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Abstract
A tensor v is the sum of at least rank(v) elementary tensors. In addition, a �border rank�is de�ned:

rank(w) = r holds if w is a limit of rank-r tensors. Usually, the set of rank-r tensors is not closed, i.e.,
tensors with r =rank(w) < rank(w) may exist. It is easy to see that in such a case the representation of
rank-r tensors v contains diverging elementary tensors as v approaches w: In a �rst part we recall results
about the uniform strength of the divergence in the case of general nonclosed tensor formats (restricted
to �nite dimensions). The second part discusses the r-term format for in�nite-dimensional tensor spaces.
It is shown that the general situation is very similar to the behaviour of �nite-dimensional model spaces.
The third part contains the main result: it is proved that in the case of rank(w) = 2 < rank(w) the
divergence strength is & "�1=2, i.e., if kv �wk < " and rank(v) � 2; the parameters of v increase at
least proportionally to "�1=2:

Mathematics Subject Classi�cation: 14N07, 15A69, 46A32
Keywords: tensor approximation, nonclosed tensor formats, border rank

1 Introduction

The essential tool for the numerical treatment of tensors are appropriate sparse representations, i.e., the
elements of the huge tensor spaces are represented by parameters or moderate size. There are several
representations (also called �formats�) with di¤erent properties. One of the properties is whether they are
closed or not. As explained below, nonclosed formats can lead to the unfavourable occurrence of an instability,
known as cancellation e¤ect from numerical di¤erentiation.
To be concrete, we describe two examples of nonclosed formats. Let

V =
dO
j=1

Vj (Vj vector spaces, d � 3) (1.1)

be the tensor space. The underlying �eld is K 2 fR;Cg: For �xed integer r; the r-term format (also called
�canonical representation�, �CP�, etc.) consists of all tensors of the form

v =
rX

�=1

dO
j=1

v(j)� with v(j)� 2 Vj : (1.2)

We denote this set by Rr (cf. [4, §7, p. 233¤]). It is easy to see that, e.g., R2 is not closed (cf. De Silva�Lim
[2]). Choose Vj = K2; a =

�
1
0

�
; b =

�
0
1

�
: Then v(t) = 1

2t

�

d (a+ tb)�
d (a� tb)

�
belongs to R2: It is the

centred divided di¤erence tending to the derivative

dv(t)

dt
jt=0 = b
 a
 : : :
 a + a
 b
 : : :
 a + : : :+ a
 a
 : : :
 b: (1.3)

It is known that the latter tensor has rank d (cf. [4, Lemma 3.46, p. 72]; note that d � 3); hence, it does
not belong to R2 but to its closure. For later purpose we notice that the approximation error of the centred
di¤erence is " � t2; while the two terms of v(t) are of the size 1

2t +O(1) � "
�1=2:
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Another source of nonclosed representations are graph-based formats involving a graph not being a tree
(therefore containing a cycle). Such representations are often used in physics (cf. [7]). In general, these
formats are not closed (cf. Landsberg [6, Theorem 14.1.2.2]). The simplest example corresponds to a cycle
and is called the �cyclic matrix product representation�. Let Vj = Knj and �x integers �j � 2: Then matrices
A
(j)
i 2 K�j�1��j (1 � i � nj) de�ne the components

v[i1; : : : ; id] = trace
�
A
(1)
i1
A
(2)
i2
� � �A(d)id

�
of a tensor v 2 V: A concrete example of a tensor not being in this format but in its closure, is given in [4,
Theorem 12.11, p. 469]. For more examples see Czapliński�Micha÷ek�Seynnaeve [1].
In §2 we give a survey of the results about the unstable behaviour of nonclosed formats. The �rst example

from above exhibits divergence of the representing parameters like "�1=2: Possible questions are: Do other
tensors exist with weaker divergence, can the divergence be arbitrarily weak, are there uniform estimates?
The analysis in §2 is restricted to the �nite-dimensional case, since otherwise the compactness arguments

do not apply. The in�nite-dimensional case dimVj =1 of the r-term format Rr in a general Banach tensor
space will be considered in §3. It will turn out that the behaviour is almost equal to the �nite-dimensional
one. This proves that we can restrict the study to the model spaces V =

Nd
j=1Knj :

In the case of the format R2; the relevant model space is
Nd

j=1K2: In §4 we prove that the divergence
strength "�1=2 is the minimal one, i.e., the approximation of all tensors of border rank 2 but rank > 2
requires parameters diverging at least like c"�1=2: Concerning the possible dependence of the constant c on
the tensor we refer to §2.

