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1 Setting of the problem

1.1 What are microstructures?

For the purpose of these lectures, a microstructure is any structure on a scale
between the macroscopic scale (on which we usually make observations) and
the atomic scale. Such structures are abundant in nature: the fine hierar-
chical structures in a leaf and many other biological materials, the complex
arrangements of fissures, cracks, voids and inclusions in rock or soil, fine
scale mixing patterns in turbulent or multiphase flow, man-made layered or
fibre-reinforced materials and fine phase mixtures in solid-solid phase trans-
formations, to quote but a few examples. The microstructure influences in a
crucial way the macroscopic behaviour of the material or system and is often
chosen (or spontaneously generated) to optimize its performance (maximum
strength at given weight, minimal energy, maximal entropy, maximal or mini-
mal permeability, ...). Microstructures often develop on many different scales
in space and time, and to understand the formation, interaction, and overall
effect of these structures is a great scientific challenge, weather modelling
providing an illustrative example. In the applied literature the passage from
microscales to macroscales is frequently achieved by clever ad hoc “averag-
ing” or “renormalization”. A good mathematical framework in which these
procedures could be justified and systematically improved is often lacking,
and its development would be a difficult, but very rewarding, task.

The mathematical analysis of microstructures usually neglects the atomic
scale by considering a continuum model from the outset. The issue is then
to understand scales that are small (or converge to zero) compared to the
fixed macroscopic scale. Research has mostly focused on three areas: homog-
enization, variational models of microstructure and optimal design which lies
between the two first areas as the optimal structure often corresponds to a
homogenization limit. The basic problem in homogenization is to determine
the macroscopic behaviour (or at least bounds on it) induced by a given
microstructure (given for example by a periodic mixture of two heat con-
ductors in the limit of vanishing period, by a weakly convergent sequence
of conductivity tensors or by statistical information). Variational models of
microstructures try to model systems which spontaneously form internal mi-
crostructure by assuming that the structure formed has a certain optimality
property. The reason for the formation of such microstructure is typically
that no exact optimum exists and optimizing sequences have to develop finer



and finer oscillations (which may only be limited by effects neglected in the
model, such as the underlying atomic structure). An important task is to ex-
tract the relevant features of minimizing sequences. Young measures, which
are discussed in Section 3 below, are one possibility to do this, but by no
means the only one.

In these lectures I will focus on variational models for microstructures that
arise from solid-solid phase transitions in certain elastic crystals (usually al-
loys, such as In-Th, Cu-Al-Ni, Ni-Ti). These materials display a fascinating
variety of microstructures (see Fig. 1) which is closely linked to unusual and
technologically interesting material behaviour (shape memory effect, pseu-
doelasticity). A mathematical model for elastic crystals will be introduced
in Section 1.3 below. Before doing this let us briefly review the relation be-
tween microstructure and energy minimization in more detail in some simple

m
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Figure 1: Microstructure in a Cu-Al-Ni single crystal; the imaged area is
approximately 2 mm x 3 mm (courtesy of C. Chu and R.D. James, University
of Minnesota)




1.2 Microstructures as energy minimizers
Ezxample 1: Consider the problem:

1

Minimize /(u2 —1)*dx

subject to

The minimum is attained but the set of minimizers is highly degenerate.
Every Lipschitz function whose slopes are £1 almost everywhere and that
attains the boundary values is a minimizer. In particular the weaksx closure
in W1 of the set of minimizers consists of all functions with Lipschitz con-
stant less then or equal to one that are bounded by £ min(z,1 — x).

Ezample 2 (Bolza, L.C. Young): Consider the problem:
1
Minimize — I(u):= /(ui —1)? +u’dx
0

subject to

The infimum of the functional is zero since there exist rapidly oscillating
functions with slope +1 whose supremum is arbitrarily small. Indeed if s
denotes the periodic extension of the sawtooth function

x on [0,1/4)
s(x)=4¢ 1/2—x on [1/4,3/4) (1.1)
x—1 on [3/4,1)

then w;(z) := j 's(jz) satisfy I(u;) — 0 as j — oo. The infimum cannot
be attained since there is no function that satisfies simultaneously u = 0
and u, = 1 almost everywhere. Minimizing sequences must oscillate and
converge weakly (in the Sobolev space W'4(0, 1)), but not strongly, to zero.



This provides a first example how minimization can lead to fine scale oscilla-
tion or microstructure. The failure of classical minimization was investigated
by L.C. Young in the 1930’s in the context of optimal control. It led him
to the introduction of generalized measure-valued solutions (see Section 3
below on Young measures). His book [Yo 69] describes various interesting
situations where generalized solutions naturally arise, including applications
to sailing and the construction of railway tracks.

Ezample 3: Let Q = [0, L] x [0, 1] be a rectangle and consider the problem:

Minimize  J(u) = /ui + (u) — 1)*da dy
Q

subject to
u=0 on Of).

Clearly J(u) > 0 since otherwise u, = 0 almost everywhere, whence u = 0
on  and (u; —1)*> = 1. On the other hand the infimum of J is zero. One
way to see this is to consider the sawtooth function s given by (1.1), to define

u(z,y) =7 's(jy) ford <a < L -,

and to use linear interpolation to achieve the boundary values at x = 0 and
x = L. Considering first the limit j — oo and then § — 0 one obtains
inf J = 0. As in Example 2 no (classical) minimizers exist and minimizing
sequences must develop rapid oscillations.

Two questions arise from the consideration of these examples.

Question 1: Are there special minimizers or minimizing sequences? Are,
for example, the maximal solutions &+ min (z, 1 —z) in Example 1 in a certain
way preferred minimizers?

Question 2: Are there certain common features of all minimizing se-
quences?
1.3 Variational models for elastic crystals

The basic idea is to model the elastic crystal as a nonlinearly elastic contin-
uum. The crystalline structure enters in this approach through the symmetry



properties of the stored-energy function. The (usually stress-free) reference
configuration of the crystal is identified with a bounded domain Q C R3. A
deformation u : 2 — R? of the crystal requires an elastic energy

I(u) = / W (Du) de, (1.2)

where W : M™*™ — R is the stored-energy density function that describes
the properties of the material. Under the Cauchy-Born rule W (F) is given by
the (free) energy per unit volume that is required for an affine deformation
x +— Fx of the crystal lattice.

The stored energy is invariant under rotations in the ambient space and
under the action of the isotropy group P of the crystal lattice which usually
is a discrete subgroup of SO(3). Thus

W(QF)= W(F) VQeSO®3), (1.3)
W(FP)= W(F) VYPePcSO®). (1.4)

Instead of the compact group P one could also consider the larger noncom-
pact group of all lattice invariant transformation which is conjugate to the
group GL(3,Z). This leads to a highly degenerate situation and in particu-
lar such an invariance implies (in connection with the consideration of global
rather than local mimimizers) that the material has no macroscopic shear
resistance. We will thus use the point group and refer to [BJ 87, BJ 92],
[CK 88], [Er 77, Er 79, Er 80, Er 84, Er 89], [Fo 87|, [Pa 77, Pa 81], [Pi 84],
[Za 92] for further discussion of this point.

The stored-energy also depends on temperature but we will always assume
that the temperature is constant throughout the crystal and thus suppress
this dependence.

The basic assumption of the variational approach to microstructure is:

The observed microstructures correspond to
minimizers or almost minimizers of the elas-
tic energy I.

It is convenient to normalize W so that min W = 0. The set K = W~1(0)
then corresponds to the zero energy affine deformations of the crystal lat-
tices. Experimentally it is often observed that microstructures do not only
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minimize the integral I (subject to suitable boundary conditions) but in fact
minimize the integrand pointwise. We are thus led to consider the simpler
problem:

Determine (Lipschitz) maps that satisfy exactly
or approximately Du € K .

The difference in behaviour of different materials is thus closely related to
the set K which depends on the material and temperature. For ordinary
materials K is (conjugate to) SO(3) (the smallest set compatible with the
rotation invariance) while for materials forming microstructures K consists
of several copies of SO(3). The Cu-Al-Ni alloy for which the microstructures
in Fig.1 were observed undergoes a solid-solid phase transition at a critical
temperature 7., i.e. the preferred crystal structure, and hence the set K
changes at T..

T>T. T<T,
phase transition

crystal structure cubic  — orthorhombic
K SO(3) SO3)U; U...S0(3)Us

a 0 0

U, = 0 g v

0 v ¢
micro- none large variety observed
structure (see Section 2.3) (see Section 2.2)

Figure 2: A cubic to orthorhombic transition

In view of (1.4) the matrices U; are related by conjugation under the cubic
group.



1.4 The basic problems

We slightly generalize the setting of the previous section and consider maps
u: Q CR"— R™ on a bounded domain @ (with Lipschitz boundary if
needed). In particular the Sobolev space W1 agrees with the class of Lip-
schitz maps. Let K C M™*"™ be a compact set in the space M™*" of m x n
matrices.

Problem 1 (exact solutions): Characterize all Lipschitz maps u that satisfy
Due K ae.in ).

Problem 2 (approximate solutions): Characterize all sequences u; of Lip-
schitz functions with uniformly bounded Lipschitz constant such that

dist (Duj, K) -0 a.e. in €.

Problem 3 (relaxation of K): Determine the sets K and K% C M™*"
of all affine maps = — F'z such that Problem 1 and 2 have a solution that
satisfies

u(zx) = Fxon 09,
u;j(r) = Fxon 09,

respectively.

Problems 1-3 also arise in many other contexts, e.g. in the theory of
isometric immersions. An important technical difference is that in geometric
problems one is often interested in connected sets K (and hence C! solutions
u) while we will usually consider sets with more than one component. For
further information we refer to Gromov’s treatise [Gr 86] and to Sverdk’s
ICM lecture [Sv 95].

In the context of crystal microstructure discussed in the previous section
the sets K** and K" in Problem 3 have an important interpretation. They
consist of the affine macroscopic deformations of the crystal with (almost)
zero energy. They trivially contain the set K of microscopic zero energy de-
formations but can be much larger. For the set K = SO(2)AU SO(2)B one
obtains (see Section 4.5) that under suitable conditions on A and B the sets
K®? and K contain an open set (relative to the constraint det F' = 1),
leading to fluid-like behaviour.



Problem 4: Find an efficient description of approximating sequences that
eliminates nonuniqueness due to trivial modifications while keeping the rel-
evant “macroscopic” features.

We saw in Section 1.2 how failure of minimization can lead to “infinitely
fine” microstructure. In practice crystal microstructures always arise on
some finite scale (albeit on a wide range from a few atomic distances to
10 — 100 pm). Minimization of elastic energy alone may not be enough to
explain this since there is no natural scale in the theory.

Problem 5: Explain the length scale and the fine geometry of the mi-
crostructure, possibly by including other contributions to the energy, such as
interfacial energy.

Another possible explanation for limited fineness is that infinitely fine
mixtures are (generalized) energy minimizers but not accessible by the natu-
ral dynamics of the system. This is a very important issue, but we can only
touch briefly on it in these notes and refer to Section 7.2 and the references
quoted there.
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2 Examples

It is instructive to look at some examples before studying a general theory
related to Problems 1-3. These simple examples already show a rich variety
of phenomena and interesting connections with (nonlinear) elliptic regularity,
functional analytic properties of minors and quasiconformal geometry. In the
following K always denotes a subset of the space M™*" of m x n matrices,
m,n > 2, and €) is a domain, i.e. an open and connected set, in R".

2.1 The two-gradient problem
FEzact solutions: Let K = {A, B}. The simplest solutions of the relation

Due K

are so called simple laminates, i.e. maps for which Du is constant in alter-
nating bands that are bounded by hyperplanes x - n = const (see Fig. 3).
Tangential continuity of u at these interfaces enforces that A7 = Bt for vec-

P

Figure 3: A simple laminate

tors 7 perpendicular to n and thus A — B has rank one and can be written
as

B—A=aQn.

In this case we say that A and B are rank-1 connected. We recall that
the matrix ¢ ® n has entries (¢ ® n);; = a;n;. If one assumes that the
interfaces between the regions {Du = A} and {Du = B} are smooth then
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a similar argument shows that they must be hyperplanes with fixed normal
n. Moreover no such smooth arrangement is possible if rk(B — A) > 2. The
following proposition gives a much stronger statement because it shows that
also among possibly very irregular maps there are no other solutions.

Proposition 2.1 (/BJ 87], Prop.1) Let Q2 be a domain in R™ and let u :
Q — R™ be a Lipschitz map with Du € {A, B} a.e.

(i) If rk(B — A) > 2, then Du = A a.e. or Du= B a.e.;
(ii) if B— A=a®n then u can locally be written in the form
u(z) = Az + ah(x - n) 4 const

where h is Lipschitz and h' € {0,1} a.e. If Q is conver this representa-
tion holds globally.

In particular, Du is constant if u satisfies an affine boundary condition

u(z) = Fx on 09.

Proof. The key idea is that the curl of a gradient vanishes. By translation
we may assume A = 0 and thus Du = Byxg, for some measurable set F C
). For part (i) we may assume in addition, after an affine change of the
dependent and independent variables, that the first two rows of the matrix
B are given by the standard basis vectors e; and e; and thus

Du' = e1xp, Du® = eyxg.

Symmetry of the second distributional derivatives and the first equation im-
ply that 9;xg = 0 for j # 1 while the second equation yields 0y xg = 0 for
k # 2. Hence Dy g = 0 in the sense of distributions and therefore yg = 1 a.e.
or xg = 0 a.e. since () is connected.

To prove part (ii) we may assume A =0, a = n = e; and thus
Du' = e;xg, Du¥ = 0, k = 2,...,m. Hence u?, ...,u™ are constant and
Opul = 0, for k = 2,...,m. Therefore u' is locally only a function of z' as
claimed. If Q is convex then u' is constant on the hyperplanes z' = const
that intersect €2 and thus globally of the desired form.

Finally if w = Fx on 09, then FF = (1 — A\)B, A € [0,1] since by the
Gauss-Green theorem

|E|B:/Dudx:/u@)nd"ﬂn_l:/Fdx,
Q

onN Q
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where n is the outer normal of Q. Extending u by Fx on R" \ Q we can
argue as in the proof of (i) to deduce u(z) = Az+ah(z-n)+bon R", where
W e {0,1—\,1}. Hence u(z) = Fu since each plane z - n = const intersects
the set where v = Fx. a

Approzimate solutions: Consider again K = {A, B} and suppose
B—A=a®n, F=M+(1-)X\B,Ae]|0,1].

We show that there exist sequences u; with uniformly bounded Lipschitz
constant such that in €2

dist(Du,;,{A, B}) — 0 in measure, (2.1)

and
uj(z) = Fx 0. (2.2)

Note that (2.1) and the bound on the Lipschitz constant imply that conver-
gence also holds in LP, Vp < oc. After translation we may assume

F=0A=—-(1—-XNa®n, B=Xa®n.
Let h be the periodic extension of the function given by

—(1=XNt te|0,N),
ht) :{ Mi—1) te[n),
and consider
vj(x) = %ah(jx -n).

Then Dv; € {A, B} ae. and v; — 0. To achieve the boundary condi-
tions consider a cut-off function ¢ € C*([0,00)), 0 < ¢ < 1,9 = 0 on
[0,1/2], ¢ =1 on [1,00) and let

uj(z) = ¢(j dist(z, 0Q))v; ().

Then u; = 0 on 09, Du; is uniformly bounded and Du; = Dwv; except in
a strip of thickness 1/j around 0. If follows that u; satisfies (2.1) and
(2.2). Various modifications of this construction are possible, and we return
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in Section 3.2 to the question whether all approximating sequences are in a
certain sense equivalent.

Note that due to the assumption B — A = a ® n, the problem (2.1), (2.2)
essentially reduces to the scalar problem discussed in Example 3 of Section
1.2.

We now consider the case rk(B — A) > 2. We have shown that in this
case there are no nontrivial exact solutions. The argument used strongly the
fact that Du only takes two values and that the curl of a gradient vanishes.
It does not apply to approximating sequences. Nonetheless we have

Lemma 2.2 (/BJ 87|, Prop.2) Suppose that tk(B — A) > 2 and that u; is a
sequence with uniformly bounded Lipschitz constant such that

dist(Du;,{A, B}) = 0 in measure in €.
Then
Duj — A in measure or Duj — B in measure.

In particular the problem (2.1), (2.2) has only the trivial solution, F €
{A, B} and Du; — F in measure.

The proof uses the following fundamental properties of minors. We recall
that the semiarrow — denotes weak convergence.

Theorem 2.3 [Ba 77, Mo 66, Re 67] Let M be an r X r minor (subdeter-
minant).

(i) Ifp>r and u,v € WHP(Q),u — v € W, P(Q) then

/M@@:/M@w (2.3)

Q

In particular

/Aumn:/dﬂm if u=Fz on 0Q.

Q Q
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(ii) If p > r and if the sequence u; satisfies
uj — uin WH(Q; R™),
then

M(Du;) — M(Du) in LP/"(Q).

Remark. Integrands f for which the integral [ f(Du) only depends on the
boundary values of u are called null Lagrangians, since the Euler-Lagrange
equations are automatically satisfied for all functions u. Affine combinations
of minors are the only null Lagrangians and the only functions that have the
weak continuity property expressed in (ii) (see also Section 4.3).

Proof of Theorem 2.3. The main point is that minors can be written as
divergences. For n = m = 2 one has

det Du = 0 (u'9,u?) — 9y (u'0ru?), (2.4)

for all u € C? and hence for all u € W2 if the identity is understood in the
sense of distributions. More generally, for n = m > 2 the cofactor matrix
that consists of the (n — 1) x (n — 1) minors of Du satisfies

div cof Du=0, 1i.e. 9j(cofDu);; =0 (2.5)
and thus

1 .
det Du = —0;(u'(cof Du);;),
n

since F'(cof F)T =Iddet F. Similar formulae hold for general 7 x r minors,
see [Mo 66, Da 89, GMS 96] for the detailed calculations. The multilinear
algebra involved in these calculations can be expressed very concisely through
the use of differential forms. In this setting one has for n = m = 2

det Dudz' A da? = du* A du® = d (u* A du?),

while for the r x r minor M(Du) that involves the rows 1,...,r and the
columns 1,...,7 one has

M(Du)dz' A ...dz" = du'A...Adu" Adz"TEA LA da"
= du' Adu® A..odu” A da"TEA LA da”).

15



In either formulation (i) follows from the Gauss-Green (or Stokes) theo-
rem (and approximation by smooth functions) while (ii) follows from induc-
tion over the order r of minors and the fact that u; converges strongly in L”.

(]

Proof of Lemma 2.2. We may assume A = 0 and that there exists a 2 x 2
minor M such that M(B) = 1. By assumption there thus exist sets E; such
that

Duj — Bxg; — 0 in measure , (2.6)

and hence in L? for all p < co. Moreover there exists a subsequence (not
relabelled) such that

XE; 5 0in L®(), w; — win WHO(Q; R™). (2.7)
It follows from Theorem 2.3 and (2.6)
Bxg, = Du = B,

M(B)xp; — M(Du)= M(B)6*. (2.8)

Combining the first convergence in (2.7) and (2.8) we see that 6 = 6 a.e.
Thus § must be a characteristic function yg. Hence (2.7) implies that (use

e.g. the fact |[xg,l[r2 — [Ix5llr2)
Xg;, — 0 = xp in measure.
Therefore by (2.6)
Duj — Du = Bxg in measure.

Finally Lemma 2.1 (i) implies that Du = B a.e. or Du=A =0 a.e. O

2.2 Applications to crystal microstructures

Before proceeding with the mathematical discussion of the problem Du € K
let us briefly review what can be learned about crystal microstructure from
the considerations so far. Which microstructures can form and why are they
so fine?

