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Abstract. In this paper, we explicitly prove that statistical manifolds
have a Frobenius manifold structure. This latter object, at the inter-
play of beautiful interactions between topology and quantum field the-
ory, raises natural questions, concerning the existence of Gromov–Witten
invariants for statistical manifolds. We prove that an analog of Gromov–
Witten invariants for statistical manifolds (GWS) exists, and that it
plays an important role in the learning process. These new invariants
have a geometric interpretation concerning intersection points of para-
holomorphic curves. In addition, we unravel the hidden symmetries of
statistical manifolds. It decomposes into a pair of totally geodesic sub-
manifolds, containing a pair of flat connections. We prove that the pair
of pseudo-Riemannian submanifolds are symmetric to each other with
respect to Pierce mirror.
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1 Introduction

Statistical manifolds have been for more than 60 years a domain of great in-
terest, in information theory and machine learning [2–4, 7–10] and in decision
theory [9]. Statistical manifolds are given by a family of probability distribu-
tions, indexed by some real parameter and carry an affine connection structure,
compatible with the Fisher–Rao metric. Recently, in [11], a new perspective on
this object has been given. It was shown that statistical manifolds have a struc-
ture of F -manifolds (see [13]). We prove explicitly that they have the structure
of a Frobenius manifold. It is the fourth type of Frobenius manifolds, known
nowadays:

Theorem A Statistical manifolds have the structure of Frobenius manifolds.

Moreover, we investigate geometric properties, and show that statistical man-
ifolds split into a pair of totally geodesic submanifolds, containing a pair of flat

? This research was supported by the Max Planck Society’s Minerva grant. The authors
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connections. We prove that the pair of pseudo-Riemannian submanifolds are
symmetric to each other with respect to Pierce mirror i.e.:

Theorem B The manifold of probability distributions is a paracomplex mani-
fold. It decomposes into a pair of totally geodesic submanifolds, containing a pair
of flat connections. Moreover, the pair of pseudo-Riemannian submanifolds are
symmetric to each other with respect to Pierce mirror.

The notion of Frobenius manifolds (resp. F -manifolds) is the fruit of fifty
years of remarkable interaction between topology and quantum physics. This re-
lation involves the most advanced and sophisticated ideas on each side, and
lead to Topological Quantum Field Theory. The three other classes include
quantum cohomology (topological sigma-models), unfolding spaces of singulari-
ties (Saito’s theory, Landau-Ginzburg models), and Barannikov–Kontsevich con-
struction starting with the Dolbeault complex of a Calabi–Yau manifold and con-
jecturally producing the B-side of the mirror conjecture in arbitrary dimension
(see [14]).

Moreover, Frobenius manifolds being at the interplay of beautiful interactions
between topology and quantum field theory, raises natural questions concerning
the role and existence of Gromov–Witten invariants, for statistical manifolds.
We prove that an analog of Gromov–Witten invariants for statistical manifolds
exists, and that it plays an important role in the learning process. These new
invariants have a geometric interpretation concerning the intersection of para-
holomorphic curves.

In particular, we show that:

Theorem C Consider a statistical manifold S. Then, the Gromov–Witten in-
variants for statistical manifolds (GWS) determine the learning process.

2 Statistical manifolds

Let (Ω,F) be a measure space, where F denotes the σ-algebra of elements of
Ω. We consider a family of parametric probabilities S on the measure space
(Ω,F). We ask all parametric probabilities of S to be absolutely continuous w.r
to a σ-finite measure λ i.e. a measure P ∈ (S,F) is absolutely continuous w.r
to λ if for every measurable set A ⊂ F :

λ(A) = 0⇒ P (A) = 0, ∀A ⊂ F ,

which we denote by P � λ. Note that P � λ does not imply that λ� P .
If λ is positive and σ-finite there exists a measurable function ρ called density

of the measure P w.r to the measure λ, denoted

ρ =
dP

dλ
, P (A) =

∫
A

ρdλ, ∀A ⊂ F .
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We denote by S the associated family of probability densities of the parametric
probabilities. We limit ourselves to the case where S is a smooth topological
manifold.

