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� Setting of the problem

�
� What are microstructures�

For the purpose of these lectures� a microstructure is any structure on a scale
between the macroscopic scale �on which we usually make observations� and
the atomic scale� Such structures are abundant in nature� the �ne hierar	
chical structures in a leaf and many other biological materials� the complex
arrangements of �ssures� cracks� voids and inclusions in rock or soil� �ne
scale mixing patterns in turbulent or multiphase �ow� man	made layered or
�bre	reinforced materials and �ne phase mixtures in solid	solid phase trans	
formations� to quote but a few examples� The microstructure in�uences in a
crucial way the macroscopic behaviour of the material or system and is often
chosen �or spontaneously generated� to optimize its performance �maximum
strength at given weight� minimal energy� maximal entropy� maximal or mini	
mal permeability� ����� Microstructures often develop on many di�erent scales
in space and time� and to understand the formation� interaction� and overall
e�ect of these structures is a great scienti�c challenge� weather modelling
providing an illustrative example� In the applied literature the passage from
microscales to macroscales is frequently achieved by clever ad hoc �averag	
ing� or �renormalization�� A good mathematical framework in which these
procedures could be justi�ed and systematically improved is often lacking�
and its development would be a di�cult� but very rewarding� task�

The mathematical analysis of microstructures usually neglects the atomic
scale by considering a continuum model from the outset� The issue is then
to understand scales that are small �or converge to zero� compared to the
�xed macroscopic scale� Research has mostly focused on three areas� homog	
enization� variational models of microstructure and optimal design which lies
between the two �rst areas as the optimal structure often corresponds to a
homogenization limit� The basic problem in homogenization is to determine
the macroscopic behaviour �or at least bounds on it� induced by a given
microstructure �given for example by a periodic mixture of two heat con	
ductors in the limit of vanishing period� by a weakly convergent sequence
of conductivity tensors or by statistical information�� Variational models of
microstructures try to model systems which spontaneously form internal mi	
crostructure by assuming that the structure formed has a certain optimality
property� The reason for the formation of such microstructure is typically
that no exact optimum exists and optimizing sequences have to develop �ner
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and �ner oscillations �which may only be limited by e�ects neglected in the
model� such as the underlying atomic structure�� An important task is to ex	
tract the relevant features of minimizing sequences� Young measures� which
are discussed in Section � below� are one possibility to do this� but by no
means the only one�

In these lectures I will focus on variational models for microstructures that
arise from solid	solid phase transitions in certain elastic crystals �usually al	
loys� such as In	Th� Cu	Al	Ni� Ni	Ti�� These materials display a fascinating
variety of microstructures �see Fig� �� which is closely linked to unusual and
technologically interesting material behaviour �shape memory e�ect� pseu	
doelasticity�� A mathematical model for elastic crystals will be introduced
in Section ��� below� Before doing this let us brie�y review the relation be	
tween microstructure and energy minimization in more detail in some simple
examples�

Figure �� Microstructure in a Cu	Al	Ni single crystal� the imaged area is
approximately � mm� � mm �courtesy of C� Chu and R�D� James� University
of Minnesota�
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�
� Microstructures as energy minimizers

Example �� Consider the problem�

Minimize

�Z
�

�u�x � ��� dx

subject to

u�
� � u��� � 
�

The minimum is attained but the set of minimizers is highly degenerate�
Every Lipschitz function whose slopes are �� almost everywhere and that
attains the boundary values is a minimizer� In particular the weak� closure
in W ��� of the set of minimizers consists of all functions with Lipschitz con	
stant less then or equal to one that are bounded by �min�x� �� x��

Example � �Bolza� L�C� Young�� Consider the problem�

Minimize I�u� ��

�Z
�

�u�x � ��� � u� dx

subject to

u�
� � u��� � 
�

The in�mum of the functional is zero since there exist rapidly oscillating
functions with slope �� whose supremum is arbitrarily small� Indeed if s
denotes the periodic extension of the sawtooth function

s�x� �

��
�

x on �
� ����
���� x on ����� ����
x� � on ����� ��

�����

then uj�x� �� j��s�jx� satisfy I�uj� � 
 as j � �� The in�mum cannot
be attained since there is no function that satis�es simultaneously u � 

and ux � �� almost everywhere� Minimizing sequences must oscillate and
converge weakly �in the Sobolev space W ����
� ���� but not strongly� to zero�
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This provides a �rst example how minimization can lead to �ne scale oscilla	
tion or microstructure� The failure of classical minimization was investigated
by L�C� Young in the ���
�s in the context of optimal control� It led him
to the introduction of generalized measure	valued solutions �see Section �
below on Young measures�� His book �Yo �� describes various interesting
situations where generalized solutions naturally arise� including applications
to sailing and the construction of railway tracks�

Example �� Let ! � �
� L ��
� � be a rectangle and consider the problem�

Minimize J�u� �

Z
�

u�x � �u�y � ��� dx dy

subject to

u � 
 on �!�

Clearly J�u� � 
 since otherwise ux � 
 almost everywhere� whence u � 

on ! and �u�y � ��� � �� On the other hand the in�mum of J is zero� One
way to see this is to consider the sawtooth function s given by ������ to de�ne

u�x� y� � j��s�jy� for � � x � L� ��

and to use linear interpolation to achieve the boundary values at x � 
 and
x � L� Considering �rst the limit j � � and then � � 
 one obtains
inf J � 
� As in Example � no �classical� minimizers exist and minimizing

sequences must develop rapid oscillations�
Two questions arise from the consideration of these examples�

Question �� Are there special minimizers or minimizing sequences
 Are�
for example� the maximal solutions � min �x� ��x� in Example � in a certain
way preferred minimizers


Question �� Are there certain common features of all minimizing se	
quences


�
� Variational models for elastic crystals

The basic idea is to model the elastic crystal as a nonlinearly elastic contin	
uum� The crystalline structure enters in this approach through the symmetry
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properties of the stored	energy function� The �usually stress	free� reference
con�guration of the crystal is identi�ed with a bounded domain ! � R�� A
deformation u � ! � R� of the crystal requires an elastic energy

I�u� �

Z
�

W �Du� dx� �����

where W � Mm�m � R is the stored	energy density function that describes
the properties of the material� Under the Cauchy	Born rule W �F � is given by
the �free� energy per unit volume that is required for an a�ne deformation
x �� Fx of the crystal lattice�

The stored energy is invariant under rotations in the ambient space and
under the action of the isotropy group P of the crystal lattice which usually
is a discrete subgroup of SO���� Thus

W �QF � � W �F � 	Q 
 SO���� �����

W �FP � � W �F � 	P 
 P � SO���� �����

Instead of the compact group P one could also consider the larger noncom	
pact group of all lattice invariant transformation which is conjugate to the
group GL���Z�� This leads to a highly degenerate situation and in particu	
lar such an invariance implies �in connection with the consideration of global
rather than local mimimizers� that the material has no macroscopic shear
resistance� We will thus use the point group and refer to �BJ ��� BJ �� �
�CK �� � �Er ��� Er ��� Er �
� Er ��� Er �� � �Fo �� � �Pa ��� Pa �� � �Pi �� �
�Za �� for further discussion of this point�

The stored	energy also depends on temperature but we will always assume
that the temperature is constant throughout the crystal and thus suppress
this dependence�

The basic assumption of the variational approach to microstructure is�

The observed microstructures correspond to
minimizers or almost minimizers of the elas	
tic energy I�

It is convenient to normalize W so that minW � 
� The set K � W���
�
then corresponds to the zero energy a�ne deformations of the crystal lat	
tices� Experimentally it is often observed that microstructures do not only
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minimize the integral I �subject to suitable boundary conditions� but in fact
minimize the integrand pointwise� We are thus led to consider the simpler
problem�

Determine �Lipschitz� maps that satisfy exactly
or approximately Du 
 K �

The di�erence in behaviour of di�erent materials is thus closely related to
the set K which depends on the material and temperature� For ordinary
materials K is �conjugate to� SO��� �the smallest set compatible with the
rotation invariance� while for materials forming microstructures K consists
of several copies of SO���� The Cu	Al	Ni alloy for which the microstructures
in Fig�� were observed undergoes a solid	solid phase transition at a critical
temperature Tc� i�e� the preferred crystal structure� and hence the set K
changes at Tc�

T � Tc T � Tc
phase transition

crystal structure cubic ���� orthorhombic

K SO��� SO���U� � � � � SO���U�

U� �

�
� � 
 



 � 	

 	 �

�
A

micro� none large variety observed

structure �see Section ���� �see Section ����

Figure �� A cubic to orthorhombic transition

In view of ����� the matrices Ui are related by conjugation under the cubic
group�
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�
� The basic problems

We slightly generalize the setting of the previous section and consider maps
u � ! � Rn � Rm on a bounded domain ! �with Lipschitz boundary if
needed�� In particular the Sobolev space W ��� agrees with the class of Lip	
schitz maps� Let K �Mm�n be a compact set in the space Mm�n of m� n
matrices�

Problem � �exact solutions�� Characterize all Lipschitz maps u that satisfy

Du 
 K a�e� in !�

Problem � �approximate solutions�� Characterize all sequences uj of Lip	
schitz functions with uniformly bounded Lipschitz constant such that

dist �Duj� K� � 
 a�e� in !�

Problem � �relaxation of K�� Determine the sets Kex and Kapp � Mm�n

of all a�ne maps x �� Fx such that Problem � and � have a solution that
satis�es

u�x� � Fx on �!�

uj�x� � Fx on �!�

respectively�
Problems �	� also arise in many other contexts� e�g� in the theory of

isometric immersions� An important technical di�erence is that in geometric
problems one is often interested in connected sets K �and hence C� solutions
u� while we will usually consider sets with more than one component� For
further information we refer to Gromov�s treatise �Gr �� and to �Sver�ak�s
ICM lecture �Sv �� �

In the context of crystal microstructure discussed in the previous section
the sets Kex and Kapp in Problem � have an important interpretation� They
consist of the a�ne macroscopic deformations of the crystal with �almost�
zero energy� They trivially contain the set K of microscopic zero energy de	
formations but can be much larger� For the set K � SO���A � SO���B one
obtains �see Section ���� that under suitable conditions on A and B the sets
Kapp and Kex contain an open set �relative to the constraint det F � ���
leading to �uid	like behaviour�
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Problem �� Find an e�cient description of approximating sequences that
eliminates nonuniqueness due to trivial modi�cations while keeping the rel	
evant �macroscopic� features�

We saw in Section ��� how failure of minimization can lead to �in�nitely
�ne� microstructure� In practice crystal microstructures always arise on
some �nite scale �albeit on a wide range from a few atomic distances to
�
 � �

 
m�� Minimization of elastic energy alone may not be enough to
explain this since there is no natural scale in the theory�

Problem �� Explain the length scale and the �ne geometry of the mi	
crostructure� possibly by including other contributions to the energy� such as
interfacial energy�

Another possible explanation for limited �neness is that in�nitely �ne
mixtures are �generalized� energy minimizers but not accessible by the natu	
ral dynamics of the system� This is a very important issue� but we can only
touch brie�y on it in these notes and refer to Section ��� and the references
quoted there�
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� Examples

It is instructive to look at some examples before studying a general theory
related to Problems �	�� These simple examples already show a rich variety
of phenomena and interesting connections with �nonlinear� elliptic regularity�
functional analytic properties of minors and quasiconformal geometry� In the
following K always denotes a subset of the space Mm�n of m� n matrices�
m�n � �� and ! is a domain� i�e� an open and connected set� in Rn�

�
� The two�gradient problem

Exact solutions� Let K � fA�Bg� The simplest solutions of the relation

Du 
 K

are so called simple laminates� i�e� maps for which Du is constant in alter	
nating bands that are bounded by hyperplanes x 
 n � const �see Fig� ���
Tangential continuity of u at these interfaces enforces that A� � B� for vec	

Du � B

Du � A

Du � B

Du � A

n

Figure �� A simple laminate

tors � perpendicular to n and thus A � B has rank one and can be written
as

B � A � a� n�

In this case we say that A and B are rank	� connected� We recall that
the matrix a � n has entries �a � n�ij � ainj� If one assumes that the
interfaces between the regions fDu � Ag and fDu � Bg are smooth then
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a similar argument shows that they must be hyperplanes with �xed normal
n� Moreover no such smooth arrangement is possible if rk�B � A� � �� The
following proposition gives a much stronger statement because it shows that
also among possibly very irregular maps there are no other solutions�

Proposition �
� ��BJ �	
� Prop��
 Let ! be a domain in Rn and let u �
! � Rm be a Lipschitz map with Du 
 fA�Bg a�e�

�i� If rk�B � A� � �� then Du � A a�e� or Du � B a�e��

�ii� if B � A � a� n then u can locally be written in the form

u�x� � Ax � ah�x 
 n� � const

where h is Lipschitz and h� 
 f
� �g a�e� If ! is convex this representa�
tion holds globally�

In particular� Du is constant if u satis�es an a�ne boundary condition
u�x� � Fx on �!�

Proof� The key idea is that the curl of a gradient vanishes� By translation
we may assume A � 
 and thus Du � B�E� for some measurable set E �
!� For part �i� we may assume in addition� after an a�ne change of the
dependent and independent variables� that the �rst two rows of the matrix
B are given by the standard basis vectors e� and e� and thus

Du� � e��E� Du
� � e��E�

Symmetry of the second distributional derivatives and the �rst equation im	
ply that �j�E � 
 for j �� � while the second equation yields �k�E � 
 for
k �� �� Hence D�E � 
 in the sense of distributions and therefore �E � � a�e�
or �E � 
 a�e� since ! is connected�

To prove part �ii� we may assume A � 
� a � n � e� and thus
Du� � e��B� Duk � 
� k � �� � � � � m� Hence u�� � � � � um are constant and
�ku

� � 
� for k � �� � � � � m� Therefore u� is locally only a function of x� as
claimed� If ! is convex then u� is constant on the hyperplanes x� � const
that intersect ! and thus globally of the desired form�

Finally if u � Fx on �!� then F � �� � 
�B� 
 
 �
� � since by the
Gauss	Green theorem

jEj B �

Z
�

Dudx �

Z
��

u� n dHn�� �

Z
�

F dx�

��



where n is the outer normal of !� Extending u by Fx on Rn n ! we can
argue as in the proof of �ii� to deduce u�x� � Ax�a "h�x 
n��b on Rn� where
"h� 
 f
� �� 
� �g� Hence u�x� � Fx since each plane x 
 n � const intersects
the set where u � Fx� �

Approximate solutions� Consider again K � fA�Bg and suppose

B � A � a� n� F � 
A � ��� 
�B� 
 
 �
� � �

We show that there exist sequences uj with uniformly bounded Lipschitz
constant such that in !

dist�Duj� fA�Bg� � 
 in measure� �����

and
uj�x� � Fx �!� �����

Note that ����� and the bound on the Lipschitz constant imply that conver	
gence also holds in Lp� 	p ��� After translation we may assume

F � 
� A � ���� 
�a� n� B � 
 a� n�

Let h be the periodic extension of the function given by

h�t� �

� ���� 
�t t 
 �
� 
��

�t� �� t 
 �
� � �

and consider

vj�x� �
�

j
a h�jx 
 n��

Then Dvj 
 fA�Bg a�e� and vj � 
� To achieve the boundary condi	
tions consider a cut	o� function � 
 C���
����� 
 � � � �� � � 
 on
�
� ��� � � � � on ����� and let

uj�x� � ��j dist�x� �!��vj�x��

Then uj � 
 on �!� Duj is uniformly bounded and Duj � Dvj except in
a strip of thickness ��j around �!� If follows that uj satis�es ����� and
������ Various modi�cations of this construction are possible� and we return
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in Section ��� to the question whether all approximating sequences are in a
certain sense equivalent�

Note that due to the assumption B�A � a�n� the problem ������ �����
essentially reduces to the scalar problem discussed in Example � of Section
����

We now consider the case rk�B � A� � �� We have shown that in this
case there are no nontrivial exact solutions� The argument used strongly the
fact that Du only takes two values and that the curl of a gradient vanishes�
It does not apply to approximating sequences� Nonetheless we have

Lemma �
� ��BJ �	
� Prop��
 Suppose that rk�B �A� � � and that uj is a
sequence with uniformly bounded Lipschitz constant such that

dist�Duj� fA�Bg� � 
 in measure in !�

Then

Duj � A in measure or Duj � B in measure�

In particular the problem ����
� ����
 has only the trivial solution� F 

fA�Bg and Duj � F in measure�

The proof uses the following fundamental properties of minors� We recall
that the semiarrow � denotes weak convergence�

Theorem �
� �Ba 		� Mo ��� Re �	
 Let M be an r � r minor �subdeter�
minant
�

�i� If p � r and u� v 
 W ��p�!�� u� v 
 W ��p
� �!� thenZ

�

M�Du� �

Z
�

M�Dv�� �����

In particularZ
�

M�Du� �

Z
�

M�F � if u � Fx on �!�
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�ii� If p � r and if the sequence uj satis�es

uj � u in W ��p�!�Rm��

then

M�Duj� �M�Du� in Lp�r�!��

Remark� Integrands f for which the integral
R
f�Du� only depends on the

boundary values of u are called null Lagrangians� since the Euler	Lagrange
equations are automatically satis�ed for all functions u� A�ne combinations
of minors are the only null Lagrangians and the only functions that have the
weak continuity property expressed in �ii� �see also Section �����

Proof of Theorem ���� The main point is that minors can be written as
divergences� For n � m � � one has

detDu � ���u
���u

��� ���u
���u

��� �����

for all u 
 C� and hence for all u 
 W ��� if the identity is understood in the
sense of distributions� More generally� for n � m � � the cofactor matrix
that consists of the �n� ��� �n� �� minors of Du satis�es

div cof Du � 
� i�e� �j�cofDu�ij � 
 �����

and thus

det Du �
�

n
�j�u

i�cofDu�ij��

since F �cof F �T � Id det F � Similar formulae hold for general r � r minors�
see �Mo ��� Da ��� GMS �� for the detailed calculations� The multilinear
algebra involved in these calculations can be expressed very concisely through
the use of di�erential forms� In this setting one has for n � m � �

det Dudx� � dx� � du� � du� � d �u� � du���
while for the r � r minor M�Du� that involves the rows �� � � � � r and the
columns �� � � � � r one has

M�Du�dx� � � � � dxn � du� � � � � � dur � dxr�� � � � � � dxn
� d �u� � du� � � � � dur � dxr�� � � � � � dxn��
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In either formulation �i� follows from the Gauss	Green �or Stokes� theo	
rem �and approximation by smooth functions� while �ii� follows from induc	
tion over the order r of minors and the fact that uj converges strongly in Lp�

�

Proof of Lemma ���� We may assume A � 
 and that there exists a �� �
minor M such that M�B� � �� By assumption there thus exist sets Ej such
that

Duj � B�Ej
� 
 in measure � �����

and hence in Lp for all p � �� Moreover there exists a subsequence �not
relabelled� such that

�Ej

�
� � in L��!�� uj

�
� u in W ����!�Rm�� �����

It follows from Theorem ��� and �����

B�Ej

�
� Du � B��

M�B��Ej

�
� M�Du� � M�B���� �����

Combining the �rst convergence in ����� and ����� we see that � � �� a�e�
Thus � must be a characteristic function �E� Hence ����� implies that �use
e�g� the fact k�Ej

kL� � k�EkL��
�Ej

� � � �E in measure�

Therefore by �����

Duj � Du � B�E in measure�

Finally Lemma ��� �i� implies that Du � B a�e� or Du � A � 
 a�e� �

�
� Applications to crystal microstructures

Before proceeding with the mathematical discussion of the problem Du 
 K
let us brie�y review what can be learned about crystal microstructure from
the considerations so far� Which microstructures can form and why are they
so �ne


First let us consider again the r#ole of rank	� connections� In the contin	
uum theory discussed in the previous section they were related to continuity

��



of the tangential derivatives or to the fact that the curl of a gradient vanishes
�in Section ��� we still study the connections with the Fourier transform��
The condition can also be understood in the discrete setting of crystal lat	
tices� Two homogeneous lattices� obtained by a�ne deformations A and B
of the same reference lattice can meet at a common plane S only if the de	
formations di�er by a shear that leaves S invariant� Analytically we recover
the condition B � A � a� n� where n is the normal of S �see Figure ���

A

B

��

���

A

B

n

a

Figure �� Compatible and incompatible lattice deformations� On the left the
condition B �A � a� n is satis�ed� on the right B � Id� A � ��� Id� so the
condition is violated� After deformation there is no interface on which the
two lattices meet�

Under certain additional conditions the two sublattices are referred to as
twins� There are di�erent de�nitions what precisely constitutes a twin� a
common requirement is that B � QAH� where Q 
 SO��� n fIdg� Q� � Id
and where H belongs to the point group of the crystal� see �Ja �� and �Za �� 
for further discussion� Compatible lattice deformations can be arranged in
alternating bands of di�erent deformations� see Figure � �cf� also Fig� ���

If the set K 
 Mm�n of minimizing a�ne deformations contains more
rank	� connections then more complicated patterns such as the double lam	
inates �or �twin crossings�� in Figure � are possible�

In this way one can explain the observation of a number of microstructures
through an analysis of rank	� connections� The constructions based on rank	
� connections� however� involve no length scale� Why� then� are the observed
structures often so �ne


For the situation of just two deformations A and B Proposition ��� �ii�
and the discussion of approximate solutions provide an explanation� As soon
as one imposes a nontrivial a�ne boundary condition F � 
A � �� � 
�B
there are no exact solutions� and approximate solutions become the better

��



Figure �� Compatible lattice deformations can be arranged in laminar pat	
terns� Schematic drawing �left�� atomic resolution micrograph of �ne twin	
ning in Ni	Al �middle� courtesy of D� Schryvers� RUCA� Antwerp�� twinning
in Cu	Al	Ni �right� courtesy of C� Chu and R� D� James�� grey and black
represent two di�erent lattice deformations�

the �ner A and B are mixed �in a real crystal� additional contribution to the
energy may eventually limit the �neness� see Section ��� In practice boundary
conditions are often not so much imposed globally but by contact with other
parts of the crystal where other deformation gradients prevail �e�g� because
the phase transformation has not yet taken place there��

A typical example is the frequently observed austenite$�nely	twinned
martensite interface �see Figure ��� In an idealized situation this corresponds
to a homogeneous a�ne deformation C on one side of the interface and a �ne
mixture of A and B on the other side� Neither A nor B are rank	� connected
to C but a suitable convex combination 
A � ��� 
�B is�

There is no deformation that uses all three gradients A�B and C and
only these �see the end of the proof of Proposition ����� However� the volume
fraction of gradients other than A�B and C can be made arbitrarily small
by matching C to a �ne mixture of layers of A and B in volume fractions 

and �� 
�

The analysis of the rank	� connections determines the volume fraction 

as well as the interface normals n and m� in very good agreement with experi	
ment� see �BJ �� � Theorem � and �JK �� � Section � for a detailed discussion�

��
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Figure �� Twin crossings in Cu	Al	Ni �courtesy of C� Chu and R� D� James�
and schematic drawings of the di�erent deformation gradients and their rank	
� connections �indicated by solid lines��

More complex patterns like the wedge microstructure in Figure � can be
understood in a similar vein� In this particular case so many rank	� connec	
tions are required that the microstructure can only arise if the transformation
strain satis�es a special relation� see �Bh �� � �Bh �� for a comparison of the	
ory and experiment�

The considerations in this subsection focused on constructions of mi	
crostructures based on rank	� connections� Do these constructions cover �in
a suitable sense� all possible microstructures
 We return to this fundamental
question in the remainder of this Section and in particular in Sections ����
��� and ����

��
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Figure �� Austenite$�nely twinned martensite interface in Cu	Al	Ni �cour	
tesy of C� Chu and R� D� James�� schematic distribution of deformation gra	
dients and rank	� connections� a simple model for the re�nement �branching�
of the A$B twins towards the interface with C is discussed in section ����
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Figure �� Wedge microstructure in Cu	Al	Ni �courtesy of C� Chu and R�
D� James�� The necessary rank	� connections between the six orthorhombic
wells SO���Ui and the untransformed phase only exist for special transfor	
mation strains U��
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�
� The one�well problem

The simplest set K that is compatible with the symmetry requirements �����
and ����� is K � SO�n�� In this case approximating sequences must converge
strongly�

Theorem �
� ��Ki ��
� p����
 Suppose that

Du 
 SO�n� a�e� in !�

Then Du is constant and u�x� � Qx � b� Q 
 SO�n�� If uj is a sequence of
functions with uniformly bounded Lipschitz constant such that

dist�Duj� SO�n�� � 
 in measure� �����

then

Duj � const in measure�

Proof� To prove the �rst statement recall from ����� that

div cofDu � 


for any Lipschitz map� Now cof F � F for all F 
 SO�n� and thus u is
harmonic and therefore smooth� Moreover jDuj� � n� where jF j� � trF TF �P

i�j F
�
ij� and therefore

�jD�uj� � %jDuj� � �Du 
D%u � 
�

Thus Du is constant�
To prove the second assertion of the theorem we may assume that

uj
�
� u in W ����!�Rm�� Consider the function

f�F � � jF jn � cn detF� cn � nn���

One easily checks that f � 
 and that f vanishes exactly on matrices of the
form 
Q� 
 � 
� Q 
 SO�n� �use polar decomposition� diagonalize and apply
the arithmetic	geometric mean inequality�� Hence ������ the weak continuity

��



of minors �Theorem ���� and the weak lower semicontinuity of the Ln norm
imply that


 � lim inf
n��

Z
�

f�Duj� dx

� lim inf
n��

�

Z
�

jDujjn dx� cn

Z
�

detDuj dx�

�
Z
�

jDujn dx� cn

Z
�

detDudx �

Z
�

f�Du� � 
�

Therefore all the inequalities must be equalities and in particular

f�Du� � 
 a�e�� kDujkLn � kDukLn�
It follows that

Duj � Du in Ln�!�Mm�n� �hence in measure��
Du�x� � 
�x�Q�x�� 
 � 
� Q�x� 
 SO�n� a�e�

Moreover jDujj� � n a�e�� whence jDuj� � n a�e� Thus Du 
 SO�n� a�e� and�
by the �rst part of the theorem Du � const� �

The case n � � of the above result shows some interesting connections
with the Cauchy	Riemann equations� Identify C � R� as usual via z � x�iy
and let �z � �����x� i�y�� ��z � �����x � i�y�� Suppose that � � p �� and

dist�Duj� SO���� � 
 in Lp�!�� ����
�

Then in particular j�zujj � � and

��zuj � 
 in Lp�!�C��

and regularity for the Cauchy	Riemann operator implies that there exists a
function u s�t�

uj � u in W ��p�!�C�� ��zu � 
�

Thus u is �weakly� holomorphic and j�zuj � limj�� j�zujj � �� Hence
�zu � const�

��



�
� The three�gradient problem

Theorem �
� ��Sv ��b

� Let K � fA�� A�� A�g and suppose that rk�Ai �
Aj� �� ��

�i� If Du 
 K a�e� then Du is constant �a�e�
�

�ii� If uj is a sequence with uniformly bounded Lipschitz constant such that

dist�Duj� K� � 
 in measure

then

Duj � const in measure�

Proof of part �i
� For simplicity we only consider the case n � m � ��
The general case can be reduced to this if one considers separately the cases
that the span E of A��A� and A��A� contains two� one or no rank	� lines
and uses Lemma ��� below� see also �Sv ��b �

We may assume that A� � 
 and thus detA� �� 
� detA� �� 
� Multiplying
by A��� we may further assume A� � Id� Using the Jordan normal form we
see that after a change of variables we have either