First let us consider again the role of rank-1 connections. In the contin-
uum theory discussed in the previous section they were related to continuity

16



of the tangential derivatives or to the fact that the curl of a gradient vanishes
(in Section 2.6 we still study the connections with the Fourier transform).
The condition can also be understood in the discrete setting of crystal lat-
tices. Two homogeneous lattices, obtained by affine deformations A and B
of the same reference lattice can meet at a common plane S only if the de-
formations differ by a shear that leaves S invariant. Analytically we recover
the condition B — A = a ® n, where n is the normal of S (see Figure 4).

T o o o o
o o o o o o o o o o o o o o
a A
o o o o ~— o0o~0 0 O O oooo/sOOOO
e ®© @ @ e ®© © @ e ®© ©®© @ @ e e0Oe O
llll\_/llll llllvllll
B B
e e e o e e e o e e e o e e e o
1 1
4/3

Figure 4: Compatible and incompatible lattice deformations. On the left the
condition B — A = a ® n is satisfied, on the right B =1d, A = 4/31d, so the
condition is violated. After deformation there is no interface on which the
two lattices meet.

Under certain additional conditions the two sublattices are referred to as
twins. There are different definitions what precisely constitutes a twin; a
common requirement is that B = QAH, where € SO(3) \ {Id}, Q*? = 1d
and where H belongs to the point group of the crystal, see [Ja 81] and [Za 92]
for further discussion. Compatible lattice deformations can be arranged in
alternating bands of different deformations, see Figure 5 (cf. also Fig. 3).

If the set K € M™ " of minimizing affine deformations contains more
rank-1 connections then more complicated patterns such as the double lam-
inates (or ‘twin crossings’) in Figure 6 are possible.

In this way one can explain the observation of a number of microstructures
through an analysis of rank-1 connections. The constructions based on rank-
1 connections, however, involve no length scale. Why, then, are the observed
structures often so fine?

For the situation of just two deformations A and B Proposition 2.1 (ii)
and the discussion of approximate solutions provide an explanation. As soon
as one imposes a nontrivial affine boundary condition F' = AA + (1 — \)B
there are no exact solutions, and approximate solutions become the better

17



Figure 5: Compatible lattice deformations can be arranged in laminar pat-
terns. Schematic drawing (left), atomic resolution micrograph of fine twin-
ning in Ni-Al (middle; courtesy of D. Schryvers, RUCA, Antwerp), twinning
in Cu-Al-Ni (right; courtesy of C. Chu and R. D. James), grey and black
represent two different lattice deformations.

the finer A and B are mixed (in a real crystal, additional contribution to the
energy may eventually limit the fineness, see Section 6). In practice boundary
conditions are often not so much imposed globally but by contact with other
parts of the crystal where other deformation gradients prevail (e.g. because
the phase transformation has not yet taken place there).

A typical example is the frequently observed austenite/finely-twinned
martensite interface (see Figure 7). In an idealized situation this corresponds
to a homogeneous affine deformation C' on one side of the interface and a fine
mixture of A and B on the other side. Neither A nor B are rank-1 connected
to C but a suitable convex combination AA + (1 — \)B is.

There is no deformation that uses all three gradients A, B and C and
only these (see the end of the proof of Proposition 2.1). However, the volume
fraction of gradients other than A, B and C can be made arbitrarily small
by matching C' to a fine mixture of layers of A and B in volume fractions A
and 1 — A\

The analysis of the rank-1 connections determines the volume fraction A
as well as the interface normals n and m, in very good agreement with experi-
ment; see [BJ 87], Theorem 3 and [JK 89], Section 5 for a detailed discussion.

18



Figure 6: Twin crossings in Cu-Al-Ni (courtesy of C. Chu and R. D. James)
and schematic drawings of the different deformation gradients and their rank-
1 connections (indicated by solid lines).

More complex patterns like the wedge microstructure in Figure 8 can be
understood in a similar vein. In this particular case so many rank-1 connec-
tions are required that the microstructure can only arise if the transformation
strain satisfies a special relation; see [Bh 91}, [Bh 92] for a comparison of the-
ory and experiment.

The considerations in this subsection focused on constructions of mi-
crostructures based on rank-1 connections. Do these constructions cover (in
a suitable sense) all possible microstructures? We return to this fundamental
question in the remainder of this Section and in particular in Sections 4.3,
4.6 and 4.7.
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Figure 7: Austenite/finely twinned martensite interface in Cu-Al-Ni (cour-
tesy of C. Chu and R. D. James), schematic distribution of deformation gra-
dients and rank-1 connections; a simple model for the refinement (branching)
of the A/B twins towards the interface with C is discussed in section 6.2.

Figure 8: Wedge microstructure in Cu-Al-Ni (courtesy of C. Chu and R.
D. James). The necessary rank-1 connections between the six orthorhombic
wells SO(3)U; and the untransformed phase only exist for special transfor-
mation strains Uj.

20



2.3 The one-well problem

The simplest set K that is compatible with the symmetry requirements (1.3)
and (1.4) is K = SO(n). In this case approximating sequences must converge
strongly.

Theorem 2.4 ([Ki 88/, p.231) Suppose that
Du € SO(n) a.e. in Q.

Then Du is constant and u(x) = Qx + b, Q € SO(n). If u; is a sequence of
functions with uniformly bounded Lipschitz constant such that

dist(Du;, SO(n)) — 0 in measure, (2.9)
then
Du; — const in measure.
Proof. To prove the first statement recall from (2.5) that
div cofDu =0

for any Lipschitz map. Now cof F = F for all F' € SO(n) and thus u is
harmonic and therefore smooth. Moreover | Du|? = n, where |F|? = trFTF =
>.; Fiy, and therefore

J i
2|D*ul* = A|Dul* — 2 Du - DAu = 0.

Thus Du is constant.
To prove the second assertion of the theorem we may assume that
uj = uin WH(Q; R™). Consider the function

f(F)=|F|" = c,det F, ¢, =n"2

One easily checks that f > 0 and that f vanishes exactly on matrices of the
form A\@Q, A > 0, Q € SO(n) (use polar decomposition, diagonalize and apply
the arithmetic-geometric mean inequality). Hence (2.9), the weak continuity
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of minors (Theorem 2.3) and the weak lower semicontinuity of the L™ norm
imply that

n—oo

0 = liminf/f(Duj)dx
0

= lim inf(/ |Du;|" dx — cn/det Duj dx)
n—0oQ
Q Q

> /|Du|”da:—cn/detDudx:/f(Du)20.
0 0

Q

Therefore all the inequalities must be equalities and in particular
f(DU) :0a.e., ||DU]||Ln — ||DU||Ln

It follows that

Du;  — Du in L"(; M™") (hence in measure),
Du(z) =Xz)Q(x), A>0, Qz)€ SO(n) a.e.

Moreover |Du;|* = n a.e., whence |Du|* = n a.e. Thus Du € SO(n) a.e. and,
by the first part of the theorem Du = const. O

The case n = 2 of the above result shows some interesting connections
with the Cauchy-Riemann equations. Identify C ~ R? as usual via 2 = x4y
and let 0, = 1/2(0, —10,), 0; = 1/2(0, +1i0,). Suppose that 1 < p < co and

dist(Du,, SO(2)) — 0 in LP(). (2.10)
Then in particular |0,u;| — 1 and
Ozu; — 0 in LP(2;C),

and regularity for the Cauchy-Riemann operator implies that there exists a
function u s.t.

uj — uin W (Q;C), 8;u=0.

Thus w is (weakly) holomorphic and |0,u| = lim;_ . |0,u;| = 1. Hence
0,u = const.
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2.4 The three-gradient problem

Theorem 2.5 ([Sv 91b]). Let K = {Ay, As, A3} and suppose that rk(A; —
Aj) # 1.

(i) If Du € K a.e. then Du is constant (a.e.).
(ii) Ifu; is a sequence with uniformly bounded Lipschitz constant such that
dist(Du;, K) = 0 in measure
then

DUj — const in measure.

Proof of part (i). For simplicity we only consider the case n = m = 2.
The general case can be reduced to this if one considers separately the cases
that the span F of Ay — A; and A3z — A; contains two, one or no rank-1 lines
and uses Lemma 2.7 below, see also [Sv 91b].

We may assume that A; = 0 and thus det As # 0, det A3 # 0. Multiplying
by A" we may further assume A, = Id. Using the Jordan normal form we
see that after a change of variables we have either

(A 2 2
As—(ﬂ \ ), A+ #0

or
A?,:(é Z) A#0, 1 ¢ {0,1}.

In the first case u satisfies the Cauchy-Riemann equations and is holomorphic
and therefore smooth. Thus Du = A, since K is discrete. In the second case
Du € K implies that

81u2 =0.

Hence u?(x) = h(z?) (locally) and dyu?(x) = h'(2?). Since pu ¢ {0,1} the
value of dyu? uniquely determines one of the matrices A4;. Thus Du(z) =
g(z?). In particular

8181u = 0, 8281u = 8182u =0
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in the sense of distributions. Thus d,u = const and Du = const®e; +§(2?) ®
ey. Therefore rk(Du(z) — Du(Z)) < 1 and thus Du = A;. O

An alternative proof that features an interesting connection with the
theory of quasiconformal (or more precisely quasiregular) maps proceeds
as follows. After possible renumbering we may assume that det(A4, — A;)
and det(A; — A;) have the same sign. Taking A; = 0 and multiplying by
diag(1, —1) if needed we have det Ay > 0,det A3 > 0. Thus Du € K implies
that

|Du|? > k det Du

for a suitable constant k. Hence u is quasiregular and a deep result of Reshet-
nyak says that either u = const or u is a local homeomorphism up to a dis-
crete set B, of branch points and that the (local) inverse u™' preserves sets
of measure zero (see [Ah 66|, [Bo 57], [Re 89]). Hence either Du = 0 a.e. or
Du # 0 a.e. In view of the results for the two-gradient problem this implies
the assertion.

The proof of (ii) requires more subtle arguments (see [Sv 91b], [Sv 92b]).
Sverak first shows that after suitable transformations (and elimination of
some simpler special cases) one may assume

Ai = AZ'T, det Az =1.

Now a gradient Du is symmetric if and only if u is itself a gradient Dv. Thus
assertion (ii) is essentially reduced to a study of approximate solutions of the
Monge-Ampere equation

detDZUj — 1, vj:Q€R2—>R.

The difficulty is that, different from the usual literature on the Monge-
Ampere equation, one cannot assume that D?v; is positive (semi-)definite.
Indeed a crucial step in the proof that uses ideas from the theory of quasireg-
ular maps is to show that det D?v > 0 a.e. implies that v is locally convex or
concave.

2.5 The four-gradient problem

The following example which was found independently by a number of au-
thors (I am aware of [AH 86|, [CT 93] and [Ta 93]; see [BFJK 94] for the
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adaptation of Tartar’s construction for separately convex functions to diag-
onal matrices) shows that the absence of rank-1 connections does not guar-
antee absence of microstructures (i.e. strong convergence of approximating
sequences).

Lemma 2.6 Consider the 2 X2 diagonal matrices A; =— Az =diag(—1, —3),
A2 = —A4:d1ag(—3, 1) and let K:{Al, AQ, A3, A4} Then I'k(AZ — AJ) 7£ 1
but there exists a sequence u;

dist(Du;, K) — 0 in measure,
and Du; does not converge in measure.

Ezercise: Show that there is no nontrivial solution of Du € K for the
above choice of K. Hint: consult the previous subsection.

It is not known whether there is another choice of four matrices with
rk(A;—A;) # 1 for which nontrivial solutions exist. It is known, but not triv-
ial, that for each € > 0 there exist nontrivial maps such that dist(Du, K) < €
(see the discussion after Theorem 5.4). Note that for small € the set of
admissible gradients still contains no rank-1 connections.

Proof. Since K contains no rank-1 connections the key idea is to ‘borrow’
four additional matrices .J; (see Fig. 9) and to successively remove the regions
where Du assumes .J;. We will construct a sequence v, that satisfies the affine
boundary condition

ve(z) = Jyz on 9Q = 9(0,1)%

As a first approximation we may take v(®)(z) = Jyz. To increase the measure
of the set where the gradients lie in & we observe that .J, is a rank-1 convex
combination of A; and Ji,

1 1
Jy==A1+=Jq.
1= 54 + 571
As in Section 2.1 we can thus construct a map v(Y) that agrees with v(®on 0Q
and uses only gradients A; and J; (in layers of thickness 1/2k) except for

a boundary layer of thickness ¢/k where the gradient remains uniformly
bounded. In the next step we replace the stripes where Dv() = J; by fine
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Ay

Figure 9: Four incompatible matrices that support a nontrivial minimizing
sequence

layers of Ay and Jo and k new boundary layers of thickness ¢/k?. This yields

v (see Fig. 10). The volume fraction of the .J; phases has been decreased
to (%)2 (up to small corrections due to the boundary layers). If we replace
Jo by fine layers of Az and J3 (with k? boundary layers of thickness ¢/k3) we
obtain v(* and replacing J3 by A, and J; we obtain v*). Up to the boundary
layers Dv(® only uses the values A; and J;. Compared to v(*) the volume
fraction of the set where Jy is taken has been reduced from one to (slightly

less than) (1/2)*. The volume fraction of the boundary layers is bounded by
c c ¢ c c
k=4 k= k= =4
F R T R T R TN
Hence we have
4c 1
DvM ¢ K} < —+ —.
(Do ¢ K} < 7+ o
To further reduce the volume fraction of the set Dv ¢ K we can now
apply the same procedure to each of the small rectangles where Dv® = J,.
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A

Figure 10: The first three stages in the construction of v.

After [ iterations we obtain

|—

—

{Dv™) ¢ K}| < Z(%)m%+<%>l
¢ o1y
. ﬁ(ﬁ)'

With a suitable choice of [ we thus find maps v, : Q@ — R? such that |Dvg| <
L and
C

{Duvy ¢ K}| < - — 0,

vp(z) = Jyzon 0Q.

In particular dist(Duwy, K) — 0 in measure.

We finally show that no subsequence of Dwv, can converge in measure.
Indeed if Dvy; — Dv in measure then Dv € K in @ and v = Jyr on
0. This is impossible since Dv € K implies Dv = const (see Exercise).
Alternatively one can easily verify that

Dup = J, in L®(Q; R?).
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This contradicts convergence in measure since J; ¢ K. O

Exercise. Show that for all F'in the shaded region in Figure 4 there exists
a sequence such that

*

Dv, — F L*(Q;R™),
dist(Dvg, K) — 0 in measure.

In fact the shaded region together with the rank-1 lines between the A;
and the J; contains all such F'. One possible proof uses the nontrivial fact
that the function

det /' F symmetric >0
f(F)= 0 F symmetric 20
400 F' not symmetric

is quasiconvex (see [Sv 92b]). See Sections 4.3 and 4.4 for further information
about the classification of weak limits.

2.6 Linear subspaces and elliptic systems

Lemma 2.7 Let L be a linear subspace of M™*™ that contains no rank-1
line.

(1) If u is Lipschitz and Du € L a.e. then u is smooth

(ii) If u; is a sequence that satisfies

wj = u in WHO(Q;R™),
dist(Du;, L) — 0 in measure,

then Du € L a.e. and

Duj — Du in measure.

Remark. In (i) it suffices to assume that v € W', in (ii) it suffices that
u; — u in L}, and that Du; is bounded in L;

loc loc*
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Proof. Let A: M™*™ — M™*" denote the projection onto the orthogonal
complement of L. Then Du € L is equivalent to

A Du = 0. (2.11)

The assumption that L contains no rank-1 lines essentially assures that (2.11)
is a linear elliptic system, and the assertions follow easily from the general
theory of such systems. We sketch the proof for the convenience of the reader.
Suppose that v has compact support in €2, f belongs to the Sobolev space
Wk2(Q; R™) (i.e. all distributional derivatives up to order k belong to L?)

and v satisfies
ADv=f. (2.12)

We claim that v € WH12(Q; R™) and
ID¥ ]| 2 < O DF £ 2. (2.13)
To prove this consider the Fourier transform
iA0(€) @€ = f(¢)

of (2.11). Since L contains no rank-1 connections we have A(a ® &) # 0 if
a # 0, £ # 0, and by homogeneity

[Ala ® &) = clal [¢]

for some constant ¢ > 0. The claim follows now from Plancherel’s Theorem.
To prove (i) let ¢ € C§°(€2). Then

AD(pu) = A(u® D).

In view of (2.13) we have the implication u € Wi-? = u € W2 and this
yields (i).

To prove (ii) observe that the hypothesis and the linearity of (2.11) imply
that u; — win L, ADu; — 0in L, ADu = 0.

Application of (2.13) with v = ¢(u; — u) yields the assertion. O

To establish (i) for uw € W' it suffices to mollify v and to pass to the
limit. To prove (ii) under the hypothesis in the remark one can use the weak
L' estimates for elliptic systems (or, more precisely, for good Fourier multi-
pliers).
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Ezxamples.
1. L:{FEM2X2:F: (

Riemann equations

a

) Z > } ; this corresponds to the Cauchy-

81u1 - 02U2 = 02u1 + 6111,2 = 0.

2. L= {F e M FT = F trF = 0}; this corresponds to the Laplace
equation Av = 0, since Du symmetric implies u = Dv (locally).

3. L={F € M™":trF =0, Fj;& — Fip§; = 0,V§ € R\ {0} }; this cor-
responds to the system div v = 0, curl v = 0.

Problem. What is the largest dimension d(m,n) of a subspace of M"™*"
that contains no rank-1 line?

This is closely related to questions in algebraic geometry and K-theory,
e.g. to the number of linearly independent vector fields on S"~!. For m =n
Example 2 provides the lower bound d(n,n) > @ The upper bound
d(n,n) = n? —n is sharp exactly in dimension n = 2,4 and 8. See [BFJK 94]
for further information.
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3 Efficient description of minimizing sequences -
Young measures

3.1 The fundamental theorem on Young measures

We have seen in the examples in Sections 1.2 and 2.1 that there are usually
many minimizing sequences for a variational problem. We return now to
the question whether all these sequences have some common features and
whether one can describe the ‘macroscopic’ features of a sequence without
paying attention to unnecessary details. Closely related is the issue of defin-
ing a notion of generalized solution for variational problems that do not admit
classical solutions.

A reasonable condition for an object that describes the macroscopic be-
haviour of a sequence z; : E — R? is that it should determine the limits

of
[ )

for continuous functions f (such as energy-, stress- or entropy density) and for
all measurable subsets U of E. Such an object exists and was first introduced
by L.C. Young in connection with generalized solutions of optimal control
problems. By Cp(R?) we denote the closure of continuous functions on R?
with compact support. The dual of Cy(R?) can be identified with the space
M(R?) of signed Radon measures with finite mass via the pairing

.5y = [ s

A map p: E — M(RY) is called weak+ measurable if the functions x
{u(x), f) are measurable for all f € Cy(R%). We often write j, instead of

().

Theorem 3.1 (Fundamental theorem on Young measures)

Let E C R" be a measurable set of finite measure and let z; : £ — RY be
a sequence of measurable functions. Then there exists a subsequence zj;, and
a weakx measurable map v : E — M(R?) such that the following holds.

(i) ve 20, |Vellpmay= [ dve <1,  for ae z€E.
Rd
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(vi)

For all f € Cy(RY)
f(zjk) - f m LOO(E)7

where

fl@)= (v, f) = /fdym.

Let K C R® be compact. Then

suppry, C K if dist(z;,, K) — 0 in measure.

Furthermore one has
(i") lvellm=1 forae ze€E
if and only if the sequence does not escape to infinity, i.e. if

i | > M} =o. .
A}gloosgplﬂzakLMH 0 (3.1)

If (i’) holds, if A C E is measurable, if f € C(R?) and if
f(z;,) is relatively weakly compact in L'(A),

then B B
fzj) = fin LYA),  f(z) = (va, f).

If (i’) holds, then in (iii) one can replace ‘if " by ‘if and only if .