2 General Divergence Behaviour of Nonclosed Formats

The following statements are described in detail and proved in [5] and [4, §§9.5.3�9.5.6, p. 312¤]. We consider
a format satisfying the following simple conditions. It is described by a continuous mapping

� : D � P ! V (2.1)

with 0 2 D and �(0) = 0; where P is a normed vector space and D a closed subset (usually D = P).1 The
format is de�ned by

F = range(�):

A two-sided cone condition is required: v 2 F implies �v 2 F for all � 2 K: In order to apply compactness
arguments for bounded sets, we require dim(P ) <1 and dimV <1: The norms on P and V are denoted
by k�k : Finally, F is assumed to be nonclosed, i.e., there is a disjoint set B of �border tensors�such that

F = F _[B. (2.2)

Since, in general, the representation of v 2 F is not unique, we introduce the minimal2 bound of the
corresponding parameter by

�(v) := inffkpk : v = �(p)g: (2.3)

A natural task is to approximate some w 2 B by tensors v 2 F with kw � vk < ": The smallest parameter
size is given by

�(w; ") := inf f�(v) : v 2 F ; kw � vk < "g : (2.4)

If w 2 B; weakly monotone divergence �(w; ") % 1 holds as " & 0: The proof is based on the following
lemma (cf. [2, Proposition 4.8])

Lemma 2.1 Let vi 2 F with vi := �(pi) be a sequence converging to w: Then supi kpik <1 implies w 2 F :
1 In the case of F = Rr; we may choose D = P as the product space (V1 � : : :� Vd)r containing the vectors v

(j)
� from (1.2).

Alternatively, D may be the subset of P = V containing all r-tuples of elementary tensors.
2The right-hand side in (2.3) can be replaced by minf: : :g:
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The proof uses a convergent subsequence pi ! p� so that w = lim �(pi) = �(p�) proves w 2 F :
Correspondingly, �(w; ")%1 follows by an indirect proof. It ensures the existence of the diverging quantity
�(w; "); but does not describe the strength of divergence quantitatively. In particular, the divergence might
be di¤erent for di¤erent w 2 B:
Aiming at a uniform statement, the strongest formulation would be

�(w; ") � c �0(") with �0(")%1 as "& 0 and c > 0 for all w 2 B with kwk = 1: (2.5)

It turns out that (2.5) holds if and only if B [ f0g (or fw 2 B, kwk = 1g) is closed. However, in the case of
F = Rr the set B [ f0g is not closed. The counterexample is v(t) := (a+ tb)
 a
 a+ a
 b
 a+ a
 a
 b
with linearly independent a; b 2 K2; since v(0) 2 R2 and v(t) 2 R3 for t 6= 0: De�ne the exceptional set @B
by

B = B _[ @B (disjoint union).

Replacing c in (2.5) by a factor dist(w; @B), we obtain the following generally valid statement.

Theorem 2.2 There is a function �1 with �1(")%1 as "& 0 such that

�(w; ") � dist(w; @B) �1(") for all w 2 B with kwk = 1:

This inequality ensures the existence of a minimal divergence strength �1; but the indirect proof does not
describe the concrete nature of �1.
Since @B � F ; closedness of @B implies dist(w; @B) > 0: In fact, for F = R2 the set @B is closed.

3 In�nite Dimensions

Now the vector spaces Vj in (1.1) may be in�nite dimensional. We restrict our considerations to F = Rr:
Note that the cyclic matrix product format cannot be extended to dimVj = 1; since it would require
in�nitely many matrices.
We recall that v 2 Rr corresponds to a representation v =

Pr
i=1

Nd
j=1 v

(j)
i :We may de�ne the mapping

� in (2.1) by � : p = (ei)i=1;:::;r 7! v =
Pr

i=1 ei with elementary tensors ei (cf. Footnote 1). This is a natural
choice since � is linear. The norm of p is chosen as

kpk =
rX

i
keik2: (3.1)

Remark 3.1 The vectors v(j)i in ei =
Nd

j=1 v
(j)
i can be scaled equally: kv(j)i kj = kv(k)i kk: Then the later

inequality (3.3) implies kv(j)i kj � (C�
 kpk)1=d:

The next statements mention another format: the �tensor subspace representation�Tr (also called Tucker
representation). Let r := (r1; : : : ; rd) a d-tuple of integers. Then Tr consists of all tensors of the form
v 2

Nd
j=1 Uj with subspaces Uj subject to dimUj � rj (cf. [4, §8, p. 257¤]).

Di¤erent from the �nite-dimensional case, the norm of the topological tensor space plays an important
role. We require two properties:
(a) The tensor product must be a continuous map from V1 � : : :� Vd into V, i.e.,







dO
j=1

v(j)







 � C

dY
j=1

kv(j)kj ; for all v(j) 2 Vj ; (3.2)

where k�kj is the norm on Vj , while k�k is the norm on V. An equivalent statement is k�k . k�k^ ; where
k�k^ is the projective crossnorm (cf. [4, §4.2.3, p. 116¤ and §4.3.1.2, p. 138]).
(b) An analogous estimate corresponding to the Banach spaces V �j of the continuous linear functionals

is valid: 






dO
j=1

'(j)








�

� C�

dY
j=1

k'(j)k�j for all '(j) 2 V �j ; (3.3)
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where k�k� and k�k�j are the related dual norms. An equivalent statement is k�k & k�k_ ; where k�k_ is the
injective crossnorm. Note that k�k_ is the weakest possible reasonable crossnorm (cf. [4, §4.3.1.3, p. 139]).
Under these conditions the representation Tr is closed.3 This properties leads to an estimate of the rank

by means of the border rank (denoted by rank).