S =

{
ρθ ∈ L1(Ω, λ), θ = {θ1, . . . θn}; ρ > 0 λ− a.e.,

∫
Ω

ρdλ = 1

}
.

This generates the space of probability measures absolutely continuous with
respect to the measure λ, i.e. Pθ(A) =

∫
A
ρθdλ where A ⊂ F .

We construct its tangent space as follows. Let u ∈ L2(Ω,Pθ) be a tangent
vector to S at the point ρθ.

Tθ =

{
u ∈ L2(Ω,Pθ);EPθ

[u] = 0, u =

d∑
i=1

ui∂i`θ

}
,

where EPθ
[u] is the expectation value, w.r. to the probability Pθ.

Remark 1. The elements of Tθ generate the family of signed measures with
bounded variations (i.e. signed measures whose total variation ‖µ‖ = |µ|(X)
is bounded, vanishing only on an ideal I of the σ-algebra F) which are abso-
lutely continuous with respect to Pθ and such that

∫
Ω
udPθ = 0. This forms a

real affine space.

In 1945, Rao [17] introduced the Riemannian metric on a statistical manifold,
using the Fischer information matrix. The statistical manifold forms a (pseudo)-
Riemannian manifold.

In the basis, where {∂i`θ}, {i = 1, . . . , n} where `θ = ln ρθ, the Fisher metric
are just the covariance matrix of the score vector. Citing results of [5] (p89) we
can in particular state that:

gi,j(θ) = EPθ
[∂i`θ∂j`θ]

gi,j(θ) = EPθ
[aiθa

j
θ],

where {ai} form a dual basis to {∂j`θ}:

aiθ(∂j`θ) = EPθ
[aiθ∂j`θ] = δij

with
EPθ

[aiθ] = 0.

3 Frobenius manifolds & statistical manifolds

A Frobenius manifold is a manifold M endowed with an affine flat structure1, a
compatible metric g, and an even symmetric rank 3 tensor t. Define a symmetric

1 Here the affine flat structure is equivalently described as complete atlas
whose transition functions are affine linear. Since the statistical manifolds are
(pseudo)Riemannian manifolds this condition is fulfilled.
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bilinear multiplication on the tangent bundle:

◦ : TM ⊗ TM → TM.

M endowed with these structures is called pre-Frobenius. A pre-Frobenius man-
ifold is Frobenius if it verifies the following associativity and potentiality prop-
erties (see [14]):

– Associativity: for any (flat) local tangent fields u, v, w, we have: t(u, v, w) =
g(u ◦ v, w) = g(u, v ◦ w). The metric is invariant with respect to the multi-
plication.

– Potentiality: A admits locally everywhere locally a potential function Φ such
that, for any local tangent fields ∂i we have t(∂a, ∂b, ∂c) = ∂a, ∂b, ∂cΦ.

We now prove, in this section, explicitly that the statistical manifold is Frobe-
nius. Let (S, g, t) be a statistical manifold equipped with the Fischer-Rao Rie-
mannian metric g and a 3-covariant tensor field t called the skewness tensor. It
is a covariant tensor of rank 3 which is fully symmetric:

t : TS × TS × TS → R,

given by
t|ρθ (u, v, w) = EPθ

[uθvθwθ].

In other words, in the score coordinates, we have:

tijk(θ) = EPθ
[∂i`θ∂j`θ∂k`θ].

Denote the mixed tensor by t = t.g−1. It is bilinear map t : TS × TS → TS,
given componentwise by:

t
k
ij = gkmtijm, (1)

where gkm = EPθ
[akθa

m
θ ]. NB: This is written using Einstein’s convention.

Remark 2. The Einstein convention will be used throughout this paper, when-
ever needed.