Remarks. 1. The map v : E — M(R?) is called the Young measure
generated by (or: associated to) the sequence z;,. Every (weakly+ measur-
able) map v : E — M(RY) that satisfies (i) is generated by some sequence 2.

2. The assumption |E| < oo was only introduced for notational convenience,
cf. [Ba 89]. In fact R? with Lebesgue measure can be replaced by a more
general measure space (S,%, u), e.g. a locally compact space with a Radon
measure. The converse statement in Remark 1 requires that p be non-atomic.
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3. The target R¢ can be replaced e.g. by a compact metric space K. In this
case one always has ||v,||= 1 a.e. The condition (3.1) has a simple interpreta-
tion if we replace R? by its one-point compactification K = R?U {oco} ~ S¢
and consider the corresponding family of measures v, on K. Then ||7;||=
1 a.e., and (3.1) ensures that 7, does not charge the point co.

4. If, for some s > 0 (!) and all j € N

/|Zj|s <C

E

then (3.1) holds.

5. Here is a typical application of (v): if {z;} is bounded in L? and |f(s)| <
C(1+4]s|9),q < p, then f(z;,) — f in LP/9. In particular, for p > 1 the choice
f =id yields

— 2z, z(x) = (v, 1d). (3.2)

Proof. The point is to pass from the functions z; which take values in R?
to maps which take values in the space of M(R?) of measures in R%. Thus
we allow new limiting objects which do not take a precise function value at
every point but a probability distribution of values.

Let

Zj

Then || Z;(x)|| pmey= 1 and (Z;(z), f) = f(z;(z)). Thus Z7 belongs to the
space L°(E; M(R?)) of weak+ measurable maps p : £ — M(R?) that are
(essentially) bounded. Now it turns out L:°(E; M(R?)) is the dual of the
separable space L!'(E; Cy(R?)) (see e.g. [Ed 65, p.588], [IT 69, p.93], [Me 66,
p.244]), where the duality pairing is given by

(1, 9) = / (), g(2))d.

E

Hence the Banach-Alaoglu theorem yields a subsequence such that
Zj, =0, () —v inLy(E; M(RY). (3.3)

Lower semicontinuity of the norm implies that || v, ||< 1 for a.e. z. For
¢ € LY(E) and f € Cy(R%) we denote by p® f the element of L'(E; Cy(RY))
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given by z — ¢(x)f. The definition of Z; and (3.3) thus imply

[ e@ia@)is =z, 00 1) - /

E

Hence (ii) follows, and considering all functions f > 0, ¢ > 0 we also deduce
vy > 0.
To prove (iii) it suffices to show that

Ve, f)=0 YV fe R\ K). (3.4)

Let f € Cy(RY\ K). Then for every € > 0 there exist C, such that |f(y)| <
e + C, dist(y, K). Hence the hypothesis dist(z;,, K) — 0 in measure implies
that (|f| — €)(2;,) — 0 in measure, and in view of (ii) we conclude that

Ve, (|fl =€) =0 for a.e. x.

Now (3.4) follows since € > 0 was arbitrary.

The proof of (iv) and (v) is easily achieved by a careful truncation ar-
gument and the characterization of weakly compact sets in L' [Me 66], see
[Ba 89] for the details. Finally the proof of (vi) follows by an application of
(v) to the bounded function f = min(dist(-, K),1). O

Remark. Since the span of tensor products ¢ ® f,p € L'(Q2), f € Cy(RY),
is dense in L'(€2; Cy(R?)) assertion (ii) of the theorem is equivalent to Zj, —
v.

The measure v,, describes the probability of finding a certain value in the
sequence zj, (z) for z in a small neighbourhood B, (x¢) in the limits j — oo
and r — 0. The following useful fact reflects this probabilistic interpretation.

Corollary 3.2 Suppose that a sequence z; of measurable functions from E
to R¢ generates the Young measure v : E — M(R®). Then

zj — z in measure if and only if vy = 0,(,) a.e

Proof. If z; — z in measure then f(z;) — f(z) in measure for all f €
Co(RY). Hence by Theorem 3.1 (ii) one has (v,, f) = f(z(z)) for all f €
Co(R%) and thus v, = 0x(2)- If conversely v, = d,(,) a.e. we claim that

limsup [{[z; — w| > e}| < {]z —w| > €/2}],

J—0

34



for all piecewise constant measurable functions w : E — R%. To see this it
suffices to consider constant functions w = a and to apply (v) with f(y) =
©(|ly—al) where ¢ is continuous 0 < ¢ < 1,0 =1 on [¢,00), ¢ = 0 on [0, ¢/2].
Thus

limsup [{|z; — z| > e}| < limsup|{|z; — w| > €/2}] + [{|w — 2| > €/2}]

j—00 j—00
< 2[{|z — w| > €/4}|.

The last term can be made arbitrarily small since measurable functions can
be approximated by piecewise constant functions, and the assertion follows
(note that z is measurable since {v, },cp is weak« measurable). O

An alternative approach to the ‘if” part of the corollary is to apply Corol-
lary 3.3 below to the Carathéodory function f(z,y) = min(|y — z(z)|, 1).

3.2 Examples

a) Let h: R — R be the periodic extension of the function given by

a if0<x<A,
h(x)_{b A<z <l,

and define z; : [0,1] — R by
5(@) = h(ja). (3.5)

Using the periodicity of h one easily checks that (see e.g. [Da 81], p.8),

1
7 /h(y)dy =Xa+ (1 —-A\)b
0

and similarly
f(z) = Af(a) + (1= M) f(b).

Hence z; generates a Young measure v given by
Vg = /\6(1 + (1 - )\)(Sb

In particular v, is independent of x. Such Young measures are called homo-
geneous Young measures.
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More generally (see e.g. [BM 84]) if A : R" — R is locally integrable and
periodic with unit cell [0,1]" and z; is defined by (3.5), then z; generates a
homogeneous Young measure v given by

[oav="[ oty
R [0,1]"

For a Borel set B C R one has
v(B) =[(0,1)"Nh~'(B)|.

b) Let

let u; be a sequence such that
I(u;) =0, u;(0) = u;(1) =0, (3.6)

and let z; = (u;), (cf. Example 2 in Section 1.2). Then z; is bounded in
L*, a subsequence generates a Young measure v and ||v,||= 1 a.e. If we let
g(p) = min((p? — 1)%,1) we deduce from (3.6) that

(Veyg) =0 for a.e. x.

Hence suppr, C {—1,1} and v, = A(x)d_; + (1 — A(z))d; a.e. By Remark 5
after Theorem 3.1
Zj, — (v, id) = 1 — 2\(2) (3.7)

and

uj, (a) = / 2 dv — / (1 — 2X\(z))da. (3.8)

By (3.6) u; — 0 in L? and thus A(z) = 1/2 a.e. Hence z;, generates the
unique (homogeneous) Young measure

1 1
Vpy = =0_1 + =01.
50-1 + 501
By uniqueness the whole sequence z; generates this Young measure.

36



Although there are many different minimizing sequences for I they all
generate the same Young measure. The Young measure captures the essential
feature of minimizing sequences. They have to use slopes (close to) +1 in
equal proportion in a finer and finer mixture.

One may view the pair (u, v) as a generalized solution of the problem I —
min. The derivative u, is replaced by a probability measure and the coupling
between u and v occurs through the centre of mass of v (cf. (3.7),(3.8) and
Theorem 4.9):

g = (Vg,1d).
¢) (Approximate solutions of the two-well problem)

Let A, Be M™" B—A=a®n,F = A+(1-\)B, A € (0,1). Consider
a sequence of maps u; :  C R" — R™ with uniformly bounded Lipschitz
constant that satisfies

dist(Du;,{A, B}) — 0 in measure in €,

u;(z) = Fr in 09.
Let v be the Young measure generated by (a subsequence of) Du;. Then
|lvz|]|= 1 and Theorem 3.1 (iii) yields suppr, C {4, B}, i.e. v, = p(x)ds +

(1 — p(x))dp. Passing to a further subsequence we may assume u; — u in
Whee(Q,R™), and in view of (3.2) we have

Du(z) = p(x)A+ (1 —p(x)B=A+ (1 — pu(z))a ®@n.

Extending u; and uw by Fx outside Q2 we deduce that v(z) = u(x) — Az is
constant on the planes x - n = const. Hence u(x) = Fx and u(x) = A. Thus
{Du,} generates the unique (homogeneous) Young measure

Ve = )\(5A + (1 - )\)63

d) (Four-gradient example)
The sequence Du’ constructed in Section 2.5 generates the unique homoge-
neous Young measure

8 4 2 1
Vy = —6A1 + —(5142 + _5143 + ﬁ

T 15 15 15 O

Proof. Exercise.
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3.3 What the Young measure cannot detect

The Young measure describes the local phase proportions in an infinitesi-
mally fine mixture (modelled mathematically by a sequence that develops
finer and finer oscillations) This is exactly what is needed to compute limits
of integrals fU . There are, however, other natural quantities that can-
not be computed from the Young measure.

Ezample 1 (micromagnetism).
The energy of a large rigid magnetic body represented by a domain

Q C R?, is given by
1m) = [ o)+ [ 1
Q R3

Here m : 0 — R? is the magnetization and h,, is the Helmholtz projection of
—m (extended by zero outside ), i.e. the unique gradient field that satisfies
divh,, = —divm in the sense of distributions. In suitable units m satisfies
the saturation condition |m| = 1. For simplicity we have neglected exchange
energy (this is a good approximation for large bodies, see [DS 93]).

Let m; : Q — S? C R? be a sequence of magnetizations that generates a
Young measure v. Then

/(p(mj)dx R /(Vx,@dx

The limit of [ |hy,|*, however, is in general not determined by the Young
R3
measure (see Fig. 11). Indeed let f be the periodic extension of the sign
function on [—1/2,1/2], let Q = [0,1]* and let
m; = f(ja')e'xas ;= f(ja*)e’ xa.

Both sequences generate the same (homogeneous) Young measure v, = %681 +
50_c1. On the other hand it is not difficult to verify that ||h,,|lo— 1 while
| s ||2—> 0. First replace xq by a smooth function ¢ and show that the
resulting fields M7 and M/ satisfy curl M; — 0, d1VM — 0in H'; then use
the estimate ||hy,; —hag; ||2< [Jm; — Mj]|2 Wthh holds since the map m +— —h,,

is an orthogonal projection. Alternatively one may use the representation of
h,, in Fourier space.
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Figure 11: Both sequences generate the same Young measure but m; is almost
a gradient while m; is almost divergence free.

Ezample 2 (correlations).
The limit of

B(w) = [ uy@yus(e+5)da

is not determined by the Young measure of {u;}. Indeed consider

u;(z) =sinjna,
vi(z) = sin2j%mw.

Both sequences generate the same (homogeneous) Young measure v, =
2(sin™")'(y)dy (cf. Section 3.2 a)), but

Ii(uj) = [sin(jrz) sin(jrz +7) — —1/2,

Ii(v;) = [sin(j*mz) sin(j*rz + 2j7) — 1/2.

o oW .

3.4 More about Young measures and lower semicontinuity

We have seen that Young measures are useful as a concept since they give a
precise meaning to the idea of ‘infinitesimally fine phase mixture’ and provide
a framework for generalized solutions where no classical minimizers exist.
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In this section, which may be omitted on first reading, we briefly discuss
the advantages of Young measures as a technical tool. The following two
results allow one, among other things, to extend lower semicontinuity results
for integrals [ f(Du(x))dx to integrals [ f(z,u(x), Du(z))dz without addi-
tional effort. More generally, Young measures are a rather efficient tool to
eliminate all dependence on ‘lower order’ terms by soft general arguments.
The first result shows that the Young measure suffices to compute limits of
Carathéodory functions, the second extends the characterization of strong
convergence in Corollary 3.2.

Corollary 3.3 Suppose that the sequence of maps z, : E — R® generates
the Young measure v. Let f : E x R — R be a Carathéodory function
(measurable in the first argument and continuous in the second) and assume
that the negative part f~(z,zx(x)) is weakly relatively compact in L'(F).
Then

limin / (@, 2 () de > / / £ N)dva(\)da. (3.9)

If, in addition, the sequence of functions x v« | f|(z, zk()) is weakly relatively
compact in L'(E) then

fea) = F mINE), f@) = [ feNduWde (@310

Remarks. 1. Assertion (3.9) still holds if f is (Borel) measurable on
E x R? and lower semicontinuous in the second argument rather than a
Carathéodory function (see [BL 73]).

2. The choice f(x,p) = min(|p — z(x)|, 1) in (3.10) can be used to prove
the ‘if” statement in Corollary 3.2.

Proof. Tt suffices to prove (3.9). The second assertion follows by applica-
tion of this inequality to f(x,p) = +@(z)f(z,p) for all ¢ € L®(E),p > 0.
To prove (3.9) first consider the case f > 0. Assume temporarily that, in
addition,
flz,A) =0 if |A\] > R. (3.11)

By the Scorza-Dragoni theorem there exists an increasing sequence of com-
pact sets FEj such that |E'\ Ej| — 0 and fjg, «ge is continuous. Define
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F; : E — Cy(R?) by Fj(z) = xg,(x)f(z,-). Then F; € L'(E;Cy(R%)) and
the convergence of d,,(.) to v in the dual space yields

[ S @) 2 [ (b Fya)
— gux, j(x))da —]Effx A)dvg(N).

Letting 7 — oo we obtain the assertion by the monotone convergence theo-
rem. To remove the assumption (3.11) consider an increasing sequence {n,} C
Cs°(RY), that converges to 1, use the estimate for fi(z,\) = f(z, \)m()\) and
apply again the monotone convergence theorem. This finishes the proof if
f > 0 or more generally if f is bounded from below.

For general f let

he(z) = fla, 2(2)) = hy (2) = hy (),
fu(z, A) = max(f(z,\), —M).

By the equivalent characterizations of equiintegrability (see e.g. [Me 66]) for
each € > 0 there exists an M > 0 such that

sup / hy (z)dz < e.

k

hy >M
Hence
lilgninf/fxzk dx+e>hm1nf/fozk
—00
//fo)\dyw dac>/fx)\du$
E R4
Since € > 0 was arbitrary the proof is finished. O

Corollary 3.4 Let u; : E — R%v; : E — R? be measurable and suppose
that u; — u a.e. while v; generates the Young measure v. Then the sequence
of pairs (uj,vj) : E — R4 generates the Young measure x — Ou(z) ® V.

Proof. Let ¢ € Cy(R%),v € Co(R?),n € L*(E). Then ¢(u;) — ¢(u)a.e.
and ne(uj) = ne(u) in L'(E) by the dominated convergence theorem. More-
over by assumption

P(v) =0 i L% P(a) = (v, ).
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Hence

[ @) vds = [ netustu)ds — [ npin s

E

or
(o @ ¥)(uj;,vj) A (Ou()y ® v, 0 @) in L= (E).

The assertion follows since linear combinations of tensor products ¢ ® ¢ are
dense in Co(R*). O

A typical application of the corollaries is as follows. Let f : Q x (R™ x
M™ ™) — R be a Carathéodory function and suppose that f > 0. Suppose
that u; — u in W?(Q; R™) and that Du; generates the Young measure v.
Taking v; = Duj, z; = (u;,v;) we obtain.

liminf [ f(x,uj(x), Du;(x))dzx
J]—00 Q

> [ [l A p)doyw(N) @ dvg(p)de

Q RmMx MmXn

=[ [ flz,u(z),\)dv,(\)dz.

Q MmXn

The proof of the lower semicontinuity is thus reduced to the verification of
the inequality

/ 9N () > g(Du(x)) = g({vs, id)) (3.12)

MmXn

for the function
g(A) = f(z,u(z),N)

with ‘frozen’ first and second argument. To see when (3.12) holds we need
to understand which Young measures are generated by gradients. This is the
topic of the next section.
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4 Which Young measures arise from gradients?

To employ Young measures in the study of crystal microstructure we need to
understand which Young measures arise from sequences of gradients {Du,}.
As before 2 C R™ denotes a bounded domain with Lipschitz boundary.

Definition 4.1 A (weaklyx measurable) map v : Q — M(M™ ") is a WP
gradient Young measure if there exists a sequence of maps u; : 2 — R™ such
that

uj —u in WH(QR™) (= ifp=oc),

Spu(y — v L(Q M(M™™),

Using this notion we may reformulate Problem 2 (approximate solutions) as
follows.

Problem 2’  Given a set K C M™*", characterize all W5 gradient
Young measures v such that

suppr, C K for a.e. x.

An abstract characterization of gradient Young measures due to Kinderlehrer
and Pedregal will be derived in Section 4.3 below. It involves the notion of
quasiconvexity. Quasiconvexity, first introduced by Morrey in 1952, is clearly
the natural notion of convexity for vector-valued problems (see Section 4.2)
but still remains largely mysterious since it is very hard to determine whether
a given function is quasiconvex. Therefore further notions of convexity were
introduced to obtain necessary or sufficient conditions for quasiconvexity. We
begin by reviewing these notions and their relationship.

4.1 Notions of convexity

For a matrix F' € M"™*" let M (F') denote the vector that consists of all
min(n,

m)
minors of F and let d(n,m)= > (*)(") denote its length.
r=1
Definition 4.2 A function f : M™" — R U {+o0} = (—o0, o0] is
(i) convex if
FOA+ (L =XN)B) <Af(A)+ (1= N f(B)
VA Be M™™ \e (0,1);
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(ii) polyconvex if there exists a convex function g : R4™™ — R U {+o0}
such that

(iii) quasiconvex if for every open and bounded set U with |0U| = 0 one
has

/ f(F + Dy)dx > / f(F)de = |U|f(F) Vo € Wy=(U;R™), (4.1)

whenever the integral on the left hand side exists;
(iv) rank-1 convex, if f is convex along rank-1 lines, i.e. if
FOA+ (1 =NB) <Af(A) + (1= N)f(B)
VA BeM™" withrtk(B—A)=1, Y \e(0,1).

Remarks. 1. If f € C? then rank-1 convexity is equivalent to the Legendre-
Hadamard condition

rr

OF?

2 f

Fa®ba®b) = - .
(Plashasd) =7

(F)a'baa’bs > 0.

2. Quasiconvexity is independent of the set U, i.e. if (4.1) holds for one
open and bounded set with |OU| = 0 then it holds for all such sets. If f takes
values in R it suffices to extend ¢ by zero outside U and to translate and
scale U. For general f one can use the Vitali covering theorem.

3. If f takes values in R and is quasiconvex then it is rank-1 convex
(see Lemma 4.3 below) and thus locally Lipschitz continuous (use that f is
convex and thus locally Lipschitz in each coordinate direction in M™*"; see
[Da 89], Chapter 2, Thm. 2.3, or [MP 98], Observation 2.3 for the details).
In this case the integral on the left hand side of (4.1) always exists.

It is sometimes convenient to consider quasiconvex functions that take
values in [—00, 00). The argument below shows that such functions are rank-
1 convex and thus either take values in R or are identically —oc.

If n =1 or m = 1 then convexity, polyconvexity and rank-1 convexity are
equivalent and they are equivalent to quasiconvexity if, in addition, f takes
values in R.
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Lemma 4.3 Ifn > 2,m > 2 then the following implications hold.

[ conver

Y /)
[ polyconvex

Y ¥

[ quasiconvex

I f<oo ¥ ifm>3

[ rank-1 convex

The most difficult question is whether rank-1 convexity implies quasiconvex-
ity. Sverdk’s [Sv 92a] ingenious counterexample solved this long standing
problem in the negative if m > 3; the case m = 2,n > 2 is completely open.