Remark 3.2 A tensor with rank(v) = r belongs to Tr with r := (r; : : : ; r) : In particular, we have4

rank(v) � rank(v)d:

Proof. There is a sequence vi ! v with rank(vi) � r: Since vi 2 Rr � Tr and the set Tr is closed, we
conclude that v 2 Tr: Now use rank(v) �

Qd
j=1 rj for v 2 T(r1;:::;rd):

Let w be the limit of fvig : There are unique minimal subspaces Uminj (w) with the property

w 2 U(w) :=
Od

j=1
Uminj (w) � V (3.4)

(cf. [4, §6, p. 201¤]). Let rj := dim(Uminj (w)): Remark 3.2 implies rj � r = rank(w): We introduce the
model space

Umod :=
Od

j=1
Krj

equipped with the Euclidean norm k�kmod. Note that §2 applies to Umod and the format F = Rr: In the
following we shall show that the divergence behaviour �(w; ") is equal to the divergence behaviour in the
model space Umod up to constants for which explicit bounds can be given.
Next we need the following result whose proof is postponed to the end of this section.

Lemma 3.3 There are projections5 Pj : Vj ! Uminj (w) with kPjk � rj such that P :=
Nd

j=1 Pj is a
projection onto U(w) with the bound kPk � C
C�
 dim(U(w)). Furthermore, P maps Rr into Rr.

U(w) and Umod are isomorphic since dim(Uminj (w)) = dim(Krj ): Hence, the norms (restriction of k�k to
U(w) and k�kmod) are equivalent. However, the constants in the equivalence inequalities are still undeter-
mined.
The de�nition of �(w; ") = inf f�(v) : v 2 F ; kw � vk < "g also involves tensors v from outside of U(w):

Now we introduce
�U (w; ") = inf f�(u) : u 2 F \ U(w) ; kw � uk < "g : (3.5)

Proposition 3.4 �U (w; ") and �(w; ") satisfy the following inequalities:

�U (w; ") � �(w; ") � �U (w; " kPk) = kPk

with kPk � C
C�
 dim(U(w)) and dim(U(w)) = dim(Umod) � rank(w)d:

Proof. �U (w; ") � �(w; ") is the trivial estimate. Fix some v 2 F ; kw � vk < "; from the right-hand side
in (2.4). Set û := Pv 2 F \ U(w) with P from Lemma 3.3 and note that kw � ûk = kP (w � v)k �
kPk kw � vk < " kPk : Hence, û appears in the right-hand side of (3.5) for " replaced by " kPk and leads
to the parameter size �(û) � kPk�(v) (cf. (3.1)). This proves �(v) � �(û)= kPk � �U (w; " kPk)= kPk :
Forming the in�mum over all v 2 F ; kw � vk < "; we obtain the second inequality.
Now we compareU(w) andUmod. For Uminj (w) we choose a basis fb(j)i g and functionals f'

(j)
i g according

to the following lemma of Auerbach (cf. [4, Lemma 4.20, p. 104]).

Lemma 3.5 For any n-dimensional subspace of a Banach space, there exists a basis fb� : 1 � � � ng and
a dual system f'� : 1 � � � ng (i.e., '�(b�) = ���) with kb�k = k'�k

�
= 1:

3 It is even �weakly closed�, i.e., if vi 2 Tr has a weak limit, this limit belongs to Tr:
4The estimate can be improved using better bounds of the maximal rank (cf. [4, §3.2.6.5, p. 71f]).
5The estimates can be improved if k�k is a uniform crossnorm (cf. [4, §4.2.8, p. 133]): kPjk �

p
rj and kPk �

p
dim(U(w))

(cf. [4, Theorem 4.16, p. 103]).
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De�ne the isomorphism � : U(w) ! Umod by � =
Nd

j=1 �j with �j(b
(j)
i ) := e

(j)
i ; where e

(j)
i are the

standard unit vectors of Krj : Let F and B correspond to U(w) � V; while Fmod and Bmod correspond to
the model space Umod:

Remark 3.6 � maps F into Fmod and B into Bmod: The following estimates hold:

k�k � C�

p
dim(U(w));



��1

 � C
pdim(U(w)); 

�j

 ; k��1j k � prj �
p
rank(w):

Proof. (a) � : F ! Fmod and � : B ! Bmod follow from the fact that isomorphisms do not change the rank
and border rank.
(b) Set i := (i1; i2; : : : ; id) : x 2 U(w) has a representation

P
i �i

Nd
j=1 b

(j)
ij
with �i =

�Nd
j=1 '

(j)
ij

�
x :

k�xk =
qP

i j�ij
2 and j�ij �




Nd
j=1 '

(j)
ij




� kxk � C�

Qd
j=1 k'

(j)
ij
k� kxk = C�
 kxk prove k�k �

C�

p
dim(U(w)):