We have:
t
k
ij = t|ρθ (∂i`θ, ∂j`θ, a

k) = EPθ
[∂i`θ∂j`θa

k
θ ].

As for the connection, it is given by:

α

∇XY =
0

∇XY +
α

2
t(X,Y ), α ∈ R, X, Y ∈ TρS

where
α

∇XY denotes the α-covariant derivative.

Remark 3. Whenever we have a pre-Frobenius manifold (S, g, t) we call the con-

nection
α

∇ the structure connection.
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In fact
α

∇ is the unique torsion free connection satisfying:

α

∇g = αt,

i.e.

α

∇Xg(Y,Z) = αt(X,Y, Z).

Proposition 1. The tensor t : TS×TS → TS allows to define a multiplication
◦ on TS, such that for all u, v,∈ TρθS, we have:

u ◦ v = t(u, v).

Proof. By construction, in local coordinates, for any u, v,∈ TρθS, we have u =

∂i`θ and v = ∂j`θ. In particular, ∂i`θ ⊗ ∂j`θ = t
k
ij∂k`θ, which by calculation

turns to be EPθ
[∂i`θ∂j`θa

k
θ ].

Lemma 1. For any local tangent fields u, v, w ∈ TρθS the associativity property
holds:

g(u ◦ v, w) = g(u, v ◦ w).

Proof. Let us start with the left hand side of the equation. Suppose that u = ∂i`θ,

v = ∂j`θ, w = ∂l`θ. By previous calculations: ∂i`θ ◦∂j`θ = t
k
ij∂k`θ. Insert this re-

sult into g(u◦v, w), which gives us g(∂i`θ◦∂j`θ, ∂l`θ), and leads to g(t
k
ij∂k`θ, ∂l`θ).

By some calculations and formula (1) it turns out to be equal to t(u, v, w).
Consider the right hand side. Let g(u, v ◦w) = g(∂i`θ, ∂j`θ ◦∂l`θ). Mimicking

the previous approach, we show that this is equivalent to g(∂i`θ, t
k
jl∂l`θ), which

is equal to t(u, v, w).

Proposition 2. The manifold S verifies the potentiality condition.

Proof. Consider the skewness tensor t, which is given by t = t · g. Then, in

local coordinates we have that: tijm = t
k
ij · gkm. The metric gkm is also given by

gkm = ∂k∂mΦ, where Φ is a local potential function. Therefore, tijm = t
k
ij∂k∂mΦ,

and hence tijm = ∂i∂j∂mΦ. The skewness tensor everywhere, locally, admits such
a potential function. So, the pre-Frobenius manifold S is potential.

Theorem A The statistical manifold (S, g, t) is a Frobenius manifold for α =
±1.

Proof. The statistical manifold S comes equipped with a Riemannian metric g,
and a skew symmetric tensor t. We have proved that the associativity conditions
and the potentiality are fulfilled. Moreover, we have a pencil of connections
depending on an even parameter α and defined by:

α

∇XY =
0

∇XY +
α

2
(X ◦ Y ), α ∈ R, X, Y ∈ TρS
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where
α

∇XY denotes the α-covariant derivative. We call the connection
α

∇ the
structure connection of the pre-Frobenius manifold (S, g, t). Now it remains to
apply the Theorem 1.5 from [14] (p.20), stating that the triplet (S, g, t) is Frobe-

nius if and only if the structure connection
α

∇ is flat. By direct computation,
we show that for α = ±1, the the structure connection is flat. Therefore, the
conclusion is straightforward.

4 Hidden geometry of statistical manifolds

Let W be a linear space of signed measures with bounded variations, vanishing
on an ideal I of the σ-algebra F . Let C be a cone in W of (strictly) positive
measures on the space (X,F), vanishing only on an ideal I of the σ–algebra F .

From [11], it is known that:

Theorem 1. The positive cone C, defined above, is a paracomplex (Vinberg)
cone2 .