Proof. The first implication is obvious, the second follows from the fact
that minors are null Lagrangians (see Theorem 2.3) and Jensen’s inequality.
To prove the last implication let f be quasiconvex, consider A, B € M™*"
with tk(B — A) = 1, and a convex combination F' = AA + (1 — \)B. After
translation and rotation we may assume that F =0,A=(1—-\)a®e;, B =
—Xa ® ey. Let h be a 1-periodic sawtooth function which satisfies h(0) = 0,
h'=(1—X)on (0,\) and A’ = —X on (A, 1). Define for z € @ = (0,1)"

up(z) = ak 'h(kz!),
vr(z) = amin{k~ h(kz'), disto (z,0Q)},

where
distoo (2, 0Q) = inf{||lz — yll: y € 0Q},
||| 00 =sup{|z‘|,i=1,...,n}.
Then Dv, € {A, B} U{xa®e¢;}, vy =0 on 0Q, and |{Dvy, # Duy}| — 0 as
k — 0 (see Fig. 12).
It follows from the definition of quasiconvexity that

A(A)+ (1 —N) = lim /f Duy)dx = hm f(Dug)dx > f(0),

k— 00
Q

as desired. Note that the inequality Af(A4) + (1 — A)f(B) > f(0) still holds
if f takes values in [—00, 00).

As for the reverse implications, the minors (subdeterminants) of order
greater than one are trivially polyconvex but not convex. An example of a
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Figure 12: The gradients of vy, for n = 2.

quasiconvex but not polyconvex function is given below. Sverak’s counterex-
ample of a rank-1 convex function that is not quasiconvex will be discussed
in Section 4.7. O

Remark. The proof that quasiconvexity implies rank-1 convexity is simi-
lar to Fonseca’s ([Fo 88|, Theorem 2.4). In fact her method yields a slightly
stronger result: if f : M™*™ — [—o0,00] is finite in a neighbourhood of
F and quasiconvex then f does not take the value —oo on any rank—1 line
through F' and f is rank-1 convex at F, i.e. f(F) < Af(F —(1—-A)a®b)
+(1-=Nf(F+X®Db),VaecR" beR™ e (0,1). To obtain this refine-
ment it suffices to replace disty (z, @) in the definition of vy, by € disto (2, Q)
for small enough ¢ > 0.

The following example, due to Dacorogna and Marcellini [AD 92], [DM 88],
[Da 89], may serve as a simple illustration of the different notions of convex-
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ity. Let n = m = 2 and consider
f(F)=|F|* = y|F|*det F. (4.2)

Then

convex —= | <32,
polyconvex —= |y <2,
quasiconvex <= |y]| <2+,
rank-1 convex <= |y| < %.

s s s

It is known that € > 0; whether or not 2 4+ ¢ = % is open.

Alberti raised the following interesting question which shows how little
we know about quasiconvexity. Let 2 < n < m and let g : M™" — R,
g: MY - R, §(F) = g(FT).

Question (Alberti): g quasiconvex PREN J quasiconvex.

Obviously equivalence holds for the other three notions of convexity.
Kruzik recently answered Alberti’s question in the negative if g is allowed to
take the value +00 and m > 3. Refining his argument one can show that
Sverdk’s quartic polynomial provides a finite-valued counterexample (see the
end of section 4.7).

Ball, Kirchheim and Kristensen [BKK 98] recently solved a long-standing
problem by proving that the quasiconvex hull of a C* function f (i.e. the
largest quasiconvex function below f) is again C', provided that f satisfies
polynomial growth conditions. The representation of the quasiconvex hull
through gradient Young measures (see Section 4.3) plays a crucial réle in
their argument.

4.2 Properties of quasiconvexity

Quasiconvexity is the fundamental notion of convexity for vector-valued vari-
ational problems. It is closely related to lower semicontinuity of integral
functionals, existence and regularity of minimizers and the passage from mi-
croscopic and macroscopic energies. Quasiconvex functions are the natural
dual objects to gradient Young measures (see Section 4.3).
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In the following Q always denotes a bounded (Lipschitz) domain in R”
and we consider maps u : {2 — R™ and the functional

I(u) = /f(Du)dx.

In this section we merely summarize the results. Some of the proofs for
p = oo are given in Sections 4.8 and 4.9 below. Further comments and
references can be found at the end of these notes.

Theorem 4.4 Suppose that f : M™ " — R is continuous.

(i) The functional I is weakx sequentially lower semicontinuous (w*slsc)
on WHe(Q; R™) if and only if f is quasiconver.

(ii) Suppose, in addition, that
0 < f(F) < C(FPP+1) (43)
for somep € [1,00). If f is quasiconvex then I is wslsc on WP (Q; R™).

Remarks. If f > 0 it can be shown that I is finite and wslsc on WhP if
and only if f satisfies (4.3) and is quasiconvex (see [Kr 94]). Part (i) is an
essential ingredient in the classification of gradient Young measures. Using
this classification and simple general facts about Young measures (see Sec-
tion 3.4) one easily obtains similar lower semicontinuity results for integrands

f(z,u(z), Du(x)).

Theorem 4.5 (ezxistence and relazation)
Suppose that p € (1,00),¢ > 0 and that f satisfies

co|[FIP < f(F) < C([F” +1).

(i) If f is quasiconver and v € WIP(Q; R™) then I attains its minimum
wn the class

WP (QR™) = {u € WP(Q;R™) :u—v € Wy (Q; R™)}.
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(i) If f9¢ denotes the quasiconvex envelope of f, i.e. the largest quasiconvex
function below f, then )
inf / = min [/,
WP WP

where

T(u) = / (D). (4.4)
Q
Moreover, a function @ is a minimizer of I in WXP if and only if it is a
cluster point (with respect to weak convergence in WP) of a minimizing
sequence for 1.

(iii) For any f : M™ " — [—o00,00) and every bounded domain U with
|0U| = 0 one has

f(F) = inf - / F(F + Dy)dz. (4.5)

The passage from I to I is called relaxation. It replaces a variational problem
which may have no solution by one which has a solution. This sounds almost
too good to be true and indeed there is a price to pay. The minimizers
of I are in general only weak limits of a minimizing sequence of I, and
important features of the sequence may be lost. If, for example, I has a
homogeneous minimizer it is not clear whether minimizing sequences of I are
(nearly) homogeneous or whether they involve an increasingly finer mixture
of several states. A different approach, that keeps more information about
the minimizing sequence is to derive a (relaxed) problem for the gradient
Young measures generated by minimizing sequences (see Theorem 4.9 of the
next section).

Physically, relaxation corresponds to the passage from a microscopic en-
ergy I to a macroscopic energy I, which is obtained by averaging over fine
scale oscillations; cf. the representation (4.5).

Theorem 4.6 (regularity). Suppose that f is smooth, satisfies
0< f(F)<C(FP+1)
and is uniformly quasiconvex, i.e. there exists ¢ > 0 such that

[+ D) - @ldr > ¢ [1DgP, o e wp=(@R")
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Let € WH2(Q; R™) be a local minimizer of I, i.e.
I(u+p) > I(u) Ve e CFQ).
Then there exists an open set o of full measure such that

4.3 Classification of gradient Young measures

Recall that a map v : Q — M(M™™) is a W* gradient Young measure
if it is the Young measure generated by a sequence of gradients Du;, where

uj = u W™ (see Definition 4.1).

Theorem 4.7 ([KP 91]) A (weakx measurable) map v : Q@ — M(M™*") is
a Wb gradient Young measure if and only if v, > 0 a.e. and there erists a
compact set K C M™™ and u € WH>(Q; R™) such that the following three
conditions hold.

(i) suppr, C K for ae. x,
(i) (v, id) = Du for a.e. x,
(iii) (va, f) > f({ve,1d)) for a.e. x and all quasiconvez f : M™"™ — R.

Remarks. 1. The key point is (iii) which is in nice duality with the def-
inition of quasiconvexity. Roughly speaking, quasiconvex functions satisfy
Jensen’s inequality for gradients, while gradient Young measures must sat-
isfy Jensen’s inequality for all quasiconvex functions.

2. Let K C M™*™ be compact. For future reference we define the set
of nonnegative measures supported on K that satify condition (iii) of the
theorem as

ME(K)={ve M(M™"):v >0,suppr C K, 16
(v, ) > f({r,id)) Vf:M™" - R quasiconvex}.( )

By the theorem MY(K) consist exactly of the homogeneous gradient Young
measures supported in K. Similarly one defines M™(K) and MP?“(K) using
rank-one convex and polyconvex functions, respectively.
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3. Every minor M is a quasiaffine function (i.e. (4.1) holds with equality;
see Theorem 2.3(i)). Hence application of (iii) with M yields the minors
relations

(vo, M) = M({vy,id)) (4.7)

as a necessary condition for gradient Young measures. This condition in fact
follows directly from Theorem 2.3 (ii) and does not require Theorem 4.7. The
minors relations often prove very useful for problems with large symmetries
that arise e.g. in models of microstructure in crystals (see e.g. [Bh 92]). They
are, however, far from being sufficient in general.

Ezercise. Find a nontrivial measure supported on three diagonal 2 x 2
matrices without rank-1 connections that satisfies (4.7) and compare with
Theorem 2.5.

Hint: Look for matrices on the two hyperbolae given by {det = 1}.

Proof of Theorem 4.7 (necessity). Conditions (i) and (ii) follow from ba-
sic facts about Young measures (see Theorem 3.1 (ii) and (iii)) while (iii)
follows from Morrey’s lower semicontinuity result (Theorem 4.3(ii)), applied
to all open subsets U of 2. Sufficiency is discussed in Section 4.9. O

To finish this section we briefly mention the analogous result for p < oo
and its relation to relaxation and generalized solutions. This may be omitted
on first reading.

Theorem 4.8 ([KP 94]) Let p € [1,00). A (weakly measurable) map v :
Q — M(M™ ") s a WY gradient Young measure if and only if v, > 0 a.e.
and the following three conditions hold

Q) [ [ |FPdv,(F)dz < oo;

Q MmXn
(i) (vg,id) = Du, ue€ WhHP(Q;R™);

(iil) (Va, f) > f((Va,id)) for ae. x and all quasiconver f with |f|(F) <
C(|F|P+1).

Young measures arise naturally as generalized solutions of variational
problems that have no classical solution. To this end extend the functional

I(u) :/f(Du)dm
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on functions to a functional

I0) = [ v £y

on Young measures. For v € W1?(Q; R™) consider the admissible classes

A ={ue WP QR™) :u—ve W, (Q;R™),
G ={vr:Q—>MMR"™):v W gradient Young measure,
(Vy,id) = Du(z),u € A}.

Theorem 4.9 Suppose that [ is continuous and satisfies c|F|P < f(F) <
C(|FP+1),¢>0,p>1. Then

inf I = min J(v).
A g

Moreover the minimizers of J are Young measures that are generated by
gradients of minimizing sequences of I.

In particular, I has a minimizer in A if and only if there exists a mini-
mizer v of J such that v, is a Dirac mass for a.e. x.

4.4 Convex hulls and resolution of Problem 3

To return to the setting of Sections 1 and 2 we extend the different notions of
convexity from functions to sets. We first recall that the quasiconvex (convex,
polyconvex, rank-1 convex) envelope or hull of a function f : M™*" — R is
the largest quasiconvex (convex, polyconvex, rank-1 convex) function below
f and is denoted by f (f¢ = f**, fP¢, ). Similarly the quasiconvex hull
of a set K C M™*" is defined via sublevel sets as

K*={FeM™": f(F) < i%ff, vV f: M™" — R quasiconvex},

with similar definitions for K¢ K?¢, K. Note that K¢ is the closed convex
hull. A set is called quasiconvex if K = K%, In the case of rank-1 convexity
one can also define a hull by pointwise operations rather than by sublevel sets.
A set K is called lamination convex if the conditions A, B € K and rk(B —
A) = 1 imply that convex combinations of A and B are in K. The lamination
convex hull K of K is the smallest lamination convex set containing K. It
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is easy to verify that K' can equivalently be defined by inductively adding
rank-1 segments:

K=KV, K=K,
=1

K . O {M+(1-\NB:ABe K(z’),rk(B —A)=1,1€(0,1)}.

One has the following inclusions (see Lemma 4.3):
K'Cc K™ c K% C K" C K. (4.8)

The example in Section 2.5 shows that in general K'® # K. In this example
K' = K, K™ > K U {diag(\, 1) : |A\| < 1,|p| < 1}. The characterization of
laminates (see Section 4.6) as well as recent work of Matousek and Plechdc
[MP 98] suggest that K"¢ is the more natural object, but more difficult to
handle (Matousek and Plecha¢ use the terms set-theoretic rank-1 convex hull
and functional rank-1 convex hull to distinguish K and K"¢).

The polyconvex hull is closest to the ordinary (closed) convex hull and
is in fact the intersection of a convex set with a nonconvex constraint. Let
M(F) denote the vector of all minors of F' (see Section 4.1) and let

~

K={M(F): F € K}.
Ezercise. Show that
K ={F: M(F) € (K)} (4.9)

and moreover

KP = {(y,id) : v € MP¢(K)}.

With this notation in place we have the following abstract resolution of
Problem 3 (see Section 1.4). Recall that the set K°P (interpreted as the
macroscopically stress free affine deformations) was the set of all matrices F
such that there exists a sequence u; bounded in W*°(Q; R™), such that

dist(Du;, K) = 0 in measure in (2, (4.10)

uj = Fux on 02, (4.11)

and that M9 (K) denotes the set of homogeneous gradient Young measures
(see (4.6)).
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Theorem 4.10 Suppose that K is compact and denote by distg the distance
function from K. Then

(i) KPP = K1,
(i) K9 = {dist¥ = 0},
(iii) K is the set of barycentres of homogeneous gradient Young measures:

K% ={(v,id) : v € M(K)}.

Proof. After dilation we may assume that |Q] =1.

(i) To show that KP C K% let FF € K™ and let f : M™" — R
be quasiconvex and suppose that {u;} is bounded in W* and satisfies
(4.10) and (4.11). We may assume that infx f = 0 and we need to show
f(F) <0. Since f is continuous (see Remark 3 after Definition 4.2) we have
fT(Duj) — 0 in measure, and |f*(Du;)| < C since Du; is bounded in L.
Quasiconvexity, (4.11) and dominated convergence yield

|Qf(F) < lim inf/f(Duj)dx < lim inf/f+(Duj)dx = 0.
j—00 j—00
Q Q
To prove the converse inclusion K% C K% let F' € K. Then dist¥ (F) =0

by definition of K. In view of the representation formula for dist% (Theorem
4.5 (iii)) there exist ¢; € W, "*°(Q; R™) such that

0 = dist};(F) = lim [ distg(F + Dy;)dx.
j—00
Q
The functions u;(x) = Fx + ¢; thus satisfy (4.10) and (4.11). The problem
is that a priori Du; only needs to be bounded in L' (in fact weakly relatively
compact in L') and may not be bounded in L*°. Zhang’s lemma (see Lemma
4.21 (ii) below) assures that u; can be modified on small sets such that (4.10)
and (4.11) hold and Du; is bounded in L.

(ii) The inclusion C follows from the definition of K. On the other hand
we have just shown that dist%(F) = 0 implies F € K% = K.

o4



(iii) Let v € M(K). By definition f((r,id)) < (v, f) < supg f and
hence (v,id) € K. Suppose conversely that F' € K. We need to show that
there exists v € M%(K) with (v,id) = F. After an affine transformation we
may assume F' = 0. By part (i) there exists a sequence u; (bounded in W)
that satisfies (4.10) and (4.11). Passing to a subsequence we may assume that
{Du;} generates the Young measure v and Du; — Du in L*({; M™*™). By
the divergence theorem

/<V$,1d>d1‘ = /Du dz = 0. (4.12)

Q

To obtain a homogeneous Young measure we define the average Avwv by
duality as the unique Radon measure that satisfies

(v )= o Q/ (v, F)d f € Co(M™).

By Theorem 4.7 we have v, € M%(K) for a.e. x and hence Avv € M*(K).
Moreover (4.12) yields (Avr,id) = 0 as desired. O

4.5 The two-well problem

To see what the various convexity notions can do to understand microstruc-
ture in crystals we consider the two-well problem in two dimensions. This
is the simplest multiphase problem consistent with the rotational symmetry
and was analyzed completely in a beautiful paper by Sverdk [Sv 93al. Let

K = SO(2)AUSO(2)B Cc M**?, det B > det A > 0. (4.13)

Various normalizations are possible. Multiplication by A~!, polar decompo-
sition and diagonalization show, for example, that it suffices to consider

10 A0
A= B = A< Ap> 1. 4.14
(o0 1) B=() 1) o<rsi iz (1.14)

The first step towards the resolution of Problems 1-3 is to look for rank-1
connections in K.
Ezxercise. Prove the following classification.

(i) If A > 1 then there are no rank-1 connections in K;
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(ii) if A =1 (and A # B) each matrix in K is rank-1 connected to exactly
one other matrix in K;

(iii) if A < 1 each matrix in K is rank-1 connected to exactly two other
matrices in K.

Theorem 4.11 Suppose that K given by (4.13) contains no rank-1 connec-
tions. Then every Young measure v : Q — M(M?**?) with suppr, C K is a
constant Dirac mass. Moreover

K¢=K*=K*=K'=K (4.15)

Remark. It is not known whether the same result holds for K = SO(3) AU
SO(3)B C M3*3; some special cases are known ([Sv 93a], [Ma 92]).

Proof. The crucial observation is that
det(F—G) >0 VF,GeK,F #Q@. (4.16)

By symmetry and SO(2) invariance it suffices to verify this for G = Id.
The inequality clearly holds for F' = B (by the above exercise) and hence
by connectedness and the absence of rank-1 connections for G € SO(2)B.
Similarly det(Id — (—Id)) > 0 and hence by connectedness (4.16) holds also
for all other G € SO(2).

To determine K9 consider first a homogeneous gradient Young measure
v supported in K and let 7 = (v,id) denote its barycentre. We have for
F,G € M**?

det(F — G) = det F — cof F : G + det G,

where F : G = trF'G = Z” F;;G;;. The minors relations yield

0 < [ det(F— G)dv(F)dv(G)

M2X2 5 \[2X2

= [ (det F — cofF : G + det G)dv(F)dv(G)
M?2X2 % \2X2

= [ (detv —cof v: G+ det G)dv(Q)
M2X2

=detv —cof 7: v+ detv = det(v — ) = 0.

Hence the first inequality must be an equality, and (4.16) implies that the
product measure v ® v is supported on the diagonal of M?*2 x M?*2. Hence
v must be a Dirac mass. This implies K% = K by Theorem 4.10. Since the
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argument used only the minors relations we even have K?¢ = K.

Now let v : Q@ — M(M™*™) be an arbitrary gradient Young measure
with suppy, C K a.e. By the above argument v, = dpu) and Du(z) € K
a.e. We show that Du = const. To this end observe first that (4.16) can be
strengthened to

det(X —Y)>¢|X -Y[]*, ¢>0, VX,Y €K. (4.17)

Indeed by compactness and SO(2) invariance it suffices to verify that the
tangent space of SO(2) at the identity contains no rank-1 connections. This
is obvious. Now let e be a unit vector in R?, and for 0 < h < 1 consider
the translates v(z) = u(x + he) and a cut-off function ¢ € C§°(2). Since the
determinant is a null Lagrangian (see Theorem 2.3(i)) integration of (4.17)
yields

c/g02|Du—DU|2dx < /det[gp(Du—Dv)]dx
0

det[D(p(u — v))] dx — /cofD(gp(u —v)):(u—v)® Dpdx

+/det[(u—v)®Dgp] dx

IN
Pe—

IN

g/<p2|Du—Dv|2dx+C/|D<p|2|u—v|2dx.
0 0

Hence the difference quotients gp@ are uniformly bounded in L? and thus

Du € W,22(€; M™™). Therefore Du can only take values in one connected

component of K, and the assertion follows from Theorem 2.4. O

To consider the case where K has rank-1 connections it is convenient to
introduce new coordinates on M?*2. Since A and B are not conformally
equivalent (as A < pu), for every matrix F' there exist a unique pair (y, z) €

R? x R? such that
F:<?Jl —y2>+<2’1 _22>B.
Yo Y1 22 21
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Theorem 4.12 Suppose that K is given by (4.13), (4.14) and that A < 1.
Then
ch — K" = K9¢ = KPc
and
KP*=K°n{det =1}, if det B=1,
K= (P = (y,2): |yl < SPoE] || < dar

if det B > 1.