(c) Let y :=
P

i �i
Nd

j=1 e
(j)
ij
be an element of Umod: Application of ��1 =

Nd
j=1 �

�1
j yields ��1y =P

i �i
Nd

j=1 b
(j)
ij
2 U(w): Then

��1y

 �X

i
j�ij





Od

j=1
b
(j)
ij





 � C
Xi
j�ij

Yd

j=1
kb(j)ij k

= C

X

i
j�ij � C


p
dim(U(w))

rX
i
j�ij2 = C


p
dim(U(w)) kyk

proves the second inequality.
(d) The estimates of



�j

 and k��1j k follow by the same lines.
Let

�mod(x; ") = inf f�(y) : y 2 Fmod \ Umod ; kx� yk < "g (3.6)

describe the divergence behaviour of x 2 Bmod in Umod: w 2 B corresponds to x = �w: The next result
shows that the divergence behaviour of w and x is equal up the controlled constants. The proof follows by
the same lines as for Proposition 3.4.

Proposition 3.7 The following estimates hold with � de�ned in Remark 3.6:

�U (w; ") � �mod(�w; " k�k)=


��1

 ; �mod(�w; ") � �U (w; "



��1

)= k�k :
Concerning the inequality in Theorem 2.2, we remark that � maps @B onto @Bmod and

k�k�1 dist(�w; @Bmod) � dist(w; @B) �


��1

dist(�w; @Bmod):

Remark 3.8 If �mod(�; ") is of the form c"��; a factor in the second argument can be moved outside:
�mod(�; "C) = C���mod(�; "):

Now we give the proof of Lemma 3.3.
Proof. Let fb(j)i : 1 � i � rjg be an Auerbach basis of Uminj (w) with corresponding dual functionals f'(j)i g:
Set Pj :=

Prj
i=1 b

(j)
i '

(j)
i : kPjk � rj is immediate. Obviously, the image Px =

Nd
j=1 Pjx

(j) of an elementary

tensor x =
Nd

j=1 x
(j) is again elementary. Therefore, Px with x 2 Rr consists at most of r elementary

tensors.
P equals

P
i1;i2;:::;id

�Nd
j=1 b

(j)
i

��Nd
j=1 '

(j)
i

�
: For any x 2 V we have



�Od

j=1
b
(j)
i

��Od

j=1
'
(j)
i

�
x





 � 



Od

j=1
b
(j)
i









Od

j=1
'
(j)
i





� kxk
� C
C�


Yd

j=1
kb(j)i k

Yd

j=1
k'(j)i k�j kxk = C
C�
 kxk :

Summation over all terms yields kPk � C
C�

Qd
j=1 rj = C
C

�

 dim(U(w)):

Finally, we add two remarks illustrating the ��nite-dimensional nature�of algebraic tensors. The �rst
property is also mentioned by Fernández�Unzueta [3]. We recall that the topological tensor space is the
completion of the algebraic tensor space Valg :=

Nd
j=1 Vj with respect to some norm.
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Remark 3.9 The closure of Rr � V is independent of the norm of V:

Proof. Let VI and VII be two topological tensor spaces with respect to two di¤erent norms k�kI and k�kII :
Let w 2 VI be the limit of a sequence vi 2 Rr � Valg � VI . As seen above, the projected sequence
v̂i = Pvi satis�es v̂i 2 U(w) and v̂i ! w with respect to the norm k�kI : However, the restrictions of the
norms k�kI and k�kII to the �nite-dimensional subspace U(w) � VI \VII are equivalent so that v̂i ! w
also holds with respect to k�kII :

For the solution of optimisation problems it is desired that the in�mum of a cost function F (v); v 2 F ;
is also a minimum. Assuming a re�exive Banach space V; the minimum is taken by a weak limit w of
some sequence vi 2 F : If F is weakly closed (cf. Footnote 3), the minimiser w belongs to F : For in�nite-
dimensional spaces weak convergence and strong convergence (standard convergence) must be distinguished.
In �nite dimensions both kinds of convergence coincide.

Remark 3.10 If w is a weak limit of vi 2 Rr, it is also a strong limit of (possibly other) v̂i 2 Rr: Hence,
the weak closure and the standard closure of Rr coincide.

Proof. Assume vi 2 V and vi * w with rank(w) <1: Note that w 2 U(w) (cf. (3.4)). Let P be a bounded
projection of V onto U(w) (cf. Lemma 3.3). Then also v̂i := Pvi 2 U(w) satis�es v̂i * w. However,
inside of the �nite-dimensional subspace U(w); weak convergence implies strong convergence, i.e., v̂i ! w:
For the proof of v̂i * w let ' 2 V� be a functional. Then ' (v̂i �w) = ' (Pvi �w) = ' (Pvi �Pw) =
('P) (vi �w)! 0; since also 'P 2 V�:

4 Tensors of Border Rank 2

4.1 Result

As seen in Section 3, it su¢ ces to study the behaviour of the model spaces
Nd

j=1Krj : In the case of F = R2

the model space is
V = 
dK2 with d � 3

endowed with the Euclidean norm. The set B from (2.2) consists of all tensors w 2 V with rank(w) = 2 but
rank(w) > 2. The example of the tensor in (1.3) and its approximation by centred divided di¤erences shows
that �(w; ") � c "�1=2 (notation: �(w; ") . "�1=2): Below we prove the opposite inequality: �(w; ") & "�1=2:
This proves

�(w; ") � "�1=2:

The same equivalence holds for �1(") in Theorem 2.2.
For the proof of �(w; ") & "�1=2 we show that a limit w = limvi of a sequence with weaker divergence

must belong to F : The following result can be considered as a stronger form of Lemma 2.1.