According to Vinberg ’s classification theorem there exist five types of cones.
As it was shown in [11], the cone of positive measures of bounded variations
belongs to the fifth class, that means the cone defined over the algebra of para-
complex numbers. A Vinberg n-cone is in bijection with a (semi-simple) Jordan
n-algebra. Properties of these algebras imply that for a pair of idempotents,
there exists a Pierce decomposition, and Pierce mirror [15].

We will prove the following theorem:

Theorem B The manifold of probability distributions is a paracomplex mani-
fold. It decomposes into a pair of totally geodesic submanifolds, containing a pair
of flat connections. Moreover, the pair of pseudo-Riemannian submanifolds are
symmetric to each other with respect to Pierce mirror.

In order to prove the theorem, we introduce a certain number of intermediary
results, which are listed below.

Lemma 2 (Duality lemma). Let H ⊂ W be a hyperplane, given by the con-
straints:

〈1, µ〉 = 1, where 〈f, µ〉 =

∫
X

fdµ,

with µ ∈ W, and being a section of the cone C. Then, H is the dual space of S,
defined above.
2 A cone V ⊂ R is a non–empty subset, closed with respect to addition and multiplica-

tion by positive reals. A convex cone V in a vector space R with an inner product has
a dual cone V ∗ = {a ∈ R : ∀b ∈ V, 〈a, b〉 > 0}. The cone is self-dual when V = V ∗.
It is homogeneous when to any points a, b ∈ V there is a real linear transformation
T : V → V that restricts to a bijection V → V and satisfies T (a) = b. Moreover, the
closure of V should not contain a real linear subspace of positive dimension.
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Proof. This follows from the properties of the dual space, obtained using the
Radon–Nikodym derivatives dν

dµ of the measure ν w.r.t. the measure µ.

We observe the following:

Lemma 3. Let S be the space of probability distributions defined above and Pθ
a point on S. The tangent space Tθ at this point Pθ can be identified to a module
over an algebra.

Hence, the following proposition is true:

Proposition 3 (Paracomplex spaces). The space S of probability distribu-
tions and its dual H are paracomplex spaces.

The manifold over paracomplex algebra have the following property:

Theorem 2 (Paracomplex manifold). The space of probability distributions
S and its dual H are paracomplex manifolds.

Lemma 4. The manifold of probability distributions is decomposed into a pair
of totally geodesic submanifolds3.

Čentsov [9] has shown that the totally geodesic submanifolds turn out to be
the exponential families of probability distributions with local parametrization.
Therefore, we can obtain the following:

Lemma 5. The manifold of probability distributions has a pair of flat connec-
tions.

This follows from the calculation in [7, 8].

Proposition 4. The space of probability distributions S and H are decomposed
into pseudo-Riemannian submanifolds which are symmetric to each other wrt
Pierce mirror.

In order to prove these statements, we recall the tools from paracomplex geom-
etry, in the following subsections.

5 Proof of theorem B

We start by introducing the tools to prove the Lemma 3 and Proposition 3.

3 A submanifold N of a Riemannian manifold (M, g) is called totally geodesic if any
geodesic on the submanifold N with its induced Riemannian metric g is also a
geodesic on the Riemannian manifold (M, g).
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5.1 Modules over spin factor algberas

Let A be the unital and bi-dimensional algebra over paracomplex numbers C,
generated by 1 and ε where ε2 = 1, verifying the following relations:

ei · ej =
∑
k

Ckijek with Ckij = Ckji.

The algebra A is known as the spin factor algebra or the algebra of paracomplex
numbers.

The structure constants Ckij are:

C1
11 = C2

12 = C1
22 = 1,

the other structure constants are null.
Let us change the basis such that the new generators are defined by:

e− =
1− ε

2
, e+ =

1 + ε

2
.

These generators have the following relations:

e− ◦ e− = e−, e+ ◦ e+ = e+, e− ◦ e+ = 0,

e− + e+ = 1, e− − e+ = ε.

we call this new basis a canonical basis. Notice that this new basis highlights
the existence of a pair of idempotents i.e. e2− = e− and e2+ = e+.