To characterize the polyconvex hull we use the following

Proposition 4.13 The convex hull of the set K C R™ x R™ x R given by
K={(y,0,a): |yl =1} U{(0,20b) : |z| = 1} is given by

| — {(y,z,a),|y|+|z| < 1} z'fa:b,
{(y,2,1), lyl < =L, 12] < =4 ifa <.

— b—a

Proof. This is obvious for n = 1, and the general case follows by invariance
under (y, z,t) — (Ry,Qz,t), R,Q € SO(n). a

Proof of Theorem 4.12. The formula for K?¢ follows from the charac-
terization (4.9) and Proposition 4.13. In view of the general relation (4.8)
between the different convex hulls it only remains to show that K¢ = K?e,

First case: det B = 1.

Let FF € KP = K°n{det = 1}. If F = (y, z) € 0K, then by Proposition
4.13 we have |y|+ |z| = 1. If y = 0 or z = 0 then F € K and we are
done. If y # 0,z # 0 then we can consider G(t) = (ty/|y|, (1 — t)z/|z|). Let
g(t) = det G(t). Then g is quadratic in ¢ and g(0) = ¢g(1) = ¢(ly|]) = 1.
Hence g = 1 and ¢t — G(t) must be a rank-1 line. This shows that F' is a
rank-1 combination of (y/|y[,0) € K and (0, z/|z|) € K.

If F € intK¢N {det = 1} then there exist a,n € S! such that cofF :
a®@n = Fn-a=0. Hence the determinant is constant on the line F'+ta®n
and this rank-1 line intersects 0K¢ for positive and negative values of ¢.
Therefore every matrix in int K N {det = 1} is a rank-1 combination of two
matrices in AK°N{det = 1} and thus belongs to K. This finishes the proof
for det B = 1.

Second case: det B > 1.

Since every rank-1 half-line through an interior point of K?¢ intersects
OKP¢ it suffices to show OKP° C K'. Let F' = (7,2) € OK?® and define

fly,z) = (det B—1)|y| — det B + det F,
9(y,2) = (det B—1)|z| +1 — det F.
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The polyconvex hull is given by {f < 0} N {g < 0} and thus f(7,2) = 0
or g(g,Z) = 0. For convenience we assume the latter, the other case is
analogous.

If f(F) =0 then |y|+ |z| = 1. Moreover f and g are quadratic functions
on the segment ¢(y/|y|,0)+ (1 —1)(0,z/|z|), and vanish at ¢t = 0, 1, |g|. Hence
they vanish identically on the segment which therefore is a rank-1 segment.
Thus F € K'°.

Now suppose that f(F) < 0. Using the SO(2) invariance we may assume
that zo = 0. For definiteness we suppose z; > 0, the case z; < 0 is analogous.
Note that the linear space {z; = 0} agrees with {Fj, + F5 = 0}. We
claim that there exists a rank-1 line in {2, = 0} through F' on which g
vanishes (as long as z; > 0). One way to see this is to consider g(y,z2) =
(det B — 1)z + 1 — det F' and to note that § = 0 defines a one sheeted
hyperboloid H in the three dimensional space {zp = 0}. Hence through
each point in H there exist two lines that lie on H and thus must be rank-1
lines since det F' is an affine function on these lines. Alternatively one can
consider (y(t),z(t)) = F(t) = F +t(u — \) a ® Pa, with Pa = (—ay,a).
Then 2,(t) = 0, 2, = |a|* > 0 and ¢ is affine on the line ¢ — F(¢). A short
calculation shows that 4¢(F(t)),,_, = (Qa,a) and the quadratic form

[t=0
Q = (det B—1)Id + %(u — M) |[(cof F)P + P(cof F)7]

is indefinite and hence has a nontrivial kernel.

Consider thus the rank-1 line F(t) = F +t(1— \)a® Pa on which 2, and
g vanish.

Let to < 0 be defined by z(ty) = 0. Since g(F(ty)) = 0 we deduce that
F(to) = (y(0),0) € K. On the other hand f(F(0)) < 0 and using the fact
that g vanishes on F'(t) we have f(F(t)) = (det B—1)(|y(t)|+|z(¢)|—1) — oo
as t — oo. Hence there exist t; > 0 such that f(F(t;)) = g(F(t1)) = 0 and
therefore F(t,) € K' by the considerations above. Thus F' = F(0) € K
and the proof is finished. O

4.6 Are all microstructures laminates?

Theorems 4.7 and 4.10 completely classify gradient Young measures M9(K)
and quasiconvex hulls K% and thus lead to an abstract solution of problems
2 and 3 in Section 1.4. The catch is that very few quasiconvex functions are
known and that the abstract results are therefore of limited use to understand
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specific sets K. A manageable necessary condition is given by the minors
relations (4.7). In this section we discuss the issue of sufficient conditions,
i.e. constructions of (homogeneous) gradient Young measures supported on
a given set K. The simplest case is K = {A,B}. If A and B are rank-1
connected every convex combination

v=2Aa+ (1= Ndg, A€]0,1],

is a (homogeneous) gradient Young measure. It arises as a limit of a sequence
of gradients Du; arranged in a fine lamellar pattern (see Fig. 13).

Figure 13: Fine layering of the rank-1 connected matrices A and B generates
the homogeneous gradient Young measure A4 + (1 — A)dp.

We saw in Section 2.5 that this construction can be iterated for larger sets
K. More precisely let C' be a matrix that is rank-1 connected to AMA+(1—\)B.
Then every convex combination

vV = ,u(/\éA + (1 - /\)53) + (1 - ,U)(SC (418)

is a (homogeneous) gradient Young measure (see Figure 8).
This construction can be iterated and motivates the following definition.
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Definition 4.14 ([Da 89]) For a finite family of pairs (\;, F;) € (0,1) X
M™*™ the condition (H,) is defined inductively as follows.

(i) Two pairs (A1, F1), (Ag, Fy) satisfy (Hg) if

rk(Fz—Fl) Sl, )\1+)\2:1

(ii) A family {(\;, F})}iz1,..; satisfies (H)) if, after possible renumbering
tk(F; — Fi1) =1 (4.19)
and the new family {(S\Z, Fi)}i:l,...,l—l given by

- A1 A

F,=—""1F  +—"F, AMi=MAa+\, 4.20
-1 )\1714_)\1 -1 )\171_*_)\[1 -1 -1 l ( )

M\, F) =\, F) ifi <1—2, (4.21)
satisfies (H;_1).

If we call the process defined by (4.19), (4.20) and (4.21) contraction then

.....

(1, F) where F' = )  \;F; is the barycentre. Note that the F; may take the
same value for different 7. To see that this can be useful consider the 8 matri-
ces {Ay,... Ay} and {I,,... 14} in the four gradient example in Section 2.5.
The family (1/2, A1), (1/4, As), (1/8, A3), (1/16, Ay), (1/32, Ay), (1/32,14)
satisfies (Hg), but the family obtained by combining the two pairs involving
Ay to (17/32, A1) does not satisfy (Hs).

Definition 4.15 A (probability) measure v on M™*" is called a laminate
of finite order if there exists a family {(\;, F;) }i=1,., that satisfies (H;) and

l
1=1

A (probability) measure v is a laminate if there exists a sequence v; of lam-
inates of finite order with support in a fixed compact set such that

v; = v in M(M™™).
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Figure 14: An order-2 laminate that generates (4.18) and the corresponding
rank-1 connections.

Ezample. Again in the context of the four gradient example in Section 2.5

the measures .

1 1 1 1
a4 =Ou 4 =04+ —0O4, + —0).
5041 T 1042+ g0ua F 044 F 1500
or

1

1— (—
(1= (g5
are laminates of finite order, while 284, ++84, +204, +7:04, is a laminate
but not a laminate of finite order.

Condition (H;) implies that for every rank-1 convex function f : M™*" —
R one has

8 4 2 1 1.
IV (26, + —ay + —Ga, + —0 ~)is

(v, f) = f({v,id))
for all laminates of finite order v. Since (finite) rank-1 convex functions are
continuous the same inequality holds for all laminates v. Pedregal [Pe 93]
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showed that this property characterizes laminates.

Theorem 4.16 A compactly supported probability measure v € M(M™*™)
15 a laminate if and only if

(v, [) > f({v,id))

for all rank-1 convex functions f : M™*™ — R.. In other words, the laminates
supported on a compact set K are given ezactly by M™(K).

The question raised in the title of this subsection may now be stated more
precisely:
Are all gradient Young measures laminates?

In view of Theorem 4.16 this may be concisely stated as
?
M= M.

This would clearly be true if rank-1 convexity implied quasiconvexity. Con-
versely if M"™ = M€ then rank-1 convexity would imply quasiconvexity in
view of the definition of M" and the fact that f9¢(F) = inf{(v, f) : v € M9,
(v,id) = F'} (one equality follows from the definition of M%; for the other use
Theorem 4.5 (iii) for Q = (0,1)", extend ¢ periodically, let i (z) = k™ p(kx)
and note that {Dyy} generates a homogeneous gradient Young measure).

In the next section we discuss Sverdk’s example that shows that rank-
1 convexity does not imply quasiconvexity if the target dimension satisfies
m > 3.

4.7 Sverak’s counterexample

Theorem 4.17 (Sverdk [Sv 92a]) Suppose that m > 3,n > 2. Then there
exists a function f : M™*"™ — R which is rank-1 convezr but not quasiconvex.

Using this result Kristensen recently showed that there is no local condition
that implies quasiconvexity. This finally resolves, for m > 3, the conjecture
carefully expressed by Morrey in his fundamental paper [Mo 52], p. 26: ‘In
fact, after a great deal of experimentation, the writer is inclined to think
that there is no condition of the type discussed, which involves f and only
a finite number of its derivatives, and which is both necessary and sufficient
for quasi-convexity in the general case.’
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To state Kristensen’s result let us denote by F the space of extended real-
valued functions f : M™*" — [—o0,00]|. An operator P : C®(M™*") — F
is called local if the implication

f = g in a neighbourhood of FF = P(f) = P(g) in a neighbourhood of F’

holds.

Theorem 4.18 ([Kr 97a]) Suppose that m > 3,n > 2. There ezists no local
operator P : C°(M™ ") — F such that

P(f) =0 <= f is quasiconver.
By contrast, the local operator
Pre(f)(F) =inf{D?f(F)(a®b,a®b) :a € R™, b€ R"}

characterizes rank-1 convexity. At the end of this subsection we will give an
argument of Sverdk that proves Theorem 4.18 for m > 6.

Most research before Sverak’s result focused on choosing a particular
rank-1 convex integrand f (e.g. the Dacorogna-Marcellini example given
by (4.2)) and trying to prove or disprove that there exists a function u €
Wy (Q;R™) and F € M™ " such that

/ F(F + Du)dz < / F(F)da. (4.22)

Sverdk’s key idea was to first fix a function v and to look for integrands f that
satisfy (4.22) but are rank-1 convex. He made the crucial observation that
the linear space spanned by gradients of trigonometric polynomials contains
very few rank-1 direction and hence supports many rank-1 convex functions.
To proceed, it is useful to note that quasiconvexity can be defined using
periodic test functions rather than functions that vanish on the boundary.

Proposition 4.19 A continuous function f : M™ " — R is quasiconvex if
and only if

/f(F + Du)dz > f(F)
Q

for all Lipschitz functions u that are periodic on the unit cube Q) and all
F e pMm=n,
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Proof. Sufficiency of the condition is clear since it suffices to verify con-
dition (4.1) for @ (see Remark 2 after Definition 4.2). To establish ne-
cessity consider a periodic Lipschitz function v and cut-off functions ¢, €
Ce((—k,k)") such that 0 < ¢, < 1, ¢p = 1 on (—(k—1),(k —1))" and

|Dy| < C. If we let vy, = ppu, wy(z) = tvi(kx) then quasiconvexity implies

k
that
(k—1)" / f(F+ Du)dy > f(F + Duy)dz — Ck™*
Q (—Fk,k)"

g / F(F + Dwp)dz — Ck* 1 > k" f(F) — Ck" .
Q

Division by k" yields the assertion as k — oo. O

Proof of Theorem 4.17. Consider the periodic function u : R — R3

1 sin 27zt
u(x) = Py sin 272

T\ sin 27 (2t + 22)
Then

cos 2mx! 0

Du(x) = 0 cos 2>
cos 2m(z! + x2) cos2m(z! + 2?)

and

r 0
L :=span{Du(z)},erz = 0 s |:rsteR
t t

The only rank-1 lines in L are lines parallel to the coordinate axes. In
particular the function g(F) = —rst is rank-1 convex (in fact rank-1 affine)
on L. On the other hand

/ g(Du(2)) =~ < 0= g(0). (4.23)
(0,1)2

To prove the theorem it only remains to show that g can be extended to a
rank-1 convex function on M3*2. Whether this is possible is unknown. There
is, however, a rank-1 convex function that almost agrees with ¢ in L and this
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is enough. Let P denote the orthogonal projection onto L and consider the
quartic polynomial

fen(F) = g(PF) + e(|[F[* + |F|') + k|F — PFJ*.

We claim that for every € > 0 there exists a k(e) > 0 such that fc ) is
rank-1 convex. Suppose otherwise. Then there exists an € > 0 such that f
is not rank-1 convex for any k£ > 0. Hence there exist Fj, € M™ ", ar € R™,
by € R™, |ag| = |bg| = 1 such that

D2fe,k(Fk)(a/k ® bk, Q. (024 bk) S 0.

Now
D*for(F)(X, X) =
D2g(PF)(PX,PX) + 2¢| X |> + (4| F|*|X|? + 8|F : X*) + k| X — PX|*.
The term D?g(PF) is linear in F' while the third term on the right hand
side is quadratic and positive definite. Hence F}, is bounded as k£ — oo, and

passing to a subsequence if needed, we may assume Fj, — F,a, — a,b, — b.
Since D*f.j, > D?f.; for k > j we deduce

D?g(PF)(Pa®b,Pa®b)+2¢+jla®b— Pa®b|* <0Vj. (4.24)

Thus P(@®b) = a®b, i.e. a®b € L. Therefore t — g(P(F + ta ® b))
is affine, and the first term in (4.24) vanishes. This yields the contradiction
e <0.

Thus there exist k(e) such that f. := fc () is rank-1 convex. By (4.23)
and the definition of u, the function f, is not quasiconvex as long as € > 0 is
sufficiently small. O

An immediate consequence of Sverak’s result and the considerations in
the previous section is that there exist gradient Young measures that are not
laminates. In fact the measure v defined by averaging dpy(s), i-e.

(v, B = / h(Du(z))dz, Vh € Co(M™™),
(0,1)2

provides an example, since (v, f.) = (v, g) +Ce < f((v,id)) (for small € > 0).
The following modification, due to James, provides an even simpler ex-
ample and a nice illustration of the failure of quasiconvexity for g (or more
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1/4

+++

-l-_J ++-

3/4

1/4 3/4

Figure 15: The gradients in James’ modification of Sverdk’s example. Re-
gions of positive parity are shaded. The picture on the right shows the rank-1
connections between the eight gradients.

precisely f.). Let s : R — R denote the periodic sawtooth function with
mean zero and s’ =1 on (0,1/4)U(3/4,1), s' = —1 on (1/4,3/4) and define

szt + z?)

Then D4 € L and Du takes 8 values which can be denoted by (+++), (++
—), ... according to the signs of da', d,u? and 9,4 = dou. We say that Da
has positive parity if the number of — signs is even. The analogue of (4.23)
can be proved by inspecting Figure 15.

| 9Dila))dz = |{pasityDi = ~}| - parityDi = +} = .
(0,1)?
In particular
3
16
is a gradient Young measure that is not a laminate. Indeed for every laminate
that only involves the eight matrices (+ 4 +) one has

1
V= (0spr + 04—+ +0__4)+ E(6++_ F 04+ +0-)

v(positive parity) = v(negative parity)
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since (an arbitrarily small perturbation of) g and —g can be extended to
rank-1 convex functions on M3*2,

Sverdk’s example leaves open the question whether there exists a (com-
pact) set K C M?**? that is rank-1 convex (i.e. K™= K) but not quasicon-
vex. For the gradient set above one has K" = K% = K¢ = unit cube in L.
Using a variant of James’ modification Milton [Mi 98] has recently shown that
there exists a set K € M3*? of seven matrices that satisfies K¢ # K9, His
motivation arose from the relation between quasiconvexification and optimal
composites. His example shows that certain composites cannot be obtained
by successive lamination.

Sverak showed that the complex version of the original example yields a
set K C M%*? with K™ # K9%. With the usual identification R? ~ C via
z = x + 1y we define

21 0
K = 0 29 VIS C, |Zz| = ]_,23 = 21722 ¢, (425)
<3 ~3

L = spanK, P orthogonal projection M%*? — L. The periodic function
w: R? — C3, given by
izt
e
w(z) = | e’
ei($1+z2)

satisfies Dw € K. Hence 0 € K% (use e.g. that dist% (0) = 0 by Proposition
4.19).
We claim that
K% = K7 = K U {0}.

To prove this consider on L the function
9(21, 22, 23) = |z120 — 23> + |Z223 — 21> + |2321 — 20

and note that g vanishes exactly on K U {0}. Now g can easily be extended
to a polyconvex function f on C3*? ~ M%%? with f > 0 outside L. If

Fi Fyip Fy
F=\| Fy Fyn |=|
Fy Fiy Fy

68



we may take

f(F) = |det(F1,F2)—F31|2+|det(F'2,F3)+F11|2

+| det(Fg,Fl) + F22|2 —+ |F — PF|2

Therefore K?¢ C K U {0} and equality holds since 0 € K% C K?°. Moreover
either K™ = K or K™ = K U {0}. The following result shows that rank-1
convexity is a local condition and hence K™ = K # K.

Lemma 4.20 Let K| and K5 be disjoint compact sets and suppose that K =
K, U K5 is rank-1 convex. Then both K| and Ky are rank-1 convez.

Proof. See [Pe 93], Thm. 5.1 or [MP 98], Prop. 2.8.

There is also a simple direct proof that K"* = K. Note that f € C* and
Df?(0) > ¢Id, ¢ > 0. Indeed f(0) = Df(0) = 0 and thus

.2
D*f(O0)(F,F) = lim = f(tF) = |[Fal + |Ful + |l +|F = PF[*

and the right hand side vanishes only if /' = 0. Hence there exists a neigh-
bourhood B(0, €) and a new function f such that f > 0in B(0,¢), D2f > £1d
in B(0,2¢), f = f outside B(0,¢). Then f is locally polyconvex and hence
rank-1 convex and {f < 0} = K. Thus K" = K.

