles in judging nonlocal-
ity from entanglement. Moreover, determining the nonlo-
cality of high dimensional quantum states has been a dif-
ficult problem in the theory of quantum information. We
have provided approaches to judge the nonlocality of high
dimensional quantum states by projecting the states to
qubits ones. Moreover, the violation of Bell inequalities
of the projected qubits states reveals some kind of “hid-
den” nonlocalities of the original high dimensional state,
we call them locally-preprocessed-allowed nonlocalities.
The implications and applications of such nonlocalities
need to be explored further. Our results may also high-
light researches on the quantum nonlocality and related
the quantum correlations such as quantum steerability.
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