Remark This semi-simple algebra is isomorphic to R ⊕ R. As a set, it can
be identified to R2 but NOT as an algebra.

We construct the module over the spin factor algebra. To go back to the
Amari–Čentsov statistical manifolds, we use the Norden–Shirokov method [16,
19]. Let A be the spin factor algebra. Let us construct an m-module over the
spin factor algebra Mm(A). The affine representation of the algebra A, or free
module AEm, admits a real interpretation in the real linear space E2m([18],
section 2.1.2).

Let E2m be a 2m-dimensional real linear space. A paracomplex structure on
E2m is an endomorphism K : E2m → E2m such that K2 = I. The eigenspaces
Em+ , E

m
− of K with eigenvalues 1,−1 respectively, have the same dimension.

The pair (E2m,K) will be called a paracomplex vector space. We define the
paracomplexification of E2m as E2m

C = E2m ⊗R C and we extend K to a C-linear
endomorphism K of E2m

C .

Lemma 6. Let E2m
C = E2m ⊗R C be endowed with an involutive C-linear endo-

morphism K of E2m
C . Then, the space E2m

C is decomposed into the direct sum of
a pair of m-dimensional subspaces Em+ and Em− such that:

E2m
C = Em+ ⊕ Em− ,

verifying:
Em+ = {v ∈ E2m

C |Kv = εv} = {v + εKv | v ∈ E2m
C },

Em− = {v ∈ E2m
C |Kv = −εv} = {v − εKv | v ∈ E2m

C }.
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Proof This statement and its proof can be found in the literature. For ex-
ample, see [18].

Remark 4. From this, it follows that any hypersurface xi = 0 of E2m
C is decom-

posed into two hypersurfaces xi+ = 0 and xi− = 0 respectively in Em+ and Em− .
Similarly, the coordinates of any point of the space E2m can be given by

xi = xi+e+ + xi−e−.

Furthermore, consider a vector X(xi) at the coordinate xi in the space E2m
C .

Then, due to the splitting we have that X(xi) = X(xi+)⊕X(xi−). Therefore, the
vector X splits into X = X+ ⊕X− and X2 is given by

∑
i x

i
+x

i
−.

Proof (of Lemma 3). The tangent space is identified with the space of signed
measures with bounded variations, being absolutely continuous with respect to
Pθ and such that µ(Ω) =

∫
Ω
udPθ = 0, with u ∈ L2(Ω,Pθ). Such a measure

can be split into two positive measures µ+ and µ− such that: µ = µ+ − µ− and
|µ| = µ+ + µ− <∞. This forms a real affine space. Using the Norden–Shirokov
construction in [16, 19], leads to the existence of a module over an algebra.

Proposition 5 (The rank 2 Lemma, [11]). Consider an affine, symmetric
space over a Jordan algebra. There exists exactly two affine and flat connections
on this space if and only if the algebra is of rank 2, and generated by {1, ε} with
ε2 = 1 or −1.

Proof (of Proposition 3). Let C ⊂ W be the cone of positive measures. Let
H ∩ C 6= ∅. By Theorem 1, C is a cone over C. So, H inherits the paracomplex
structure and by duality, S is therefore also a paracomplex space. We have shown
in Lemma 3 that the tangent space to S is identified to a module over an algebra.
Hence, the tangent space to H is also a module over an algebra.

5.2 Paracomplex manifold

In this subsection, we expose paracomplex manifolds and their properties. This
will be used to prove theorem 2. Let y = f(x) be a (analytic) function, whose
domain and range belong to a commutative algebra (i.e. Chjk = Chkj). We put
x =

∑
i xiei, y =

∑
i yiei. From the generalized Cauchy–Riemann we have the

following: ∑
h

∂yi
∂xh

Chjk =
∑
h

∂yh
∂xi

Cjhk,

where Chjk are the constant structures.