Theorem 4.1 �(w; ") = o("�1=2) for w 2 V with rank(w) � 2 implies w 2 R2:

The parameter p in v = �(p) 2 R2 is a pair of elementary tensors: p = (p(1); p(2)) with p(i) =
Nd

j=1 v
(j)
i

and �(p) = p(1)+p(2): The norm kpk is de�ned in (3.1). The statement �(w; ") = o("�1=2) implies that there
is a sequence v� represented by parameters p� such that

v� = �(p�) 2 R2 with "� := kv� �wk ! 0; kp�k = o("�1=2� ): (4.1)

4.2 Choice of Subsequences

Let v� 2 R2 in (4.1) be represented in the form

v� =
dO
j=1

v
(j)
1;� �

dO
j=1

v
(j)
2;� =: �

��
v
(j)
i;�

��
(v
(j)
1;�; v

(j)
2;� 2 K2)
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using the parameters p� = (p1;�; p2:�) with pi;� =
Nd

j=1 v
(j)
i;�: According to Remark 3.1, we use an equal

scaling of the factors:

kv(j)i;�k =




Od

j=1
v
(j)
i;�





1=d = kpi;�k1=d for i = 1; 2: (4.2)

If the sequence of the Euclidean norms kp�k (cf. (3.1)) is bounded, the assertion w 2 R2 follows from
Lemma 2.1. Hence, we may assume that there is a subsequence6 with kp�k ! 1: One of the quantities
kp1;�k and kp2;�k must be unbounded. W.l.o.g. let lim sup kp1;�k =1: Passing to a subsequence, we get

�� := kp1;�k ! 1: (4.3)

The scaled quantities x(j)1;� := �
�1=d
� v

(j)
1;� are bounded: jx

(j)
1;�j �

�
��1� kp1;�k

�1=d � 1 (cf. (4.2)). We choose a
subsequence such that x(j)1;� ! x

(j)
1 for j = 1; : : : ; d:

Convergence v� ! w implies that sup kv�k <1 and x� := 1
��
v� ! 0: Note that x� = x1;� � x2;� with

x1;� :=
Nd

j=1 x
(j)
1;� ! x1 :=

Nd
j=1 x

(j)
1 : Hence, x� ! 0 implies x2;� ! x2 =

Nd
j=1 x

(j)
2 with x2 = x1: The

scaling (4.2) �xes the factors x(j)2 up to a (complex) sign. W.l.o.g. we may choose the signs of v(j)2;� such that

x
(j)
1 = x

(j)
2 :

After these preparations we obtain the representation

v� = ��[x1;� � x2;�] with xi;� =
Od

j=1
x
(j)
i;� and x

(j)
i;� ! x

(j)
1 (i = 1; 2) as �!1:

(4.2) and (4.3) imply kxi;�k = kx(j)i;�k = 1 (i = 1; 2) and kx
(j)
1 k = 1 for 1 � j � d.

There are orthogonal transformations Qj : K2 ! K2 mapping x(j)1 into
�
1
0

�
: The statement of the theorem

does not change when we apply the product Q :=
Nd

j=1Qj and replace v� by Qv� (norms are unchanged,

w 2 R2 if and only if Qw 2 R2). In the following we assume x
(j)
1 =

�
1
0

�
: x

(j)
1;� and x

(j)
2;� are perturbations of�

1
0

�
tending to

�
1
0

�
: We denote the terms of v� = ��

hNd
j=1 x

(j)
1;� �

Nd
j=1 x

(j)
2;�

i
by

dO
j=1

x
(j)
1;� =

�
1 + �0�

�
�
dO
j=1

�
1

�0j;�

�
;

dO
j=1

x
(j)
2;� =

�
1 + �00�

�
�
dO
j=1

�
1

��00j;�

�
with �0�; �

00
�; �

0
j;�; �

00
j;� ! 0 as �! 0:

The above representation of v� corresponds to the parameters p� with kp�k = 2�� (1 + o(1)) : Therefore the
asymptotic behaviour kp�k = o("�1=2� ) in (4.1) becomes

�� = o("
�1=2
� ) as "� := kv� �wk ! 0: (4.4)

In the following we omit the index � to simplify the notation. Instead of v� ! w; �� = o("
�1=2
� ); etc.