Note that f is in particular locally quasiconvex (i.e. for every point there

is a neighbourhood in which f agrees with a quasiconvex function) but not
quasiconvex since f(0) > 0 and [ f(Dw) = [ f(Dw) = 0. This proves
72 72
Kristensen’s theorem for m > 6.
Kruzik [Kr 97] used Sverdk’s counterexample to show that there exists
an integrand f : M** — R U {+oo} that is not quasiconvex such that

F s f(F) = f(FT) is quasiconvex. Recall that

L=

~+ O 3

0

S crs,te R
t

and let

—rst if FFel,
HF) = { +oo  else.
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Then f, and hence F, is rank-1 convex since {f < co} = L is convex and f
is rank-1 convex on L. We have already seen that f is not quasiconvex and
it only remains to show that

/ F(F + Du)dz > F(F)
(0,1)3

for all periodic (Lipschitz) functions v : R* — R? We may assume that
F + Du)' € L a.e. Since s Du = 0 by periodicity we deduce that
(0,1)

FT € L and (Du)? € L a.e. Thus
du' = 0yu® =0, 0Os(u' —u?) =0,

Therefore u' is independent of 22, while «? is independent of 2!, and differ-
entiation of the second identity yields 0,05u! = 9,0;u* = 0. Thus
1

ut = a(al) + (%), = c(a?) +d(2?),
a(at) 0 V() )
Du =
< 0 d(a?) d(2?)
and an application of Fubini’s theorem in connection with the rank-1 con-

vexity of f yields the desired estimate.
By a more refined argument one can show that the function

fer(F) = f(PF) +e(|F|* +|F|') + k|F — PF|*

considered above provides a finite-valued counterexample if ¢ > 0 is small
enough and k& > k(). To show that

[ fdlF D) Fal) + Ds(F)Du e 2 0
(0,1)3

one introduces v = (v}, v?,v*) and w = (w!, w?, w?) by
vt 0 0 w?
P(Dp)" = 0 v* |, (Dp)" = P(Dy)"' = | w' 0
FER W —w

and observes that the differential operator

A(Dv) = (0yvt, B3v", 0102, 0507, 010, Oyv?)

70



can be expressed as a linear combination of derivatives of w. Hence
[A(Dv)lw-12() < Cll(D)" = P(D)" || 12(q)

and the crucial ingredient in the proof are the estimates

‘/ vl da
(0,1)3
‘/ vi?
(0,1)3

which are proved by a suitable decomposition of the (discrete) Fourier trans-
forms Fv' into a part that is supported in a narrow cone near the i-th coor-
dinates axis and a part that vanishes near that axis. The second part is then
easily estimated in terms of A(Dwv).

< CllLllADY) -1z,

< C”UHLQHA(DU)HW_LQ: fOI'i?éj,

4.8 Proofs: lower semicontinuity and relaxation

Proof of Theorem 4.4 (i) (W1*w*slsc is equivalent to quasiconvexity of
the integrand). To establish necessity of quasiconvexity let @ = (0,1)",
€ Wy®(Q,R™), extend ¢ 1-periodically to R™ and let

1
uj(z) = Fx + =¢(jz), for x € Q.
J
Then u; = u in WH®(Q; R™), u = Fx and

F(Duy) = const = [ (P + Dply)dy in L7(@),
Q
cf. Section 3.2 a). The necessity of quasiconvexity follows.
To prove sufficiency consider wu; 2oy in WH*(Q; R™) and suppose first
that u(z) = Fx. If u; —u was zero on 052 the assertion would follow from the

definition of quasiconvexity. For general u; consider a compactly contained
subdomain Q' CC €, a cut-off function n € C§°(£2) with n =1 on €' and let

v; =u+n(u; — u).

Since uj; — u locally uniformly in Q by the Sobolev embedding theorem (or
by the Arzela-Ascoli theorem) and since |Du;| < C' we may assume that
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|Dv;| < C" for j > jo(n). If we let M = sup{|f(F)|: |F| < C+ C"} and use
quasiconvexity we obtain

liminf 7 (u;) > lim inf /f(va)dx+ / (f(Du;) — f(Dvy)) dx

j—o0 j—oo
o\
> [QIf (F) = 2M|Q\ €.

Since €' CC ) was arbitrary the assertion follows for u = Fx and similarly
for piecewise affine u.

For arbitrary u € W1 (Q; R™) the result is established by approximation
as follows. For compactly contained subdomains ' CcC Q" CC Q there exist
vk such that vy is piecewise affine in ', u = v, in Q\ Q" |Dv| < C,
Dv,, — Du in measure (and hence in all LP,p < o0). To construct such
vy, first approximate u in Q” by a C! function and then consider piecewise
linear approximations on a sufficiently fine (regular) triangulation. Let u;, =
uj + vy — u. Then

ujp = v, in WH(Q;R™) as j — oo, (4.26)
|Duji| < C (4.27)

Hence, by the previous result and the dominated convergence theorem

lim lim inf /f Duj)ds > l1m f(Duwyg) dx

k—o0 j—00

:/f(Du)dx 2/f(Du)—C|Q\Q’|.

On the other hand by (4.27), the uniform continuity of f on compact sets
and the convergence of Dvy in measure

hm sup/ |f(Dujx) — f(Duj)| de = 0.

Hence

1ig£f/f(0uj)dxz/f(Du)dx—Qcm\m,
Q
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and the assertion follows since €)' was arbitrary. O

Proof of Theorem 4.5(iii) (formula for f7¢).
Let
Qf(F,U) = inf ﬁ/f(F—i—Dcp)dx.
U

wewol""’

We have to show that f%(F) = Qf(F,U). A simple scaling and covering
argument shows that @) f is independent of U. By the definition of quasi-
convexity Qf > Qf% = fi. To prove the converse inequality Qf < fI¢ it
suffices to show that @) f is quasiconvex since Qf < f. We first claim that

1
= [ Qf(F + Dy)dx > Qf(F),
Ul U/ (4.28)

Ve € W (; R™), 1) piecewise affine.

Let U be a finite union (up to a null set) of disjoint open subsets U; such
that ¢ is affine on U; and let € > 0. By the definition of Qf (applied to U;)
there exist ; € W, (Us; R™) such that

Qf(F+ Dy) > 1'|/f(F+D7,D—|—Dg0i)dx—6 on U;.
U;

|U,

Set o =1+ > ¢; € WOI’OO(U; R™). Rearranging terms we find
/Qf(F—I—Dl/))dx > /f(F+D<,0)dx—6|U|
U U

> Qf(F) — €U,

and assertion (4.28) follows as € > 0 was arbitrary. Now (4.28) is enough to
conclude that @) f is rank-1 convex and therefore locally Lipschitz continous
(see Remark 3 after Definition 4.2). Hence @) f is quasiconvex by (4.28) and
density arguments and therefore f1¢= Qf.

So far we have assumed that @) f does not take the value —oc. If Qf(F +
D1p) = —oo on U; then an obvious modification of the argument above
shows that (4.28) still holds. Hence @ f is rank-1 convex (see the proof of
Lemma 4.3) and one easily concludes that f9€ = @Qf = —oo since the rank-1
directions span the space of all matrices. O
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4.9 Proofs: classification

The main point is to show that Jensen’s inequality for quasiconvex functions
characterizes homogeneous gradient Young measures (see Lemma 4.23). The
proof relies on the Hahn-Banach separation theorems and the representation
(4.5) for fi¢. The extension to nonhomogeneous Young measures uses mainly
generalities about measurable maps, in particular their approximation by
piecewise constant ones.

An important technical tool of independent interest is a truncation result
for sequences of gradients sometimes known as Zhang’s lemma. (Closely
related results were obtained previously by Acerbi and Fusco based on earlier
work of Liu.) It implies that every gradient Young measure supported on a
compact set K C M™*" can be generated by a sequence {Dwv;} whose L>
norm can be bounded in terms of K alone. For the rest of this section we
adopt the following conventions:

K is a compact set in M™*",
U, are bounded domains in R", |02 = |0U| = 0.
Lemma 4.21 (Zhang’s lemma). Let |K|y = sup{|F|: F € K}.
(i) Letu; € VV;S(R”, R™) and suppose that

dist(Duj, K) — 0 in L'(R"). (4.29)

Then there exists a sequence v; € Wit (R™ R™) such that

loc

1Dyl < el )| Ko, (130

s # 3} = 0. (1.31)

(ii) Let U € R™ be a bounded domain and let u; € WM (U; R™). Suppose
that

dist(Duj, K) — 0in L'(U), wu; — win L (U). (4.32)

Then there exist v; € W2 (U; R™) such that

D] < en, m) K], (4.33)

{u; #vj}| =0, wv; =u near OU.
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Remarks. Estimates (4.29) and (4.32) can be replaced by the stronger
assertion dist(Dv;, K¢) — 0in L>, see [Mu 97b]. Note also that the assertion
[{u; # v;}| = 0 implies

{Du; # Duv;}| — 0,

since for any Sobolev function Du = 0 a.e. on {u = 0}.

Proof. Part (i) is essentially Lemma 3.1 in [Zh 92]. Alternatively it follows
from (the proof of) Theorem 6.6.3 in [EG 92], pp. 254-255, with A = 3C| K| .
Part (ii) follows by a standard localization argument, see [Mu 97b] for the
details. 0

Now suppose that {u;} is bounded in W*°(Q; R™) and {Du;} generates the
(gradient) Young measure v. Then Du; — Du in L®, Du(x) = (v,,id) and
u; — u (locally) in L*®°. We call u the underlying deformation of v. The
Young measure v : Q@ — M(M™*™") is called homogeneous if it is constant in
Q) (up to a null set). As usual we identify constant maps with their values and
view the set H(f2) of homogeneous gradient Young measures as a subset of
M(M™ ™). By H(S2, K) we denote the set of homogeneous gradient Young
measures supported on K.

Lemma 4.22 We have

(i) If v € HQ,K) and (v,id) = 0 then there ezists a sequence u; €
Wy (Q; R™) such that Du; generates v and satisfies |Du;| < C|K |so.

(il) H(, K) is weakx compact in M(M™*™).

(iii) The set H(S2, K) is independent of ). If v is a gradient Young measure
with suppr(x) C K a.e. whose underlying deformation u agrees with an
affine map on 98 (in the sence of Wol’OO) then the average Avy defined

by
1

<AVV7f>:@
Q

(e, fdz

belongs to H(K).

(iv) The set Hp(K) = {v € H(K) : (v,id) = F} is weakx closed and

conver.
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Proof. Assertion (i) follows from the definition of H (2, K) and part (ii)
of Zhang’s lemma. The proof of (ii) uses (i) and a diagonalization argument.
Note that H (€2, K) is contained in the weakx compact set P (K) of probability
measures on K. Hence the weaks+ topology is metrizable on P(K) and can
be described by sequences. Suppose that v, € H(Q, K) and v, — v. After
subtraction of affine functions in the generating sequences for v, we may
assume that (v4,id) = 0. By (i) there exist u;; € W™ (Q; M™*") such that

ODup;() 3% Yk i Lgg(Q M(M™ ™)), [Duyj| < C|K |s.

Here we identified v, with the constant map = +— 4. Since the weakx
topology is metrizable on L (Q; P(B(0,C|K|x))) we can apply a standard
diagonalization argument to find j; — oo such that

Opuy 5, () — v in Ly (4 M(M™*)).

Since |Duyj,| < C we have v € H(Q, K). Thus H(Q, K) is weak* closed
and therefore weak+ compact as a subset of P(K).

To prove (iii) consider first v € W,*°(U; R™) and the trivial Young mea-
sure given by () = dpy(z). We claim that Avy is a homogeneous gradient
Young measure (for all domains ). By the Vitali covering theorem there
exist disjoint scaled copies U; = a; + r;U of U that are contained in the unit
cube () and cover it up to a null set. Define

w(z) = { r;v (%) in U;,

0 in Q\ U,

extend w 1-periodically to R"™, and let wy(z) = k 'w(kx). Then for all
continuous functions g (see Section 3.2 a))

g(Dwy) X g in L>™(R"),
where .
9= [ oDu)ds - o [ otDv)ds = (avg).
U

Q

Thus, for all €2, dpy,(.) converges to the homogeneous Young measure Avy in

L(Q; M(M™*™)) in the weakx topology. Hence Avy € H(S2) as claimed.
Now let v satisfy the assumption of (iii). We may suppose that u €

Wy (Q; R™). By the definition of gradient Young measures and part (ii) of
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Zhang’s lemma there exists a sequence u; € Wy '™ (Q; R™) such that |Du;| <
R and
Spuy() — v in LY (Q M(M™™)).

Taking test functions of the form 1 ® g we see that

AvOpu,() = Avw.
By the considerations above Avdp,,(.) belongs to H (2, B(0, R)) for all 2. By
(ii) the same holds for Avv. Since suppr(z) C K a.e. infact Avv € H(Q, K).
If v € H(U, K) then Avv = v and hence H((2, K) is independent of €.
Regarding (iv) we may suppose F' = 0. Let v,y € Hy(K). Let
Q1 = (0,)) x (0,1)"1,Qy = (N, 1) x (0,1)""1. By (i) there exist sequences
{Du;;} € Wy ®(Qs, R™),i = 1,2 that generate v;. Hence the gradients of

W= Lt 25
generate
@=L TG
By (iii) we have
Avy+ (1 = Ny = Ave € Hy(K). O

Lemma 4.23 (characterization of homogeneous gradient Young measures).
We have
H(K) = M*K).

Proof. Clearly H(K) C M%(K) by lower semicontinuity (see Theorem
4.4(i)). To prove the converse it suffices to consider measures with barycen-
tre zero. Now Hy(K) is weakx closed and convex, and C(K) is the dual
of (M(K), weakx) (see e.g. [Ru 73], Thm. 3.10). By the Hahn-Banach
separation theorem it suffices to show that, for all f € C(K),

(v, f) >a Vve Hy(K), (4.34)
implies

(n, ) > Vp e MF(K).
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Fix f € C(K), consider a continuous extension to Co(M™*™) and let
fe(F) = f(F) + kdist*(F, K).

We claim that
lim f°(0) > . (4.35)

k— 00

Once this is shown we are done since by definition every p € M{°(K) satisfies
(s ) = s fio) 2 (s £i) = f°(0).
Suppose now (4.35) was false. Then there exist ¢ > 0 such that
20) <a—24, Yk

By Theorem 4.5(iii) there exist u; € W,"™°(Q; R™) such that

/fk(Duk)dy <a-—o. (4.36)
Q

In particular we may assume u; — u in W, *(Q; R™) and
dist(Duy, K) — 0 in L*(Q).
By part (ii) of Zhang’s lemma there exists v, € Wy ™°(Q; R™) such that
|Duvg| < C,  [{(Duy # Dvy}| — 0. (4.37)

In particular a further subsequence of { Dv; } generates a gradient Young mea-
sure v with suppr(z) C K and underlying deformation u € Wy ™ (Q; R™).
Thus Avrv € Hy(K) by Lemma 4.22 (iii). Since f is bounded from below we
deduce from (4.37) and (4.34)

liminf/fj(Duk) > lilgninf/fj(ka)
—00
Q

k—oo
Q

= /<1/I,fj>d$ = (Avy, fj) > a.
Q
This contradicts (4.36) as fy > f; if £ > j, and (4.35) is proved. a
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Proof of Theorem 4.7. Necessity of conditions (i) - (iii) was established in
Section 4.3. To prove sufficiency we first consider the case that the underlying
deformation vanishes. Let

A={ve LX(QMM™™) :v(z) e MI(K) a.e.}

denote the set of maps that satisfy (i) - (iii) with Du = 0. We have to show
that every element of A is a gradient Young measure.

To do so we use some generalities about measurable maps to approximate
the elements of A by piecewise constant maps. First note that the set of
subprobability measures M; = { € M(M™") : v > 0, ||v||< 1} is weaks
compact in M(M™*™). Hence the weakx topology is metrizable on M;. To
define a specific metric let {f;} C Co(M™*™) be a countable dense set in the
unit sphere of Co(M™*") and let

d(M> :ul) = Z 2_Z|<:u - :ula fl>|
i=1

The space (Mj,d) is a compact metric space. Since d induces the weaks
topology, a map v :  — M(M™ ") that takes (a.e.) values in M, is weaksx
measurable if and only if v : @ — (M, d) is measurable.

The set {v € Ly(; M(M™™)) : v(x) € My a.e.} is also weak compact
in L2°(Q; M(M™*™)) (cf. the proof of Theorem 3.2). A metric d that induces
weak+ convergence on that set may be defined as follows. Let {h;} be a
countable dense set in the unit ball of L!(Q) and let

d(v.v') =Y 27w = b ® ).

ij=1

It thus follows from Proposition 4.24 below that every v € A can be arbitrar-
ily well approximated in d by a map 7 with the following properties. There
exist finitely many disjoint open sets U; with |0U;| = 0 such that 7 = v; on
Ui, v; € M (K), U = 6 on Q\UU;. Application of Lemma 4.22(i) to each Uj;
shows that 7 is a gradient Young measure (extend the generating sequence
by zero to 2\ UU;). Hence the closure of gradient Young measures with sup-
port in K’ = K U{0} contains A. On the other hand the set of these Young
measures is (weakly) compact (see the proof of Lemma 4.22 (ii)). Thus every
v € A is a gradient Young measure. This finishes the proof if Du = 0.
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The remaining case Du # 0 can now be easily treated by translation. For
a measure 4 define its push-forward unter translation by

so that Trdy = dp. Now if v satisfies the hypotheses of Theorem 4.7 and
v(x) = T_pu(zv(z) then 7 € A. Hence there exists a sequence {Dv;} that

generates 7 and one easily verifies that Du; = Dv; + Du generates v (use
e.g. Corollary 3.3 with f(z, F) = g(Du(z) + F),g € Co(M™™)). O

Proposition 4.24 Let (X, d) be a compact metric space and M C X. Sup-
pose that v : Q — X is measurable and v(x) € Ma.e. Then, for every k € N,
there exists a finite number of disjoint open sets U; with |0U;| = 0 and values
v; € M such that the map

- | vi onU;
V= { vy on Q\U;

satisfies . .
Hz:d(v(x),v(z)) > E}| <7

Proof. By compactness X can be covered by a finite number of open balls
B; with radius ﬁ The sets F; = v~!(B;) are measurable. To obtain disjoint

sets E;, we define E; = Ey, Ey = Ey \ E1, etc. If |[E;| > 0 then there exist
x; € E; such that v; :== v(x;) € M. There exist disjoint compact sets K; C F;

such that
Z |Ei \ Ki| < 1/k; (4.38)

if |E;| = 0 we take K; = (). The K; have positive distance and thus there exist
disjoint open sets U; D K; with |0U;| = 0 (consider e.g. suitable sublevel sets
of the distance function of K;). Now E; D E; D K; and thus d(v(z), v;) < 1/k
in K;. The assertion follows from (4.38). O
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5 Exact solutions

Approximate solutions are characterized by the quasiconvex hull K% and
set M%(K) of Young measures. The construction of exact solutions is more
delicate. In view of the negative result for the two-gradient problem (see
Proposition 2.1) it was widely believed that exact solutions are rather rare.
Recent results suggest that many exact solutions exist but that they have
to be very complicated. This is reminiscent of rigidity and flexibility results
for isometric immersions and other geometric problems (see [Na 54]; [Ku 55];
[Gr 86|, Section 2.4.12).

To illustrate some of the difficulties consider again the two-dimensional
two-well problem (see Section 4.5)

Due K ae.in, wu= Fzxon 05, (5.1)
K =50(2)AUS0O(2)B, (5.2)
A= 1d, B=dag\pu), 0<A<1l<pIu>1. (5.3)

If we ignore boundary conditions the simplest solutions of Du € K are
simple laminates, see Figure 16. A short analysis of the rank-1 connections
in K shows that such laminates are perpendicular to one of the normals n;
or ng, determined by the two solutions of the equation

QA—B=a®n. (5.4)

There is, however, no obvious way to combine the two laminates (see
Fig. 17). It was thus believed that the problem (5.1) — (5.3) has no nontrivial
solutions. This is false. The construction of nontrivial solutions is based on
Gromov’s method of convex integration.

5.1 Existence of solutions

First, one observes that the open version of the two-gradient problem admits
a solution. Here and for the rest of this section we say that amap u : 2 — R™
is piecewise linear if it is Lipschitz continuous and if there exist finitely or
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N

Figure 16: Two possible laminates for the two-well problem.