A paracomplex manifold is a real manifold M endowed with a paracomplex
structure K that admits an atlas of paraholomorphic coordinates (which are
functions with values in the algebra C = R + εR defined above), such that the
transition functions are paraholomorphic.
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Explicitly, this means the existence of local coordinates (zα+, z
α
−), α = 1 . . . ,m

such that paracomplex decomposition of the local tangent fields is of the form

T+M = span

{
∂

∂zα+
, α = 1, ...,m

}
,

T−M = span

{
∂

∂zα−
, α = 1, ...,m

}
.

Such coordinates are called adapted coordinates for the paracomplex structure
K.

By abuse of notation, we write ∂z instead of ∂
∂zα .

We associate with any adapted coordinate system (zα+, z
α
−) a paraholomorphic

coordinate system zα by

zα =
zα+ + zα−

2
+ ε

zα+ − zα−
2

, α = 1, ...,m.

We define the paracomplex tangent bundle as the R-tensor product TCM =
TM ⊗ C and we extend the endomorphism K to a C-linear endomorphism of
TCM . For any p ∈M , we have the following decomposition of TC

pM :

TC
pM = T 1,0

p M ⊕ T 0,1
p M

where
T 1,0
p M = {v ∈ TC

pM |Kv = εv} = {v + εKv|v ∈ E2m},

T 0,1
p M = {v ∈ TC

pM |Kv = −εv} = {v − εKv|v ∈ E2m}

are the eigenspaces of K with eigenvalues ±ε. The following paracomplex vectors

∂

∂zα+
=

1

2

(
∂

∂xα
+ ε

∂

∂yα

)
,

∂

∂zα−
=

1

2

(
∂

∂xα
− ε ∂

∂yα

)
form a basis of the spaces T 1,0

p M and T 0,1
p M .

Proof (of Theorem 2). We use the above subsection on paracomplex manifolds.
Now, consider an affine and symmetric space over a Jordan algebra A and con-
sider S as above. From [16, 2, 3, 7, 8], it is shown that there exist 2 connections.
Applying Proposition 5, we have that the algebra is of rank 2, and generated
by {1, ε} with ε2 = 1 or −1. These flat affine connections are constructed from
a field of objects, having the components:

Γ ijk = Γ iαjk eα ∈ A.

Suppose that vi = v(i,α)eα are quantities from the algebra corresponding to
a tangent vector v to S. Then, from the following condition

dvi + Γ ijkv
jdxk = 0,
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we can define an affine connection equipped with the following components:

Γ
(i,α)
(j,β)(k,γ) = Γ isjkC

δ
sβC

α
δγ ,

where the Cαβγ are structure constants of algebra A, with respect to the local

adapted coordinates x(α,i). Now, these objects are indexed by the number of
generators of the algebra A. There exist 2 connections. So, it implies that s ∈
{1, 2} and A is of rank 2, generated by {1, ε | ε2 = ±1}. Since, we cannot be in
a complex framework, we have an algebra of paracomplex numbers. Using the
duality Lemma 2 between S and H, it follows that H is also a paracomplex
manifold.

Proof (of Proposition 4). By theorem 2 we know that S is a paracomplex mani-
fold. Therefore, it can be decomposed into a pair of submanifolds. The structure
is ruled by the Jordan algebra A of paracomplex numbers, which has a pair
of idempotents. Using [15], we can provide a Pierce decomposition and thus a
Pierce mirror. The totally geodesic submanifolds of the paracomplex manifold
are symmetric to each other wrt the Pierce mirror.

6 Learning & Gromov–Witten invariants for statistical
manifolds

6.1 Comparison with the Partial Differential Equations approach

A complementary, approach to the Frobenius problem can be given through the
Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) highly non-linear Partial Differ-
ential Equations system:

∀a, b, c, d :
∑
ef

Φabeg
efΦfcd = (−1)a(b+c)

∑
ef

Φbceg
efΦfad.