we write v! w; � = o("�1=2); etc.:

v = �

8<:(1 + �0) �
dO
j=1

�
1

�0j

�
� (1 + �00)

dO
j=1

�
1

��00j

�9=;! w (4.5)

with � = o("�1=2)!1; �0; �00; �0j ; �
00
j ! 0:

In the �rst step we restrict the proof to the real �eld K = R: The complex case will be discussed in §4.10.
6A subsequence of fp� : � 2 Ng can be understood as fp� : � 2 N0g with some subset N0 � N of in�nite cardinality. This

allows us to use the unchanged notation p�: Choosing a further subsequence, we replace N0 by another in�nite subset N00 � N0:
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4.3 Notations

The tensor v 2 V has 2d components v[i1; i2; : : : ; id]: The following notation indicates the position of the
indices ij = 2. For instance,

v<k> := v[i1; i2; : : : ; id] with ik = 2 and ij = 1 otherwise,

v<k;`> := v[i1; i2; : : : ; id] with ik = i` = 2 and ij = 1 otherwise.

The meaning of v<k;`;m> etc. is obvious. The empty case is

v<> = v[1; 1; : : : ; 1]:

The number of indices in the bracket < : : : > corresponds to the number of factors �0j or �
00
j in the repres-

entation of v<:::>: Therefore v<k;`> and v<k;`;:::> are called �higher order components�.

4.4 Distinction of Cases

The asymptotic behaviour of v is known, but we need to know how the involved quantities �0j ; �
00
j behave.

In the following, the index j 2 f1; : : : ; dg is �xed.
If �0j = �00j = 0 for almost all members of the sequence; the limit w must be a multiple of

Nd
j=1

�
1
0

�
2

R1 � R2: Otherwise, we restrict to a subsequence with j�0j j+ j�00j j > 0: Consider the quotient qj := j�00j =�0j j
(set qj = 1 if �0j = 0). If fqjg has an accumulation point 0, we can extract a subsequence with qj ! 0;
leading to the �rst statement in case (4.6):

�00j = o(�
0
j) or (�00j = O(�

0
j) and �

0
j�
00
j � 0): (4.6)

Otherwise, if fqjg has the improper accumulation point 1, the �rst statement in case (4.7) applies to a
suitable subsequence::

�0j = o(�
00
j ) or (�0j = O(�

00
j ) and �

0
j�
00
j � 0): (4.7)

In the remaining case there exists an accumulation point q 2 (0;1): Choose a subsequence with qj ! q:
The subsequence can be selected in such a way that all members �0j of the sequence have the same sign and
all �00j have the same sign. In this case �

0
j � �00j holds and we can distinguish two subcases: �

0
j�
00
j � 0 is

added to (4.6) and (4.7), whereas �0j�
00
j < 0 de�nes the last case (4.8):

�0j � ��00j and �0j�
00
j < 0: (4.8)

Hence, for each j 2 f1; : : : ; dg, one of the conditions (4.6), (4.7), (4.8) applies. Conditions (4.6) and (4.7)
may apply simultaneously.

Remark 4.2 The idea of the following proof is to show that the tensor w from (4.1) has

at most three nonzero components w<>; w<i>; w<j> (i 6= j): (4.9)

W.l.o.g. we may assume i = 1; j = 2: Then the tensor is of the form�
w<>
w<1>

�


�
1

0

�


�
1

0

�

 : : :


�
1

0

�
+

�
1

0

�


�
0

w<2>

�


�
1

0

�

 : : :


�
1

0

�
:

This proves rank(w) � 2 and yields w 2 F = R2:

In the sequel, we have to discuss the various combinations of (4.6), (4.7), (4.8) for j 2 f1; : : : ; dg:
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4.5 Case A: Condition (4.6)

The component v<j> is of the form

v<j> = �
�
(1 + �0)�0j + (1 + �

00)�00j
�

(4.10)

(cf. (4.5)). Under assumption (4.6), ��0j is the leading term, i.e., v<j> � ��0j :

Remark 4.3 Assume that (4.6) holds for j in (4.10). Then there are two cases (a) and (b).
Case (a): v<j> ! w<j> 6= 0 implies

�00j . �0j � 1=�: (4.11)

Case (b): v<j> ! w<j> = 0 implies �
0
j ; �

00
j . "=�:

In both cases we have
�0j ; �

00
j . 1=�: (4.12)

Proof. In Case (a), � (1 + �0)�0j has a nonvanishing limit, i.e. ��
0
j ! c 6= 0; proving �0j � 1=�: �00j . �0j

follows from (4.6).
In Case (b), condition (4.4) requires7

��� (1 + �0)�0j�� . jv<j>j = jv<j> � w<j>j � "; proving �0j . "=�:

The same argument holds for �00j .

Conclusion 4.4 Let (4.6) holds for j. Then all higher order components w<j;k>; w<j;k;`;:::> containing the
index j vanish.