A� �

�

 �


 


�
� 
� � 
� �� 


or

A� �

�

 a

 


�
� 
 �� 
� 
 �
 f
� �g�

In the �rst case u satis�es the Cauchy	Riemann equations and is holomorphic
and therefore smooth� Thus Du � Ai since K is discrete� In the second case
Du 
 K implies that

��u
� � 
�

Hence u��x� � h�x�� �locally� and ��u
��x� � h��x��� Since 
 �
 f
� �g the

value of ��u
� uniquely determines one of the matrices Ai� Thus Du�x� �

g�x��� In particular

����u � 
� ����u � ����u � 


��



in the sense of distributions� Thus ��u � const and Du � const�e��"g�x���
e�� Therefore rk�Du�x��Du�"x�� � � and thus Du � Ai� �

An alternative proof that features an interesting connection with the
theory of quasiconformal �or more precisely quasiregular� maps proceeds
as follows� After possible renumbering we may assume that det�A� � A��
and det�A� � A�� have the same sign� Taking A� � 
 and multiplying by
diag������ if needed we have detA� � 
� detA� � 
� Thus Du 
 K implies
that

jDuj� � k detDu

for a suitable constant k� Hence u is quasiregular and a deep result of Reshet	
nyak says that either u � const or u is a local homeomorphism up to a dis	
crete set Bu of branch points and that the �local� inverse u�� preserves sets
of measure zero �see �Ah �� � �Bo �� � �Re �� �� Hence either Du � 
 a�e� or
Du �� 
 a�e� In view of the results for the two	gradient problem this implies
the assertion�

The proof of �ii� requires more subtle arguments �see �Sv ��b � �Sv ��b ��
�Sver�ak �rst shows that after suitable transformations �and elimination of
some simpler special cases� one may assume

Ai � Ai
T � detAi � ��

Now a gradient Du is symmetric if and only if u is itself a gradient Dv� Thus
assertion �ii� is essentially reduced to a study of approximate solutions of the
Monge	Amp&ere equation

detD�vj � �� vj � ! 
 R� � R�

The di�culty is that� di�erent from the usual literature on the Monge	
Amp&ere equation� one cannot assume that D�vj is positive �semi	�de�nite�
Indeed a crucial step in the proof that uses ideas from the theory of quasireg	
ular maps is to show that detD�v � 
 a�e� implies that v is locally convex or
concave�

�
� The four�gradient problem

The following example which was found independently by a number of au	
thors �I am aware of �AH �� � �CT �� and �Ta �� � see �BFJK �� for the

��



adaptation of Tartar�s construction for separately convex functions to diag	
onal matrices� shows that the absence of rank	� connections does not guar	
antee absence of microstructures �i�e� strong convergence of approximating
sequences��

Lemma �
	 Consider the ��� diagonal matrices A� ��A� �diag��������
A� ��A� �diag���� �� and let K�fA�� A�� A�� A�g� Then rk�Ai � Aj� �� �
but there exists a sequence uj

dist�Duj� K� � 
 in measure�

and Duj does not converge in measure�

Exercise� Show that there is no nontrivial solution of Du 
 K for the
above choice of K� Hint� consult the previous subsection�

It is not known whether there is another choice of four matrices with
rk�Ai�Aj� �� � for which nontrivial solutions exist� It is known� but not triv	
ial� that for each � � 
 there exist nontrivial maps such that dist�Du�K� � �
�see the discussion after Theorem ����� Note that for small � the set of
admissible gradients still contains no rank	� connections�

Proof� Since K contains no rank	� connections the key idea is to �borrow�
four additional matrices Ji �see Fig� �� and to successively remove the regions
where Du assumes Ji� We will construct a sequence vk that satis�es the a�ne
boundary condition

vk�x� � J�x on �Q � ��
� ����

As a �rst approximation we may take v	�
�x� � J�x� To increase the measure
of the set where the gradients lie in K we observe that J� is a rank	� convex
combination of A� and J��

J� �
�

�
A� �

�

�
J��

As in Section ��� we can thus construct a map v	�
 that agrees with v	�
on �Q
and uses only gradients A� and J� �in layers of thickness �$�k� except for
a boundary layer of thickness c�k where the gradient remains uniformly
bounded� In the next step we replace the stripes where Dv	�
 � J� by �ne

��
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Figure �� Four incompatible matrices that support a nontrivial minimizing
sequence

layers of A� and J� and k new boundary layers of thickness c�k�� This yields
v	�
 �see Fig� �
�� The volume fraction of the Ji phases has been decreased

to
	
�
�


�
�up to small corrections due to the boundary layers�� If we replace

J� by �ne layers of A� and J� �with k� boundary layers of thickness c�k�� we
obtain v	�
 and replacing J� by A� and J� we obtain v	�
� Up to the boundary
layers Dv	�
 only uses the values Ai and J�� Compared to v	�
 the volume
fraction of the set where J� is taken has been reduced from one to �slightly
less than� ������� The volume fraction of the boundary layers is bounded by

c

k
� k

c

k�
� k�

c

k�
� k�

c

k�
� �

c

k
�

Hence we have

jfDv	�
 �
 Kgj � �c

k
�

�

��
�

To further reduce the volume fraction of the set Dv �
 K we can now
apply the same procedure to each of the small rectangles where Dv	�
 � J��

��
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Figure �
� The �rst three stages in the construction of vk�

After l iterations we obtain

jfDv	�l
 �
 Kgj �
l��X
m��

�
�

��

�m
�c

k
�

�
�

��

�l

� C

k
�

�
�

��

�l

�

With a suitable choice of l we thus �nd maps vk � Q� R� such that jDvkj �
L and

jfDvk �
 Kgj � C

k
� 
�

vk�x� � J�x on �Q�

In particular dist�Dvk� K� � 
 in measure�
We �nally show that no subsequence of Dvk can converge in measure�

Indeed if Dvkj � Dv in measure then Dv 
 K in Q and v � J�x on
�!� This is impossible since Dv 
 K implies Dv � const �see Exercise��
Alternatively one can easily verify that

Dvk
�
� J� in L��Q�R���

��



This contradicts convergence in measure since J� �
 K� �

Exercise� Show that for all F in the shaded region in Figure � there exists
a sequence such that

Dvk
�
� F L��Q�Rm��

dist�Dvk� K� � 
 in measure�

In fact the shaded region together with the rank	� lines between the Ai

and the Ji contains all such F � One possible proof uses the nontrivial fact
that the function

f�F � �

��
�

detF F symmetric � 


 F symmetric �� 


�� F not symmetric

is quasiconvex �see �Sv ��b �� See Sections ��� and ��� for further information
about the classi�cation of weak limits�

�
	 Linear subspaces and elliptic systems

Lemma �
� Let L be a linear subspace of Mm�n that contains no rank��
line�

�i� If u is Lipschitz and Du 
 L a�e� then u is smooth

�ii� If uj is a sequence that satis�es

uj
�
� u in W ����!�Rm��

dist�Duj� L� � 
 in measure�

then Du 
 L a�e� and

Duj � Du in measure�

Remark� In �i� it su�ces to assume that u 
 W ���� in �ii� it su�ces that
uj � u in L�

loc and that Duj is bounded in L�
loc�

��



Proof� Let A � Mm�n �Mm�n denote the projection onto the orthogonal
complement of L� Then Du 
 L is equivalent to

A Du � 
� ������

The assumption that L contains no rank	� lines essentially assures that ������
is a linear elliptic system� and the assertions follow easily from the general
theory of such systems� We sketch the proof for the convenience of the reader�

Suppose that v has compact support in !� f belongs to the Sobolev space
W k���!�Rm� �i�e� all distributional derivatives up to order k belong to L��
and v satis�es

A Dv � f� ������

We claim that v 
 W k�����!�Rm� and

kDk��vkL� � CkDkfkL� � ������

To prove this consider the Fourier transform

iA #v���� � � #f���

of ������� Since L contains no rank	� connections we have A�a � �� �� 
 if
a �� 
� � �� 
� and by homogeneity

jA�a� ��j � cjaj j�j
for some constant c � 
� The claim follows now from Plancherel�s Theorem�

To prove �i� let � 
 C�
� �!�� Then

A D��u� � A�u�D���

In view of ������ we have the implication u 
 W k��
loc � u 
 W k����

loc � and this
yields �i��

To prove �ii� observe that the hypothesis and the linearity of ������ imply
that uj � u in L�

loc� ADuj � 
 in L�
loc� ADu � 
�

Application of ������ with v � ��uj � u� yields the assertion� �

To establish �i� for u 
 W ��� it su�ces to mollify u and to pass to the
limit� To prove �ii� under the hypothesis in the remark one can use the weak
L� estimates for elliptic systems �or� more precisely� for good Fourier multi	
pliers��

��



Examples�

�� L �

�
F 
M��� � F �

�
a b
�b a

��
� this corresponds to the Cauchy	

Riemann equations

��u
� � ��u

� � ��u
� � ��u

� � 
�

�� L �
�
F 
Mn�n � F T � F� trF � 




� this corresponds to the Laplace

equation %v � 
� since Du symmetric implies u � Dv �locally��

�� L � fF 
 Mn�n � trF � 
� Fij�k � Fik�j � 
 � 	� 
 Rn n f
gg� this cor	
responds to the system div u � 
� curl u � 
�

Problem� What is the largest dimension d�m�n� of a subspace of Mm�n

that contains no rank	� line

This is closely related to questions in algebraic geometry and K	theory�

e�g� to the number of linearly independent vector �elds on Sn��� For m � n
Example � provides the lower bound d�n� n� � n	n��


�
� The upper bound

d�n� n� � n��n is sharp exactly in dimension n � �� � and �� See �BFJK �� 
for further information�

�




� E�cient description of minimizing sequences �

Young measures

�
� The fundamental theorem on Young measures

We have seen in the examples in Sections ��� and ��� that there are usually
many minimizing sequences for a variational problem� We return now to
the question whether all these sequences have some common features and
whether one can describe the �macroscopic� features of a sequence without
paying attention to unnecessary details� Closely related is the issue of de�n	
ing a notion of generalized solution for variational problems that do not admit
classical solutions�

A reasonable condition for an object that describes the macroscopic be	
haviour of a sequence zj � E � Rd is that it should determine the limits
of Z

U

f�zj�

for continuous functions f �such as energy	� stress	 or entropy density� and for
all measurable subsets U of E� Such an object exists and was �rst introduced
by L�C� Young in connection with generalized solutions of optimal control
problems� By C��R

d� we denote the closure of continuous functions on Rd

with compact support� The dual of C��R
d� can be identi�ed with the space

M�Rd� of signed Radon measures with �nite mass via the pairing

h
� fi �

Z
Rd

fd
�

A map 
 � E � M�Rd� is called weak� measurable if the functions x ��
h
�x�� fi are measurable for all f 
 C��R

d�� We often write 
x instead of

�x��

Theorem �
� �Fundamental theorem on Young measures

Let E � Rn be a measurable set of �nite measure and let zj � E � Rd be

a sequence of measurable functions� Then there exists a subsequence zjk and
a weak� measurable map � � E �M�Rd� such that the following holds�

�i� �x � 
� k�xkM	Rd
�
R
Rd

d�x � �� for a�e� x 
 E�

��



�ii� For all f 
 C��R
d�

f�zjk�
�
� 'f in L��E��

where
'f�x� � h�x� fi �

Z
Rd

fd�x�

�iii� Let K � Rd be compact� Then

supp�x � K if dist�zjk � K� � 
 in measure�

�iv� Furthermore one has

�i�� k�xkM� � for a�e� x 
 E

if and only if the sequence does not escape to in�nity� i�e� if

lim
M��

sup
k
jfjzjkj �Mgj � 
� �����

�v� If �i�
 holds� if A � E is measurable� if f 
 C�Rd� and if

f�zjk� is relatively weakly compact in L��A��

then
f�zjk� � 'f in L��A�� 'f�x� � h�x� fi�

�vi� If �i�
 holds� then in �iii
 one can replace �if � by �if and only if ��

Remarks� �� The map � � E � M�Rd� is called the Young measure
generated by �or� associated to� the sequence zjk � Every �weakly� measur	
able� map � � E �M�Rd� that satis�es �i� is generated by some sequence zk�

�� The assumption jEj �� was only introduced for notational convenience�
cf� �Ba �� � In fact Rd with Lebesgue measure can be replaced by a more
general measure space �S�(� 
�� e�g� a locally compact space with a Radon
measure� The converse statement in Remark � requires that 
 be non	atomic�

��



�� The target Rd can be replaced e�g� by a compact metric space K� In this
case one always has k�xk� � a�e� The condition ����� has a simple interpreta	
tion if we replace Rd by its one	point compacti�cation K � Rd � f�g � Sd

and consider the corresponding family of measures "�x on K� Then k"�xk�
� a�e�� and ����� ensures that "�x does not charge the point ��

�� If� for some s � 
 �)� and all j 
 NZ
E

jzjjs � C

then ����� holds�

�� Here is a typical application of �v�� if fzjg is bounded in Lp and jf�s�j �
C��� jsjq�� q � p� then f�zjk� � 'f in Lp�q� In particular� for p � � the choice
f � id yields

zjk � z� z�x� � h�x� idi� �����

Proof� The point is to pass from the functions zj which take values in Rd

to maps which take values in the space of M�Rd� of measures in Rd� Thus
we allow new limiting objects which do not take a precise function value at
every point but a probability distribution of values�

Let
Zj�x� � �zj	x
�

Then kZj�x�kM	Rd
� � and hZj�x�� fi � f�zj�x��� Thus Zj belongs to the
space L�w �E�M�Rd�� of weak� measurable maps 
 � E �M�Rd� that are
�essentially� bounded� Now it turns out L�w �E�M�Rd�� is the dual of the
separable space L��E�C��R

d�� �see e�g� �Ed ��� p���� � �IT ��� p��� � �Me ���
p���� �� where the duality pairing is given by

h
� gi �

Z
E

h
�x�� g�x�idx�

Hence the Banach	Alaoglu theorem yields a subsequence such that

Zjk � �zjk 	�

�
� � in L�w �E�M�Rd��� �����

Lower semicontinuity of the norm implies that k �x k� � for a�e� x� For
� 
 L��E� and f 
 C��R

d� we denote by ��f the element of L��E�C��R
d��

��



given by x �� ��x�f � The de�nition of Zj and ����� thus implyZ
E

��x�f�zjk�x��dx � hZjk� �� fi �
Z
E

��x�h�x� fidx�

Hence �ii� follows� and considering all functions f � 
� � � 
 we also deduce
�x � 
�

To prove �iii� it su�ces to show that

h�x� fi � 
 	 f 
 C��R
d nK�� �����

Let f 
 C��R
d nK�� Then for every � � 
 there exist C� such that jf�y�j �

� � C� dist�y�K�� Hence the hypothesis dist�zjk � K� � 
 in measure implies
that �jf j � ����zjk� � 
 in measure� and in view of �ii� we conclude that

h�x� �jf j � ���i � 
 for a�e� x�

Now ����� follows since � � 
 was arbitrary�
The proof of �iv� and �v� is easily achieved by a careful truncation ar	

gument and the characterization of weakly compact sets in L� �Me �� � see
�Ba �� for the details� Finally the proof of �vi� follows by an application of
�v� to the bounded function f � min�dist�
� K�� ��� �

Remark� Since the span of tensor products ��f� � 
 L��!�� f 
 C��R
d��

is dense in L��!�C��R
d�� assertion �ii� of the theorem is equivalent to Zjk

�
�

��

The measure �x� describes the probability of �nding a certain value in the
sequence zjk�x� for x in a small neighbourhood Br�x�� in the limits j � �
and r � 
� The following useful fact re�ects this probabilistic interpretation�

Corollary �
� Suppose that a sequence zj of measurable functions from E
to Rd generates the Young measure � � E �M�Rd�� Then

zj � z in measure if and only if �x � �z	x
 a�e�

Proof� If zj � z in measure then f�zj� � f�z� in measure for all f 

C��R

d�� Hence by Theorem ��� �ii� one has h�x� fi � f�z�x�� for all f 

C��R

d� and thus �x � �z	x
� If conversely �x � �z	x
 a�e� we claim that

lim sup
j��

jfjzj � wj � �gj � jfjz � wj � ���gj�

��



for all piecewise constant measurable functions w � E � Rd� To see this it
su�ces to consider constant functions w � a and to apply �v� with f�y� �
��jy�aj� where � is continuous 
 � � � �� � � � on ������ � � 
 on �
� ��� �
Thus

lim sup
j��

jfjzj � zj � �gj � lim sup
j��

jfjzj � wj � ���gj� jfjw � zj � ���gj

� �jfjz � wj � ���gj�
The last term can be made arbitrarily small since measurable functions can
be approximated by piecewise constant functions� and the assertion follows
�note that z is measurable since f�xgx�E is weak� measurable�� �

An alternative approach to the �if� part of the corollary is to apply Corol	
lary ��� below to the Carath�eodory function f�x� y� � min�jy � z�x�j� ���

�
� Examples

a� Let h � R� R be the periodic extension of the function given by

h�x� �

�
a if 
 � x � 
�
b if 
 � x � ��

and de�ne zj � �
� � � R by

zj�x� � h�jx�� �����

Using the periodicity of h one easily checks that �see e�g� �Da �� � p����

zj
�
�

�Z
�

h�y�dy � 
a � ��� 
�b

and similarly
f�zj�

�
� 
f�a� � ��� 
�f�b��

Hence zj generates a Young measure � given by

�x � 
�a � ��� 
��b�

In particular �x is independent of x� Such Young measures are called homo�
geneous Young measures�

��



More generally �see e�g� �BM �� � if h � Rn � R is locally integrable and
periodic with unit cell �
� � n and zj is de�ned by ������ then zj generates a
homogeneous Young measure � given byZ

R

gd� �

Z
����
n

g�h�y��dy�

For a Borel set B � R one has

��B� � j�
� ��n � h���B�j�

b� Let

I�u� �

�Z
�

�u�x � ��� � u�dx�

let uj be a sequence such that

I�uj� � 
� uj�
� � uj��� � 
� �����

and let zj � �uj�x �cf� Example � in Section ����� Then zj is bounded in
L�� a subsequence generates a Young measure � and k�xk� � a�e� If we let
g�p� � min��p� � ���� �� we deduce from ����� that

h�x� gi � 
 for a�e� x�

Hence supp�x � f��� �g and �x � 
�x���� � ��� 
�x���� a�e� By Remark �
after Theorem ���

zjk
�
� h�x� idi � �� �
�x� �����

and

ujk�a� �

aZ
�

zjkdx�
aZ

�

��� �
�x��dx� �����

By ����� uj � 
 in L� and thus 
�x� � ��� a�e� Hence zjk generates the
unique �homogeneous� Young measure

�x �
�

�
��� �

�

�
���

By uniqueness the whole sequence zj generates this Young measure�

��



Although there are many di�erent minimizing sequences for I they all
generate the same Young measure� The Young measure captures the essential
feature of minimizing sequences� They have to use slopes �close to� �� in
equal proportion in a �ner and �ner mixture�

One may view the pair �u� �� as a generalized solution of the problem I �
min� The derivative ux is replaced by a probability measure and the coupling
between u and � occurs through the centre of mass of � �cf� ������ ����� and
Theorem �����

ux � h�x� idi�
c� �Approximate solutions of the two	well problem�

Let A�B 
Mm�n� B�A � a�n� F � 
A����
�B� 
 
 �
� ��� Consider
a sequence of maps uj � ! � Rn � Rm with uniformly bounded Lipschitz
constant that satis�es

dist�Duj� fA�Bg� � 
 in measure in !�

uj�x� � Fx in �!�

Let � be the Young measure generated by �a subsequence of� Duj� Then
k�xk� � and Theorem ��� �iii� yields supp�x � fA�Bg� i�e� �x � 
�x��A �

�� � 
�x���B� Passing to a further subsequence we may assume uj
�
� u in

W ����!�Rm�� and in view of ����� we have

Du�x� � 
�x�A � ��� 
�x��B � A � ��� 
�x��a� n�

Extending uj and u by Fx outside ! we deduce that v�x� � u�x� � Ax is
constant on the planes x 
 n � const� Hence u�x� � Fx and 
�x� � 
� Thus
fDujg generates the unique �homogeneous� Young measure

�x � 
�A � ��� 
��B�

d� �Four	gradient example�
The sequence Duj constructed in Section ��� generates the unique homoge	
neous Young measure

�x �
�

��
�A�

�
�

��
�A�

�
�

��
�A�

�
�

��
�A�

�

Proof� Exercise�

��



�
� What the Young measure cannot detect

The Young measure describes the local phase proportions in an in�nitesi	
mally �ne mixture �modelled mathematically by a sequence that develops
�ner and �ner oscillations�� This is exactly what is needed to compute limits
of integrals