Geometrically, the (WDVV) PDE system express a flatness condition [20].

Proposition 6. For α = ±1, the (WDVV) PDE system are always (uniquely)
integrable over (S, g, t).

Proof. The WDVV equations are always integrable if and only if the curvature
is null. In the context of (S, g, t) the curvature tensor of the covariant derivative
is null for α = ±1. Therefore, in this context the WDVV equation is always
integrable (uniquely).

6.2 Gromov–Witten invariants for statistical manifolds

We introduce Gromov–Witten invariants, in short (GW), for statistical mani-
folds. In symplectic geometry and algebraic geometry, the (GW) are rational
numbers that count (pseudo)holomorphic curves under some conditions, on the
(symplectic) manifold, considered as a kind of generalisation of the phase state.
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Since statistical manifolds are Frobenius, it is a natural question to ask if one
can define analogous (GW) invariants on it. We show that there exist analogous
invariants, called (GWS). Notice that these invariants have naturally a differ-
ent meaning from the classical Gromov–Witten invariants, because we do not
work on moduli spaces of genus g curves with marked points. However, (GWS)
still encode deep geometric aspects of statistical manifolds, and tell whether the
learning process has succeeded or not.

Let us consider the (formal) Frobenius manifold (H, g). We denote k a (su-
per)commutative Q-algebra. Let H be a k-module of finite rank and g : H⊗H →
k an even symmetric pairing (which is non degenerate). We denote H∗ the dual
to H. The structure of the Formal Frobenius manifold on (H, g) is given by an
even potential Φ ∈ k[[H∗]]:

Φ =
∑
n≥3

1

n!
Yn,

where Yn ∈ (H∗)⊗n can also be considered as an even symmetric map H⊗n → k.
This system of Abstract Correlation Functions in (H, g) is a system of (symmet-
ric, even) polynomials. The (GW) invariants appear in these poly-linear maps.

We go back to statistical manifolds. Let us consider the discrete case of the
exponential family formula:

∑
ω∈Ω

exp{−
∑

βjXj(ω)} =
∑
ω∈Ω

∑
m≥1

1

m!

−∑
j

βjXj(ω)


⊗m

, (2)

where β = (β0, ...., βn) ∈ Rn+1 is a canonical affine parametrisation, Xj(ω) are
directional co-vectors, belonging to a finite cardinality n + 1 list Xn of random
variables. These co-vectors represent necessary and sufficient statistics of the
exponential family. We have X0(ω) ≡ 1, and X1(ω), . . . , Xn(ω) are linearly in-
dependent co-vectors. The family in (2) describes an analytical n-dimensional
hypersurface in the statistical manifold. It can be uniquely determined by n+ 1
points in general position.

Definition 1. Let k be the field of real numbers. Let S be the statistical manifold.
The Gromov–Witten invariants for statistical manifolds (GWS) are given by the
poly-linear maps:

Ỹn : S⊗n → k.

One can also write them as follows:

Ỹn ∈

−∑
j

βjXj(ω)

⊗n .
These invariants appear as part of the potential function Φ̃ which is a

Kullback–Liebler entropy function.
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One can write the relative entropy function:

Φ̃ = ln
∑
ω∈Ω

exp (−
∑
j

βjXj(ω)). (3)

Therefore, we state the following:

Proposition 7. The entropy function Φ̃ of the statistical manifold relies on the
(GWS).

Proof. Indeed, since Φ̃, in formula (3) relies on the poly-linear maps

Ỹn ∈
(
−
∑
j β

jXj(ω)
)⊗n

, defining the (GWS), the statement follows.

6.3 Learning with statistical Gromov–Witten invariants

Consider the tangent fiber bundle over S, the space of probability distributions,
with Lie group G. We denote it by (TS, S, π,G, F ), where TS is the total space
of the bundle π : TS → S is a continuous surjective map and F the fiber. Recall
that for any point ρ on S, the tangent space at ρ is isomorphic to the space of
bounded, signed measures vanishing on an ideal I of the σ−algebra. The Lie

group G acts (freely and transitively) on the fibers by f
h7→ f + h, where h is a

parallel transport, and f an element of the total space (see [11] for details).