Proof. The component v<j;k> is of the form

v<j;k> = �
�
(1 + �0)�0j�

0
k � (1 + �00)�00j �00k

�
(j 6= k) (4.13)

(cf. (4.5)). ��0j�
0
k . �0k ! 0 and ��00j �

00
k . �00k ! 0 follow from (4.12) and �0k; �

00
k ! 0: Hence, v<j;k> !

w<j;k> = 0: Components of higher order like, e.g., v<j;k;`> contain even more �-factors and must tend to
zero.

The crucial statement is the next one.

Lemma 4.5 (4.6) and w<j> 6= 0 hold at most for two di¤erent indices j1 and j2:

Proof. For an indirect proof assume that these properties hold for three indices. For ease of a simple notation,
assume that the corresponding indices are j = 1; 2; 3: The component v<1;2;3> is of the form

v<1;2;3> = �
�
(1 + �0)�01�

0
2�

0
3 + (1 + �

00)�001�
00
2�

00
3

�
: (4.14)

(4.6) implies v<1;2;3> � ��01�
0
2�

0
3: Since v<1;2;3> ! w<1;2;3> = 0 (cf. Conclusion 4.4), condition (4.4)

requires
����01�02�03�� � jv<1;2;3>j � ": (4.11) states that �0j � 1=� for j = 1; 2; 3: Combination with the

previous inequality yields ��2 . ", i.e., � & "�1=2 in contradiction to � = o("�1=2) (cf. (4.4)).

4.6 Case B: Conditions (4.7)

Remark 4.3 holds with interchanged roles of �0j and �
00
j : Also Conclusion 4.4 and Lemma 4.5 hold with

condition (4.6) replaced by (4.7).

7" := kv �wk in (4.4) implies jv<:::> � w<:::>j � " for all components.
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4.7 Case C: Conditions (4.6) and (4.7)

Lemma 4.5 in Case A and the modi�ed Lemma 4.5 in Case B cover the cases that condition (4.6) applies to
three indices or that (4.7) applies to three indices. Now we consider the mixed case, i.e.,
(a) (4.6) holds for two indices and (4.7) holds for one index or
(b) (4.6) holds for one and (4.7) for two indices.
By symmetry, it is su¢ cient to consider case (a).

Lemma 4.6 It is impossible that (4.6) and w<j> 6= 0 hold for two di¤erent indices j1 and j2; while (4.7)
and w<j3> 6= 0 hold for a third index j3 (j1 6= j3 6= j2).

Proof. W.l.o.g. we may assume j1 = 1; j2 = 2; j3 = 3. Consider

v<1;2> = �
�
(1 + �0)�01�

0
2 � (1 + �00)�001�002

�
(cf. (4.13)). First, we assume that the two terms in v<1;2> are of the same order: ��01�

0
2 � ��001�

00
2 (note

that in this case the terms may cancel). Because of (4.6) we conclude that �01 � �001 and �02 � �002 ; implying
property (4.6) for j = 3. Hence, Lemma 4.5 can be applied and yields the contradiction.
Otherwise, ��01�

0
2 is the only leading term in v<1;2> ! w<1;2> = 0 (cf. Conclusion 4.4). The requirement

jv<1;2> � w<1;2>j = jv<1;2>j �
����01�02�� . " together with �01; �02 � 1=� (cf. (4.11)) implies ����01�02�� � 1=� . "

and � & "�1 in contradiction to (4.4).

4.8 Case D: Condition (4.8)

Now we assume that condition (4.8) holds for all j 2 f1; : : : ; dg: Because of �0j � �00j and their opposite signs,
the terms in (4.10) may cancel. It is not possible to estimate ��0j or ��

00
j by means of v<j>: For this purpose

we introduce the notation
�00j = � (1 + �j)�0j (4.15)

with a bounded �j : Note that �j ! 0 may occur. Inserting (4.15) into (4.10) we obtain

v<j> = ��
0
j [(1 + �

0)� (1 + �00) (1 + �j)] = ��0j [�0 � �00 � (1 + �00)�j ]
= �0jv<> � (1 + �00)��0j�j : (4.16)

Remark 4.7 (a) Assume condition (4.8) and (4.15) for an index j: Then j��0j�j j � O(1): If in addition
w<j> 6= 0; then

��0j�j � 1:

(b) Let (4.8) hold for two indices j and k: Then v<j;k> ! w<j;k> = 0 and w<j;k;:::> = 0 for all higher order
components containing j and k:

Proof. (a) Since �0jv<> ! 0; the term (1 + �00)��0j�j ! w<j> in (4.16) must be bounded. Furthermore,
��0j�j ! w<j> 6= 0 implies ��0j�j � 1.
(b) v<j;k> has the representation

v<j;k> = �
0
j�
0
kv<> � (1 + �00)��0j�0k(�j + �k + �j�k): (4.17)

Then �0j�
0
kv<> ! 0 and part (a) yield ��0j�

0
k�j =

�
��0j�j

�
�0k . �0k ! 0 as well as ��0j�

0
k�k =

�
��0k�k

�
�0j .