Q2B

Figure 17: None of the above constructions satisfies the rank-1 condition
across every interface.
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countably many disjoint open sets €2; whose union has full measure in €2 such
that u g, is affine.

Lemma 5.1 ([MS 96]). Suppose that tk(B—A) =1, F = AA+(1-A\)B,\ €
(0,1). Then, for a bounded domain Q and every § > 0 there exists a piecewise
linear map u such that

u(z) = Fz on 0
dist(Du, {A, B}) < 0,
sup |u(z) — Fz| < 4.
Remark. 1t is even possible to handle certain constraints. If n =m = 2

and det A = det B = ¢ # 0 then one can achieve det Du = ¢. How many
constraints can be handled is a largely open problem.

Proof. The construction has some similarities with Fonseca’s work, in
particular her proof of Theorem 2.4 of [Fo 88]. There are some differences,
however, so I give the proof in [MS 96] which is slightly simpler. We will
first construct a solution for a special domain U. The argument will then be
finished by an application of the Vitali covering theorem.

By an affine change of variables we may assume without loss of generality
that

A=-la®e,, B=(1-Na®e,, F=0, and |a|=1.

Let € > 0, let
V=(=1,1)""1x (A= 1) Ae)

and define v : V — R™ by

—Xax, if =z, <0,

v(xz) = —eA(1 = N)a+ { (1—-XNaz, if z,>0.

Then Dv € {A,B} and v =0 at z,, = (A — 1) and z,, = €\, but v does not
vanish on the whole boundary 0V. Next let

h(z) = eX(1 — )\)az_: | ;).

Then h is piecewise linear and |Dh| = eA(1 — \)y/n — 1. Set

u=uv+h.
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Note that @ > 0 on 0V and let
U={zeV:a(zr) <0}

Then
t)y s piecewise linear oy = 0,

dist(Dii, {A,B}) < eA(l— A1,
A < eA(l—)).

By the Vitali covering theorem one can exhaust €2 by disjoint scaled copies
of U. More precisely there exist z; € R™ and r; > 0 such that the sets

Uz' = T; + TZ'U
are mutually disjoint and |2\ U;U;| = 0. Define u by

_f mu(=) if x € U,
u(z) = { 0 else.

Note that
r — T;

It follows that u is piecewise linear, that ujpq = 0 and that dist(Du, {A, B}) <
0 for a suitable ¢ > 0. Moreover by choosing r; < 1 one can also obtain the
estimate for |u — Fz|. O

Lemma 5.1 can be easily iterated, and using the notion of the lamination
convex hull of a set (see Section 4.4) one obtains the following result (see

[MS 96] for the details).

Lemma 5.2 Suppose that U C M™*" is open. Let v : Q — R™ be piecewise
affine and Lipschitz continuous and suppose Dv € U a.e. Then there exist
u:Q — R™ such that

Du e Ua.e. in €2, wu=wv on 0.

The crucial step is the passage from open to compact sets K C M™*".

Following Gromov we say that a sequence of sets U; is an in-approximation
of K if

(i) the U; are open and contained in a fixed ball
(ii) U; C Uilil
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(iii) U; — K in the following sense: if F;, € U;
FeK.

oo Uy — 00 and F;, — F, then

Theorem 5.3 ([Gr 86/, p. 218; [MS 96]). Suppose that K admits an in-
approzimation {U;}. Let v € C'(Q; R™) with

Dv e Ul.
Then there exists a Lipschitz map u such that
Due K eQae, u=uvon 0.

Proof. The proof uses a sequence of approximations obtained by succes-
sive application of Lemma 5.2. To achieve strong convergence each approxi-
mation uses a much finer spatial scale than the previous one, similar to the
construction of continuous but nowhere differentiable functions. This is one
of the key ideas of convex integration.

We first construct a sequence of piecewise linear maps u; that satisfy

Du; € U; a.e,
sup (i1 — s < iy, Ujp1 = Uy on df2,
sup |u; —v| < §/4, U = v on 012.

To construct u; note that if Q' is open and 2" CC Q then dist(Dv(z), 0U;) >
c(§2) > 0 for all x € Q. Hence it is easy to obtain u|Q2" by introducing a
sufficiently fine triangulation. Now exhaust {2 by an increasing sequence of
sets (), CC .

To construct u;,, and 6,1 from u; and 9; we proceed as follows. Let

Q; = {x € Q: dist(x,00) > 27},

Let p be a usual mollifying kernel, i.e. let p be smooth with support in the
unit ball and [ p=1. Let

pe(x) = e "p(x/e).

Since the convolution p. * Du; converges to Du; in L*(€2;) as € — 0 we can
choose ¢; € (0,27") such that

|| pe, * Du; — Dug|pag,) < 27" (5.5)
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Let
6i+1 == (5261 (56)

Use Lemma 5.2 to obtain u;;; such that Du; 1 € U;11, u;11 = u; on 02 and

51(12p |wir1 — ;| < dig1. (5.7)

Since ;41 < 6;/2 we have

ZOO:(SZ- < 4/2.
1=1

Thus
U; — Uy uniformly,

and uy, is Lipschitz since the u; are uniformly Lipschitz (by (ii) in the defi-
nition of an in-approximation). Moreover u,, = v on 5.

It only remains to show that Du,, € K. The key point is to ensure strong
convergence of Du;. Since ||Dp.||pr < C/e we deduce from (5.7) and (5.6)

D0 (o~ wel o
P Zj:k+1 0; (5.8)
C'5y,.

| pe, * (Dug, — Duoo) || 110y
< % sup |uk - uoo|
< 2%5k+1

VAVANI

Taking into account (5.5) it follows that

[[Duy, — Duol|pi) < C'p + 27F || pe, * Do, — Ducs|| 110
+ ||Duk — Duoo”Ll(Q\Qk)

Since Duy and Duy, are bounded we obtain Duy — Duy,  in L'(2). There-
fore there exists a subsequence uy; such that

Duy, — Duy,  a.e.
It follows from the definition of an in-approximation that
Du, € K a.e.
Hence u = uy, has the desired properties. O
For the two-well problem (5.1) - (5.3) one can construct an in-approximation

using the explicit formula in Theorem 4.12. The details can be found in

[MS 96]; for a different approach based on Baire’s theorem see Dacorogna
and Marcellini [DM 96a], [DM 96b], [DM 97].
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Theorem 5.4 Suppose that A\ > 1. Then the two-well problem (5.1) - (5.3)
has a solution if

F € intK',
where
c At — det F det F' — 1
K'=qF=(y,2): |yl < ———, ¢ < ———¢.
Ap—1 Ap—1

Remark. A similar result holds if Ay = 1 provided that in the definition
of in-approximation and interior one considers relatively open sets subject to
the constraint det F' = 1. One only needs to use the remark after Lemma 5.1
to achieve det Du = 1, provided that det A = det B = 1.

A more detailed analysis shows that in the definition of in-approximation
one can replace the lamination convex hull which is based on explicit rank-1
connections by the rank-1 convex hull defined by duality with functions (see
Section 4.4). This has a striking consequence for the four-gradient example

= (o) =00}

discussed in Section 2.6, see in particular Figure 9. For any matrix

Fe K> Fu 0 D] <1 [Fe| <1
0 Fy

and any open neighbourhood U D K there exists a map u : Q — R? such

that
DueU a.e. in (),

u=Fx on 0f).

This is true despite the fact that small neighourhoods contain no rank-1 con-
nections so at first glance there seems to be no way to start the construction.

This obstacle is overcome by first constructing a (piecewise linear) map
that satisfies Dv € U™ a.e. and Dv € U except on a set of small measure.
One can then show that the exceptional set can be inductively removed.

The major outstanding problem is whether in the definition of an in-
approximation one can replace the lamination convex hull (or rank-1 convex
hull) by the quasiconvex hull. One key step would be to resolve the following
question.
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ni o

Figure 18: Structure of solutions with finite perimeter. The normals ny, n,
are determined by (5.4).

Conjecture 5.5 Let K be a compact quasiconvex set, i.e. K = K and
let v e M¥(K). Then for every open set U D K there exists a sequence
u; : (0,1)" = R™ such that Du; generates v and Du; € U a.e.

The conjecture is true for compact convex sets [Mu 97al; this refines Zhang’s
Lemma (see Lemma 4.21) which implies the existence of u; such that Du; €
B(0, R) for a sufficiently large ball.

5.2 Regularity and rigidity

The construction outlined above yields very complicated solutions of the two-
well problem (5.1) - (5.3). This raises the question whether the geometry of
the solutions can be controlled. Consider the set

E={x€Q: Du(z) € SO(2)A}

where Du takes values in one connected component of K (or one phase in
the applications to crystals). The perimeter of a set E C Q C R" is defined
as

PerE = sup /div pdr:peCi(QRY), |p <1
B

For smooth or polyhedral sets this agrees with the (n — 1) dimensional mea-
sure of OF.

Theorem 5.6 ([DM 95]). If u is a solution of (5.1) - (5.3) and if PerE < oo
then wu is locally a simple laminate and OF consists of straight line segments
that can only intersect at OS2.
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The proof combines geometric and measure-theoretic ideas. The geo-
metric idea is that the Gauss curvature K(g) of the pull-back metric g =
(Du)T Du should vanish (in a suitable sense). Since g only takes two values
this should give information on E.

One key step in the implementation of this idea is a finite perimeter
version of Liouville’s theorem on the rigidity of infinitesimal rotations (cf.
Theorem 2.4). In this framework connected components are replaced by
indecomposable components. A set A of finite perimeter is indecomposable
if for every A; C A with PerA = PerA; + PerA\ A; the set A; or A\ A; has
zero measure. It can be shown that each set of finite perimeter is a union of
at most countably many indecomposable components.

Theorem 5.7 Suppose that u : Q C R" — R" belongs to WH*°(Q; R") and
that det Du > ¢ > 0. Suppose further that E C ) has finite perimeter and

Du € SO(n) a.e. in E.
Then Du is constant on each indecomposable component of E.

To finish the proof of Theorem 5.6 one can decompose Du as €'©g'/? (where
g = (Du)'Du € {ATA,BTB}) and analyze the jump conditions at the
boundary of each indecomposable component to deduce that © only takes
two values and solves (in the distributional sense) a wave equation with
characteristic directions n; and na.

B. Kirchheim recently devised more flexible measure-theoretic arguments,
and combining them with algebraic ideas he established a generalization of

3

Theorem 5.6 to the three-well problem K = |J SO(3)U; in three dimensions
i=1

with U1 = diag()\l, )\2, )\2), U2 = diag()\l, )\2, )\1), U3 = diag()\Q, )\2, )\1), /\Z >

0. A major additional difficulty in this case is that the gauge group SO(3)

is not abelian and one cannot hope to derive a linear equation for a quantity

like © in the two-dimensional situation.
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6 Length scales and surface energy

Minimization of the continuum elastic energy is a drastic simplification, in
particular if a very fine mixture of phases is observed. It neglects interfacial
energy as well as discreteness effects due to the atomic lattice. It is therefore
not surprising that elastic energy minimization often predicts an infinitesi-
mally fine mixture of phases (in the sense of a nontrivial Young measure),
whereas in any real crystal all microstructures are of finite size.

Nonetheless elastic energy minimization does surprisingly well. It often
correctly predicts the phase proportions and in combination with considera-
tions of rank-1 compatibility the orientation of phase interfaces. It recovers
in particular the predictions of the crystallographic theory of martensite. In
fact one of the major achievements was to realize that the predictions of that
theory can be understood as consequences of energy minimization. This al-
lows one to bring to bear the powerful methods of the calculus of variations
in the analysis of microstructures.

The problem that elastic energy minimization does not determine the
length scale and fine geometry of the microstructure remains. It can be over-
come by introducing a small amount of interfacial energy or higher gradient
terms. One expects these contributions which penalize rapid changes to be
small since otherwise a very fine structure would not arise in the first place.
The most popular functionals are

I(u) :/W(Du)dx+/62|D2u|2dx (6.1)
" Jé(u) = / W (Du)dz + / | D?uldz. (6.2)

The second functional allows for jumps in the gradient, and |D?u| is under-
stood as the total variation of a Radon measure.

The small parameter € > 0 introduces a length scale and as ¢ — 0 both
models approach (at least formally) pure elastic energy minimization. More
realistic models should of course involve anisotropic terms in D?u or more
generally terms of the form h(Du,eD?u). Even the basic models (6.1) and
(6.2) are, however, far from being understood for maps v : @ C R®* — R3. In
the following we discuss briefly two simple scalar models which already show
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some of the interesting effects generated by the interaction of elastic energy
and surface energy.

6.1 Selection of periodic structures

As a simple one-dimensional counterpart of the two-well problem consider

the problem
1

Minimize I(u) = /(ui — 1) +u* dx (6.3)
0

subject to periodic boundary conditions. Clearly I(u) > 0 since the condi-
tions u = 0 a.e. and u, = £1 a.e. are incompatible. On the other hand
inf I = 0, since a sequence of finely oscillating sawtooth functions u; can
achieve u;, € {£1},u; — 0 uniformly. For any such sequence u;, generates
the (unique) Young measure v = 16_; + 30; (see Section 3.2b)). Note that
there are many ‘different’ sequences that generate this Young measure.
Minimizers of the singularly perturbed functional

1
If(u) = /62’&3,37 + (u2 = 1)* +u? da
0

yield a very special minimizing sequence for I.

Theorem 6.1 If ¢ > 0 is sufficiently small then every minimizer of I¢

(subject to periodic boundary conditions) is periodic with minimal period
P = 4(26)'/3 + O(23).

A more detailed analysis shows that the minimizers u¢ look approximately
like a sawtooth function with slope £1 and involve two small length scales:
the sawtooth has period ~ €'/3, and its corners are rounded off on a scale
~ € (see Fig. 19).

The heuristics behind the proof of Theorem 6.1 is simple and relies on
two observations. First, the condition /¢(u¢) — 0 enforces that u is almost a
sawtooth function with slopes 1. Second, a key observation of Modica and
Mortola is that the first two terms of the energy combined essentially count (e
times) the number of changes in the slope from 1 to -1 and vice versa. Indeed
the arithmetic geometric mean inequality yields for any interval (a, b) C (0, 1)
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~ & ~ &

Figure 19: Sketch of u for a minimizer of I

over which wu, changes sign

b
f62u2 + (u2 —1)2 de > [ 2€|(u2 — 1)uy,| dx

v

€ IfbH’(ux) dr| > € |H (ug()) — H(uz(a))l

~ e|H(1) - H(-1)],

where H'(t) = 2[t* — 1]. On the other hand the above estimates can be
made sharp if one choose u as a solution of the ODE eu,, = (u? — 1), e.g.
U, = tanh =0,

The two observations strongly suggest that (6.3) is essentially equivalent
to the following “sharp-interface problem”
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1
Minimize eAgN + / u? dx

0
among periodic function with |u,| = 1.

(6.4)

Here N denotes the number of sign changes of u, and Ay = H(1) —
H(—1) = 8/3. For fixed N (6.4) is a discrete problem, and a short calculation
shows that in this case periodically spaced sign changes of u, are optimal and
the second term in the energy becomes %N”. Minimization over N yields
the assertion.

The actual proof of Theorem 6.1 uses the expected analogy between (6.4)
and (6.3) only as a guiding principle and proceeds by careful approximations
and estimates for odes. Nonetheless it would be very useful to relate (6.4) and
(6.3) in a rigorous way, also as a test case for higher dimensional problems
where the fine ode methods are not available. Conventional ['-convergence
methods do not apply since the problem involves two small length scales and
the passage from (6.3) to (6.4) corresponds to removing only the faster one
(i.e. the smoothing of the sawtooth’s corners). Recently G. Alberti and the
writer developped a new approach that allows one to do that. One of the
main ideas is to introduce a new variable y that corresponds to the slower
scale and to view

v(x,y) = e Vu(e + PPy)

as a map V¢ from (0, 1) into a suitable function space X via V¢(x) = v¢(z, -).
One can endow X with a topology that makes it a compact metric space
and study of the Young measure v generated by V€. For each z € (0,1)
the measure v, is a probability measure on the function space X. If u€is a
sequence of (almost) minimizers of /¢ then one can show that v, is supported
on translates of sawtooth functions with the optimal period 4 2'/3.

One easily checks that the asymptotic behaviour is the same for minimiz-
ers of (6.4), and this gives a precise meaning to the assertion that (6.3) and
(6.4) are asymptotically equivalent.

This approach is inspired by the idea of two-scale convergence ([Al 92],
[E 92], [Ng 89]). A crucial difference is that two-scale convergence usually
only applies if the period of the microstructure is fixed and possible phase
shifts are controlled. This is the case if, for example, the solutions are of the
form @(z, 575) where @ is periodic in the second variable.
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6.2 Surface energy and domain branching

Consider the two-dimensional scalar model problem (see [KM 92] for the
relation with three-dimensional elasticity)

1 L
://u+u—1 dxdy—>m1n
00

u=0onz=0. (6.5)

The integrand is minimized at Du = (ug,u,) = (0,£1). The preferred
gradients are incompatible with the boundary condition. The infimum of 7
subject to (6.5) is zero but not attained. The gradients Du; of any mini-
mizing sequence generate the Young measure (5 ~1 t (5 (0,1)- One possible
construction of a minimizing sequence is as follows (see Flg 20) Let s; be a
periodic sawtooth function with period h and slope 1 and let u(z, y) = s5(y)
for z > 0, u(z,y) = $sa(y) for 0 <z < 6. Then consider a limith — 0,6 — 0
such that h/d remains bounded. Similar reasoning applies if we replace (6.5)
by the condition that « vanishes on the whole boundary of [0, L] x [0, 1].

linear interpolation — | uy = ~1 h/2

0 L

Figure 20: Construction of a minimizing sequence.

To understand the influence of regularizing terms on the length scale and
the geometry of the fine scale structure we consider

1L
= //ui + (uj — 1)* + €l da dy,
0 0
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Figure 21: The self-similar construction with 1/4 < © < 1/2. Only two
generations of refinement are shown.

subject to (6.5). Instead of the second derivatives in y one can consider other
regularizing terms, e.g. |D?u|®. The derivatives in y are, however, the most
important ones, since we expect that fine scale oscillations arise mainly in
the y direction. It was widely believed that for small € > 0 the minimizers
of I¢ look roughly like the construction u s depicted in Figure 20 (with the
corners of the sawtooth ‘rounded off” and optimal choices §(€), h(€)). This
is false. Indeed a short calculation shows that &(e) ~ (eL)Y/2, h(e) ~ (eL)'/?
and I¢(u, ) ~ €'/2L'/2. On the other hand one has

Theorem 6.2 (/Sch 94]) For 0 < e <1 there exists constants ¢,C > 0 such
that
cBLY3 < min  I€ < CeXBLY3.

~ u=0 at =0

The upper bound is obtained by a smooth version of the self-similar con-
struction depicted in Figure 21.

The mathematical issues become clearer if we again replace /¢ by a sharp
interface version

L1
J(u) ://ui+e|uyy|dydx (6.6)
0 0
subject to
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luy| =1 a.e. (6.7)

Thus y — u(x,y) is a sawtooth function and fol |ty |dy denotes twice the
number of jumps of u,. Minimization of (6.6) subject to (6.7) is in fact a
purely geometric problem for the set

E={(z,y): Uy(l‘,y) =1}

The first term in J¢ is a nonlocal energy in terms of E, while the second is
essentially the length of OF (more precisely its projection to the z-axis; as
before we consider this to be the essential part since oscillations occur mainly
in the y direction). The functional and the constraint are invariant under
the scaling

ur(z,y) = A u(A2z, Ay)
which suggests a self-similar construction with © = (%)3/ 2,

Theorem 6.3 ([KM 94]). For 0 < e <1 one has

ce?PLV3 < min J° < Ce?PLY3,

(6.5)(6.7)

Moreover, if u is a minimizer of J¢ subject to (6.5), (6.7) then

1
ce?BIM3 < //ui + €|y, |dedy < CEP1M3, (6.8)
0 0

The scaling in (6.8) is exactly the scaling predicted by the self-similar con-
struction with 6 = (3)3/2.