Remark 5. Consider the (local) fibre bundle π−1(ρ) ∼= {ρ} × F . Then F can be
identified to a module over the algebra of paracomplex numbers C (see [11] for
details). By a certain change of basis, this rank 2 algebra generated by {e1, e2},
can always be written as 〈1, ε| ε2 = 1〉.

We call a canonical basis for this paracomplex algebra, the one given by: {e+, e−},
where e± = 1

2 (1 ± ε). Moreover, any vector X = {xi} in the module over the
algebra is written as {xiaea}, where a ∈ {1, 2}.

Lemma 7. Consider the fiber bundle (TS, S, π,G, F ). Consider a path γ being
a geodesic in S. Consider its fiber Fγ . Then, the fiber contains two connected
compontents: (γ+, γ−), lying respectively in totally geodesic submanifolds E+

and E−.

Proof. Consider the fiber above γ. Since for any point of S, its the tangent space
is identified to module over paracomplex numbers. This space is decomposed
into a pair of subspaces (i.e. eigenspaces with eigenvalues ±ε) (see Section 5.2).
The geodesic curve in S is a path such that γ = (γi(t)) : t ∈ [0, 1] → S. In
local coordinates, the fiber budle is given by {γiaea}, and a ∈ {1, 2}. Therefore,
the fiber over γ has two components (γ+, γ−). Taking the canonical basis for
{e1, e2}, implies that (γ+, γ−) lie respectively in the subspaces E+ and E−.
These submanifolds are totally geodesic in virtue of Lemma 4.

We define a learning process through the Ackley–Hilton–Sejnowski method
[1], which consists in minimising the Kullback–Leibler divergence. By Proposi-
tions 2 and 3 in [12], we can restate it geometrically, as follows:
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Proposition 8. The learning process consists in determining if there exist in-
tersections of the paraholomorphic curve γ+ with the orthogonal projection of
γ− in the subspace E+.

In particular, a learning process succeeds whenever the distance between a
geodesic γ+ and the projected one in E+ shrinks to become as small as pos-
sible.

More formally, as was depicted in [5] (sec. 3) let us denote by Υ the set of
(centered) random variables over (Ω,F , Pθ) which admit an expansion in terms
of the scores under the following form:

ΥP = {X ∈ RΩ |X − EP [X] = g−1(EP [Xd`]), d`}.

By direct calculation, one finds that the log-likelihood ` = lnρ of the usual
(parametric) families of probability distributions belongs to Υp as well as the
difference ` − `∗ of log-likelihood of two probabilities of the same family. Being
given a family of probability distributions such that ` ∈ ΥP for any P , let UP ,
let us denote P ∗ the set such that `− `∗ ∈ Υp. Then, for any P ∗ ∈ Up, we define
K(P, P ∗) = EP [`− `∗].

Theorem 3. Let (S, g, t) be statistical manifold. Then, the (GWS) determine
the learning process.

Proof. Since K(P, P ∗) = EP [` − `∗], this implies that K(P, P ∗) is minimised
whenever there is a successful learning process. The learning process is by defi-
nition given by deformation of a pair of geodesics, defined respectively in the pair
of totally geodesic manifolds E+, E−. Therefore, the (GWS), which arise in the
Ỹn in the potential function Φ̃, which is directly related to the relative entropy
function K(P, P ∗). Therefore, the (GWS) determine the learning process.

Similarly as in the classical (GW) case, the (GWS) count intersection num-
bers of certain para-holomorphic curves. In fact, we have the following statement:

Corollary 1. Let (TS, S, π,G, F ) be the fiber bundle above. Then, the (GWS)
determine the number of intersection of the projected γ− geodesic onto E+, with
the γ+ ⊂ E+ geodesic.
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