�0j ! 0: This proves v<j;k> ! w<j;k> = 0:

Now we consider the behaviour of ��j : Either j��j j � O(1) holds or j��j j ! 1 (for a subsequence). The
�rst case is the harmless one.

Remark 4.8 Condition (4.8) together with j��j j � O(1) yields v<j> ! w<j> = 0:

The next lemma is the analogue of Lemma 4.5.

Lemma 4.9 Condition (4.8) cannot hold for three indices j1; j2; j3 with w<ji> 6= 0 (1 � i � 3).

10



Proof. For an indirect proof assume (4.8) with w<j> 6= 0 for three indices j: W.l.o.g. we assume j1 = 1;
j2 = 2; j3 = 3. Thanks to Remark 4.8, j��j j ! 1 must hold implying ��0j�j � 1 (cf. Remark 4.7a).
Two of the three values �1; �2; �3 must have the same sign �say j�1 + �2j = j�1j + j�2j : ��j ! 1

implies that the second term (1 + �00)��01�
0
2(�1 + �2 + �1�2) � ��01�02(�1 + �2) in v<1;2> (cf. (4.17)) is the

leading one. From (4.4) and ��0j�j � 1 we conclude that����01�02 (�1 + �2)�� = ����01�02�� (j�1j+ j�2j) = ����01�1�� ���02��+ ����02�2�� ���01�� � ���01��+ ���02�� . ":
Then � . o("�1=2) from (4.4) yields ��01; ��

0
2 . o("+1=2); which implies v<1> ! w<1> = 0 as well as

w<2> = 0 in contradiction to our assumption.

Assuming condition (4.8) for all j 2 f1; : : : ; dg; we conclude from Lemma 4.9 that at most two components
w<j> may be nonzero, while all higher order terms vanish because of Remark 4.7b. Hence Remark 4.2 proves
w 2 R2:
Next we discuss the mixed situation when indices with condition (4.6) or (4.7) as well as indices with

condition (4.8) are present.

4.9 Case E: Mixed Situation

Lemma 4.10 Let j be an index for which w<j> 6= 0 and either (4.6) or (4.7) are valid. Then w<k> = 0
holds for all k subject to condition (4.8).

Proof. (4.6) and (4.7) yield completely symmetric situations. W.l.o.g. assume (4.6). Conclusion 4.4 states
that v<j;k> ! w<j;k> = 0: v<j;k> is of the form

v<j;k> = ��
0
k

�
(1 + �0)�0j + (1 + �

00) (1 + �k)�
00
j

�
(note that both terms have the same sign, no cancellation!). ��0j � 1 from (4.11) implies���0k�� � ����0k (1 + �0)�0j�� � jv<j;k>j � "
because of (4.4). Together with � . o("�1=2); we obtain ��0k�k . o("1=2)! 0 so that v<k> ! w<k> = 0:

Let condition (4.6) or (4.7) hold for j 2 D1 6= ;; while (4.8) holds for j 2 D2 := f1; : : : ; dgnD1 6= ;: For
all k 2 D2 we have w<k> = 0 as stated in Lemma 4.10. Among D1 there can be at most two indices with
w<j> 6= 0 (cf. Lemmata 4.5 and 4.6).
Remark 4.7b states that w<j;k> = w<j;k;:::> = 0 for higher order components with j; k 2 D2: Otherwise,

one of the indices must belong to D1: Then w<j;k> = w<j;k;:::> = 0 follows from Conclusion 4.4. This proves
the following result, so that again Remark 4.2 can be applied.

Remark 4.11 Also in the mixed case, w<j> 6= 0 occurs for at most two indices j, while all higher order
components vanish: w<j;k> = w<j;k;:::> = 0:

4.10 The Complex Case

Now we discuss the modi�cations for the complex tensor space 
dC2:
The quantities �0j and �

00
j are of the form

�0j = �
0
j exp(i!

0
j) and �00j = �

00
j exp(i!

00
j ) ( �0j ; �

00
j � 0; !0j ; !00j 2 [0; 2�) ):

Taking a subsequence, we can ensure that8

!0j ! !�j 2 [0; 2�) and !00j ! !��j 2 [0; 2�):

The condition �0j�
00
j � 0 in (4.6) and (4.7) has to be replaced by��!�j � !��j �� 6= �;

8Convergence modulo 2�:
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i.e., we have to avoid that in the limit the complex signs of �0j and �
00
j are opposite. Then the same conclusions

follow as in the real case.
The inequality �0j�

00
j < 0 in (4.8) becomes ��!�j � !��j �� = �:

Again we set �00j = ��0j (1 + �j) with bounded �j : For the proof of Lemma 4.9 we used the fact that at
least two of the three quantities �1; �2; �3 have the same sign, so that, e.g., j�1 + �2j = j�1j + j�2j :
Now we use that among three complex values �1; �2; �3 there are at least two � say �1 and �2 �with
j�1 + �2j � 1

2 (j�1j+ j�2j) : This leads to the same results.
With these modi�cations the previous proof can be repeated for the complex case.
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