The prediction of refinement of the microstructure (domain branching)
towards the boundary x = 0 in the simple model (6.5-(6.7) inspired new ex-
perimental investigations ([Sch 93]). In closely related models for magnetiza-
tion domains in ferromagnetic materials domain branching is experimentally
well established ([Li 44], [Hu 67|, [Pr 76]), a rigorous mathematical analysis
is just beginning to emerge ([CK 97b], [CKO 97]). Already a quick look at
some of the sophisticated constructions in [Pr 76] suggests that a lot is to be
discovered.
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7 Outlook

There are many other interesting aspects of microstructure and I can mention
only three areas: alternative descriptions of microstructure, dynamics and
computation.

7.1 Alternative descriptions of microstructure

Young measures are but one way to describe microstructure and to extract
‘relevant’” information from a sequence of rapidly oscillating functions. They
determine the asymptotic local distribution of function values but contain
no information about the direction, length scale or fine geometry of the os-
cillations. As we saw in Section 3.3 the Young measure does not suffice to
determine the limits of natural nonlocal quantities such as the magnetostatic
energy or the self-correlation function.

There is an intense search for new objects that record additional informa-
tion, see [Ta 95] for a survey. One such object was introduced independently
by Tartar [Ta 90] and Gérard [Ge 91] under the names ‘H-measure’ and ‘mi-
crolocal defect measure’, respectively. They show that for every sequence
{u;} that converges to zero weakly in L?(Q) there exists a subsequence {u;, }
and a Radon measure p on Q x S"~! (the H-measure of {u;, }) such that for
every pseudo-differential operator A of order zero with (sufficiently regular)
symbol a(z,£) one has

(Auj,, uj )2 — / adj.

Qxsn—1

For R™-valued sequences one similarly obtains a matrix-valued (hermitian)
measure v = (V)14 j<m. The H-measure suffices, for example, to compute
the limit of the micromagnetic energy discussed in Example 1 of Section 3.3
(the corresponding matrix valued symbol is just a(§) = % ® %) Other ap-
plications of the H-measure include small amplitude homogenization, com-
pensated compactness with variable coefficients, compactness by averaging
in kinetic equations and the propagation of energy concentrations in linear
hyperbolic systems.

Two outstanding open problems are the relation between H-measures
and Young measures (see [MT 97], [Ta 95| for partial results) and a useful
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generalization that allows one to compute limits of nonquadratic quantities;
even the case of trilinear expressions is open.

The H-measure tracks the energy of oscillations depending on the direc-
tion, but regardless of length scales. P. Gérard [Ge 90] introduced a variant
of the H-measure, called semiclassical measure, that allows one to study the
effect of oscillations on a typical length scale h; — 0 (see also [LP 93]). A
completely different approach to analyze the detailed behaviour on small
length scales was briefly discussed at the end of Section 6.1.

7.2 Dynamics

Three fundamental questions are:
Can realistic dynamics create microstructure?

Can one deduce a law for the evolution of microstructure from the
macroscopic laws, and possibly reasonable additional assumptions?

What is a ‘good’ evolution law for interfaces in complex microstructures
and how can one model hysteresis?

A typical setting for the first question is a dynamical system that admits a
Liapunov function (such as energy or entropy) for which there exist no classi-
cal minimizer. Will the dynamics drive the Liapunov function to its infimum
and hence create fine scale oscillations or will the dynamics generate compact
orbits (in a suitable energy space) and thus prevent global minimization of
the Liapunov function?

The papers [Ba 90a] and [BHJPS 91] give nice surveys; Friesecke and
McLeod [FM 96] solved a longstanding problem by showing that one-dimen-
sional viscoelastic dynamics with a nonconvex elastic energy does not gener-
ate microstructure.

A precise setting for the second question is as follows. Consider a sequence
of rapidly oscillating initial data that generate a certain Young measure (or
H-measure, semiclassical measure, ...). Is the Young measure of the solution
at a later time determined by the Young measure of the initial data? In
physical language this is closely related to the idea of coarse-graining. Given
an evolution law for a very complex pattern are there simpler laws for certain
gross quantities such as the local phase average (= Young measure = one-
point statistics)? If this can be achieved it can lead not only to new insights
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but also to huge savings in computer time and more reliable results since it
is no longer needed to resolve the finest scale of the pattern.

A typical obstacle in attacking these questions is the closure problem.
Often the time derivatives of certain moments of the Young measure involve
higher moments. Even worse, sometimes the time derivative of the Young
measure involves terms that depend on two-point or higher correlations which
cannot be determined from the Young measure (see Example 2 of Section 3.3).

The first results on the evolution of Young measures and creation or
non-creation of oscillations were obtained by Tartar for kinetic models and
more general semilinear hyperbolic systems ([Ta 80], [Ta 81], [Ta 84], [Ta 86,
[Ta 87], [MPT 85]), see [Jo 83], [JMR 95|, [Mi 97] for further developments.
In [FBS 94] Tartar’s ideas were used to study the evolution of Young mea-
sures for a viscoelastically damped wave equation with nonmonotone stress-
strain relation. Theil [Th 97] recently obtained very sharp results on this
problem by a modification of the method that relies on transport theory
rather than on a study of the moments of the measure. Otto derived equa-
tions for the evolution of microstructure in unstable two-phase flow through
porous media [Ot 95] and in magnetic fluids [Ot 98]; further references on
the evolution of microstructure include [De 96] and [HR 94].

Regarding the third question about evolution laws and hysteresis Chu and
James observed that the hysteresis curves obtained in cyclic biaxial loading
of a Cu-Al-Ni single crystal cannot be explained by usual kinetic laws. One
alternative approach is based on metastability induced by lack of rank-1
connections [BCJ 95], another interesting route is explored in [ACJ 96]: the
energy landscape in function space contains many local minima (that corre-
spond to different microstructures), and the study of the effective evolution
laws for such ‘wiggly’ potentials yields surprising conclusions already in a
simple model; see also [Kin 97]. For other views of hysteresis, see the sur-
vey article of Huo and I. Miiller [HM 93], the recent monograph of Brokate
and Sprekels [BS 96] and the series of lectures [Br 94]; general references for
hysteresis include [KP 89] and [Vi 94].

7.3 Computation

The computation of microstructure by numerical energy minimization is a
very challenging task, see Luskin [Lu 96] for a recent survey. If microstruc-
ture is numerically observed, it often forms on the scale of the underlying
mesh. Hence calculations are notoriously mesh dependent unless (expensive)
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regularizations are included or special care is taken.

So far most numerical schemes do not make use of analytical insights,
except for scalar problems where relaxation leads not only to a drastic speed
up but also to more accurate results ([CP 97]). Some other exceptions are
discussed in Sections 1 and 7 of [Lu 96]. One difficulty in using analytical in-
formation in higher dimensions is that quasiconvexity while being the natural
convexity notion (see Section 4.2) is still largely mysterious and no efficient
algorithm for the computation of the quasiconvex hull is known. At least for
rank-convex hulls there has been some progress in [MP 98] and [Do 97].

One important issue is how to represent microstructures numerically in
an efficient way. Currently mostly finite element approaches are used but
they require a lot of unknowns to represent simple microstructures such as
an order 2 laminate (cf. Fig. 14). Ideally a good representation should
both yield a high compression ratio and be well adapted to the numerical
algorithm. The search for better analytical objects to describe microstructure
discussed above may well be relevant here.

7.4 Some solved and unsolved problems

The following table gives an overview of the state of Problems 1 and 2 for

sets K without rank-one connections. Further examples and references can
be found in [Ba 90b], [BFJK 94], [Sv 95].
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Notes

Here I have collected some additional references to the literature without any
pretention to be exhaustive or impartial.

Chapter 1 The idea to use nonlinear continuum theory for elastic crystals
and solid-solid phase transformations goes back to Ericksen [Er 75], [Er 77],
[Er 80], [Er 84], [Er 89] (see also [Gu 83], [Ja 81], [Pa 81], [Pi 84]) and was
developed in the context of the calculus of variations by Ball and James
([BJ 87], [BJ 92]), Chipot and Kinderlehrer [CK 88], Fonseca [Fo 87] and
subsequently by many others. There is a similar theory for micromagnetism
([Br 63], [DS 93], [JK 90]) and magnetostriction ([Br 66], [JK 93]).

The analytical foundations of the theory go back to the fundamental work
of Morrey ([Mo 52], [Mo 66]) on lower semicontinuity (extended by Reshet-
nyak [Re 67], [Re 89] to problems in quasiconformal geometry and by Ball
[Ba 77] to nonlinear elasticity) and to the pioneering work of Tartar on com-
pensated compactness (partly in collaboration with Murat) and on weak con-
vergence as a tool to pass from microscopic to macroscopic descriptions. His
work in the seventies is summarized in the seminal paper [Ta 79b], some more
recent developments are discussed in [Ta 90], [Ta 93] and [Ta 95|, and a com-
prehensive treatment will appear in [Ta 98]. While the current notes focus
mostly on variational problems Tartar’s approach is more general. In view of
applications to nonlinear partial differential equations in continuum mechan-
ics he considers general combinations of pointwise constraints w € K C R
a.e. (these usually arise from constitutive equations) and differential con-
straints Zj’k aijr0;w* = 0 (or in a compact set of W~; these correspond to
the balance laws). The situation considered in the current notes corresponds
to the constaint curl w = 0.

Partially motivated by Eshelby’s classic work on ellipsoidal inclusions
[Es 57, Es 59, Es 61], Khachaturyan, Roitburd and Shatalov ([Kh 67], [KSh 69],
[Ro 69], [Ro 78]) developed already in the sixties a theory of microstructure
based on energy minimization in the context of linear elasticity; see [Kh 83|
for a comprehensive treatment. Comparisons between the linear and the
nonlinear theory appear in [BJ 92], [Bh 93] and [Ko 89].

For lack of space I have not been able to discuss the close relation between
the variational approach to microstructures and the theory of optimal design
and optimal composites. Some constructions used in optimal design closely
resemble observed phase arrangements in solid-solid phase transitions. Early
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work in this direction includes [Ta 75], [Ta 79b], [Mu 78] and [KL 71]. A
number of important papers that were previously difficult to access have
recently appeared in English translation in [CK 97a]. Further references can
be found both in the introduction and the individual articles of that volume
as well as in the forthcoming books [Mi 98] and [Ta 98].

The approach to microstructures via energy minimization provides a new
foundation for the crystallographic theory of martensite ([BM 54], [WLR 53])
and has found important applications which include: new criteria for the re-
versible shape-memory effect based on the possibility of self-accommodation
of the transformed phase [Bh 92], bounds for the recoverable strains in poly-
crystals and their dependence on the symmetry of the phase transformation
and material texture ([BK 96], [BK 97], [BRL 97]), a proposed design of mi-
cromachines that are based on thin films of shape-memory materials [BhJ 97]
and the discovery of a new magnetostrictive material with greatly enlarged
magnetostrictive constant [JW 97].

The book by Pitteri and Zanzotto [PZ 97] and the forthcoming book by
Ball and James [BJ 97] as well as the collection of reviews [AMM 98] give
an overview of the theory and engineering applications. More on the math-
ematical side, the recent book of Pedregal [Pe 97] reviews the relevance of
microstructure and Young measures in various areas of application, while
Roubicek’s book [Ro 97] focuses more on the functional analytic aspects.
Evans’ notes [Ev 90] are an excellent introduction to the application of weak
convergence methods to partial differential equations. Many further exam-
ples can be found in [BFJK 94] and [Sv 95].

The experimental observations described in Section 2.2 are discussed in
detail in [CJ 95] and in Chu’s thesis [Ch 93]; a careful comparison of theory
and experiment for a variety of solid-solid phase transformations was under-
taken by Hane [Ha 97].

Chapter 2 'The connection with the Cauchy-Riemann equation appears in
[Sv 91a]. A counterpart of Theorem 2.4 holds for quasiconformal maps, i.e.
K =R"SO(n),n > 3. In this case one is led to degenerate elliptic equations
and Reshetnyak’s work ([Re 68a], [Re 89]) was a breakthrough in the study of
quasiconformal and quasiregular maps by pde methods. Part (i) of Theorem
2.5 was proved in [Zh] and also follows from more general results in [JO 90];
the proof given is due to Kirchheim.

Lemma 2.7 is called the ‘span restriction” in [BFJK 94] because it implies
(in view of Corollary 3.2) that the span of the support of a nontrivial gradient
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Young measure must contain a rank-1 line. The result is essentially a special
case of Theorem 3 in Tartar’s work [Ta 83]. It was probably known in some
form to Serre [Se 83] and is implicit in [DP 85]. The use of elliptic theory is
a common idea in the theory of microstructures, see e.g. [DP 85], [Ma 92],
[Sv 93b], [Sv 95].

Chapter 3 Young measures (also known as parametrized measures, re-
laxed controls, chattering controls or generalized curves) were invented by
L.C. Young [Yo 37]; his book [Yo 69] is a delightful read (see also McShane
[MS 40] for early applications of the theory and [MS 89] for a personal re-
view). The theory was generalized to much more general domains, target
spaces and integrals by Berliocchi and Lasry [BL 73|, Balder [Ba 84] and
many others including Kristensen [Kr 94]; recent surveys with extensive ref-
erences are [Va 90] and [Va 94]. Varifolds (see [Al 66], [Al 72], [Re 68b]) are
a generalization of Young measures in a geometric setting. Tartar [Ta 79b,
Ta 83] introduced Young measures as a fundamental tool for the study of os-
cillation effects as well as compactness and existence questions in nonlinear
partial differential equations. His theory of compensated compactness allows
one to derive nontrivial constraints on the Young measure from the combina-
tion of pointwise and differential constraints on the generating sequence. One
of the early successes of the theory were applications to conservation laws
([Ta 83], [DP 85]); for other applications see e.g. [Ev 90], [Sv 95], [Ta 98].

The presentation here follows [Ba 89]; Section 3.3 is based on [BJ 94].
Another phenomenon that Young measures cannot detect are concentration
effects. Varifolds, currents [FF 60, Fe 69, GMS 89, GMS 96] or H-measures
[Ge 91, Ta 90] do better in this regard; see also [FMP 97]. There are various
alternative proofs of the fundamental theorem: via disintegration of measures
on Q x R? (see e.g. [BL 73] for a much more general setting and [Ev 90] for
a short proof), via L® weakx precompactness of bounded sequences and the
theory of multivalued maps (see [Sy 97]) or by consideration of countable
dense sets of integrands f; and test functions ¢, and diagonalization. Corol-
lary 3.3 is a special case of results in [Ba 84].

Chapter 4 The fundamental connection between quasivonvexity and lower
semicontinuity was discovered by Morrey (see [Mo 52], [Mo 66]). Dacorogna
[Da 81], [Da 82a] discovered the relation between quasiconvexity and relax-
ation (see also [AF 84]); his book [Da 89] gives a comprehensive treatment of
the different notions of convexity. The work of Acerbi and Fusco [AF 84| and
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Marcellini [Ma 85] brought a major technical refinement with the coverage
of Carathéodory integrands. Since then many further refinements and gen-
eralizations have been achieved; a selection is [ABF 96], [BFM 97], [Fo 96],
[Kr 97b], [Ma 94], and many further references can be found there. For the
connection between quasiconvexity, regularity and compactness see [Ev 86],
[EG 87|, [FH 85] and [GM 86].

Tartar has pointed out various weaknesses of quasiconvexity. First, quasi-
convexity might not be necessary to obtain existence of minimizers. In view
of Ekeland’s variational principle [Ek 79] (which makes use of the Bishop-
Phelps argument [BP 61]) one can choose minimizing sequences that satisfy
in addition divo, — 0 in W~ where o}, = g—f,(Duk) is the stress and hence
one does not need to verify lower semicontinuity along arbitrary sequences.
To my knowledge this line of thought has not been explored in detail. Sec-
ondly it is not clear (indeed rather doubtful) whether quasiconvexity implies
the stability of equilibria, i.e. whether the conditions u, — u in W,
o) — @ in L*® and divey, — diva in W1 do imply & = g—l{i(Du) (by con-
trast Jensen obtained a nice classification in the scalar case, see [Ta 79b],
Theorem 23). Sverdk has shown [Sv 95], [Sv 98] that the compactness ar-
guments that are the cornerstone of the regularity theory for minimizers for
(uniformly) quasiconvex integrals fail for solutions of the equilibrium equa-
tions. For arguments in favour of quasiconvexity, in addition to those in the
text, see [BMa 84| (cf. also [Me 65], pp.128-131) and [BM 84], Theorem 5.1.

Sections 4.1 and 4.2 are partially based on [BJ 94]. In the definition
of quasiconvexity often additional restrictions on the integrand are imposed.
Hiisseinov [Hu 88], [Hu 95] realized that this is not necessary, see also [Fo 88].
Section 4.4 follows partially unpublished lectures by Sverdk, see also [Sv 95].
Sverdak’s counterexample is reminiscent of a counterexample by Tartar in
the theory of compensated compactness (see [Ta 79b], pp.185-186). The
proof of the classification result follows roughly Kinderlehrer and Pedregal’s
original work [KP 91] (see also [Kr 94]). Some simplifications, in particular
for the nonhomogeneous case, are based on discussions with Alberti. Sychev
[Sy 97] recently presented independently a similar approach for the case 1 <
p < oo. The idea to use the Hahn-Banach theorem to characterize Young
measures appears e.g. in [Ta 79b], p.152, for the case without differential
constraints; in a similar vein the Krein-Milman theorem is used in [BL 73],
p.148. The proof of Theorem 4.4.(i) is by now standard (see [Mo 52]), the
proof of Theorem 4.5(iii) is the same as Fonseca’s [Fo 88], see also [Hu 88].
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Truncation arguments that are closely related to what I called Zhang’s lemma
were used earlier by Acerbi and Fusco [AF 84], [AF 88], based on work of
Liu [Li 77].

Gradient Young measures and quasiconvexity correspond to the con-
straint curlv = 0. As mentioned above, in continuum mechanics and elec-
tromagnetism one also meets more general systems of first order constraints
A(Dv) = 0. If A satisfies a constant rank condition there is a largely parallel
theory ([Da 82b], [FM 97]) (in an LP-setting, 1 < p < oco) while the situation
is widely open even in simple examples where this condition fails (see [Ta 93]).

Chapter 5 Most of the material is taken from [MS 96] and [Mu 97c]. The
basic existence result is the theorem on p.218 of Gromov’s book [Gr 86]. A
detailed proof for a special case and the application to the two-well problem
are described in [MS 96]. The case K = O(3) is studied in [CP 95] (here some
simplifications occur since K = convK); results for more general isometric
maps appear in [Gr 86], Chapter 2.4.11. For variable prescribed singular val-
ues see also [CPe 97].

Chapter 6 This chapter is based on [Mu 97¢|. Theorem 6.1 is taken from
[Mu 93]; the €!/3 scaling had been predicted earlier by Tartar based on
matched asymptotic expansions. The Modica-Mortola inequality [MM 77a,
MM 77b] was found shortly after De Giorgi had introduced the notion of
I'-convergence [DG 75], [DGF 75], but was initially somewhat overlooked.
With the growing interest in the gradient theory of phase transitions since
the mid-80’s (see [BF 94], [Bo 90], [FT 89], [Gu 87] [KS 89], [Mo 87] and the
references therein) it later became a crucial tool. Dal Maso’s book [DM 93] is
a good reference on I'-convergence with a very useful commented bibliogra-
phy. The influence of surface energy on phase transformations in crystals was
studied in a series of papers by Parry and others [MP 86|, [Pa 87a], [Pa 87b],
[Pa 89], mostly in one-dimensional situations.
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