R
U
f�zj�� There are� however� other natural quantities that can	

not be computed from the Young measure�

Example � �micromagnetism��
The energy of a large rigid magnetic body represented by a domain

! � R�� is given by

I�m� �

Z
�

��m� �

Z
R�

jhmj��

Here m � ! � R� is the magnetization and hm is the Helmholtz projection of
�m �extended by zero outside !�� i�e� the unique gradient �eld that satis�es
divhm � �divm in the sense of distributions� In suitable units m satis�es
the saturation condition jmj � �� For simplicity we have neglected exchange
energy �this is a good approximation for large bodies� see �DS �� ��

Let mj � ! � S� � R� be a sequence of magnetizations that generates a
Young measure �� ThenZ

�

��mj�dx�
Z
�

h�x� �idx�

The limit of
R
R�

jhmj
j�� however� is in general not determined by the Young

measure �see Fig� ���� Indeed let f be the periodic extension of the sign
function on ������ ��� � let ! � �
� � � and let

mj � f�jx��e��� � "mj � f�jx��e����

Both sequences generate the same �homogeneous� Young measure �x � �
�
�e��

�
�
��e� � On the other hand it is not di�cult to verify that khmj

k�� � while
kh �mj k�� 
� First replace �� by a smooth function � and show that the
resulting �elds M j and "M j satisfy curl Mj � 
� div "Mj � 
 in H��� then use
the estimate khmj

�hMj
k�� kmj�Mjk� which holds since the map m �� �hm

is an orthogonal projection� Alternatively one may use the representation of
hm in Fourier space�

��



�mj

mj

Figure ��� Both sequences generate the same Young measure but mj is almost
a gradient while "mj is almost divergence free�

Example � �correlations��
The limit of

Ij�uj� ��

�Z
�

uj�x�uj�x �
�

j
�dx

is not determined by the Young measure of fujg� Indeed consider

uj�x� � sin j�x�
vj�x� � sin �j��x�

Both sequences generate the same �homogeneous� Young measure �x �
�
�
�sin�����y�dy �cf� Section ��� a��� but

Ij�uj� �
�R
�

sin�j�x� sin�j�x � �� � �����

Ij�vj� �
�R
�

sin�j��x� sin�j��x � �j�� � ����

�
� More about Young measures and lower semicontinuity

We have seen that Young measures are useful as a concept since they give a
precise meaning to the idea of �in�nitesimally �ne phase mixture� and provide
a framework for generalized solutions where no classical minimizers exist�

��



In this section� which may be omitted on �rst reading� we brie�y discuss
the advantages of Young measures as a technical tool� The following two
results allow one� among other things� to extend lower semicontinuity results
for integrals

R
f�Du�x��dx to integrals

R
f�x� u�x�� Du�x��dx without addi	

tional e�ort� More generally� Young measures are a rather e�cient tool to
eliminate all dependence on �lower order� terms by soft general arguments�
The �rst result shows that the Young measure su�ces to compute limits of
Carath�eodory functions� the second extends the characterization of strong
convergence in Corollary ����

Corollary �
� Suppose that the sequence of maps zk � E � Rd generates
the Young measure �� Let f � E � Rd � R be a Carath�eodory function
�measurable in the �rst argument and continuous in the second
 and assume
that the negative part f��x� zk�x�� is weakly relatively compact in L��E��
Then

lim inf
k��

Z
E

f�x� zk�x��dx �
Z
E

Z
Rd

f�x� 
�d�x�
�dx� �����

If� in addition� the sequence of functions x �� jf j�x� zk�x�� is weakly relatively
compact in L��E� then

f�
� zk�
�� � 'f in L��E�� 'f�x� �

Z
Rd

f�x� 
�d�x�
�dx� ����
�

Remarks� �� Assertion ����� still holds if f is �Borel� measurable on
E � Rd and lower semicontinuous in the second argument rather than a
Carath�eodory function �see �BL �� ��

�� The choice f�x� p� � min�jp� z�x�j� �� in ����
� can be used to prove
the �if� statement in Corollary ����

Proof� It su�ces to prove ������ The second assertion follows by applica	
tion of this inequality to "f�x� p� � ���x�f�x� p� for all � 
 L��E�� � � 
�

To prove ����� �rst consider the case f � 
� Assume temporarily that� in
addition�

f�x� 
� � 
 if j
j � R� ������

By the Scorza	Dragoni theorem there exists an increasing sequence of com	
pact sets Ej such that jE n Ejj � 
 and fjEj�Rd is continuous� De�ne

�




Fj � E � C��R
d� by Fj�x� � �Ej

�x�f�x� 
�� Then Fj 
 L��E�C��R
d�� and

the convergence of �zk	�
 to � in the dual space yieldsR
E

f�x� zk�x��dx � R
E

h�zk	x
� Fj�x�i
� R

E

h�x� Fj�x�idx �
R
Ej

f�x� 
�d�x�
��

Letting j � � we obtain the assertion by the monotone convergence theo	
rem� To remove the assumption ������ consider an increasing sequence f�lg �
C�

� �Rd�� that converges to �� use the estimate for fl�x� 
� � f�x� 
��l�
� and
apply again the monotone convergence theorem� This �nishes the proof if
f � 
 or more generally if f is bounded from below�

For general f let

hk�x� � f�x� zk�x�� � h�k �x�� h�k �x��
fM�x� 
� � max�f�x� 
���M��

By the equivalent characterizations of equiintegrability �see e�g� �Me �� � for
each � � 
 there exists an M � 
 such that

sup
k

Z
h�k �M

h�k �x�dx � ��

Hence

lim inf
k��

Z
E

f�x� zk�x��dx � � � lim inf
k��

Z
E

fM�x� zk�x��dx

�
Z
E

Z
Rd

fM�x� 
�d�x�
�dx �
Z
E

f�x� 
�d�x�
�dx�

Since � � 
 was arbitrary the proof is �nished� �

Corollary �
� Let uj � E � Rd� vj � E � Rd� be measurable and suppose
that uj � u a�e� while vj generates the Young measure �� Then the sequence
of pairs �uj� vj� � E � Rd�d� generates the Young measure x �� �u	x
 � �x�

Proof� Let � 
 C��R
d�� � 
 C��R

d��� � 
 L��E�� Then ��uj� � ��u�a�e�
and ���uj� � ���u� in L��E� by the dominated convergence theorem� More	
over by assumption

��vj�
�
� '� in L�� '��x� � h�x� �i�

��



Hence Z
E

���� ���uj� vj�dx �

Z
E

���uj���vj�dx�
Z
E

���u�h�x� �idx

or
��� ���uj� vj�

�
� h�u	�
 � ��� �� �i in L��E��

The assertion follows since linear combinations of tensor products �� � are
dense in C��R

d�d��� �

A typical application of the corollaries is as follows� Let f � ! � �Rm �
Mm�n� � R be a Carath�eodory function and suppose that f � 
� Suppose
that uj � u in W ��p�!�Rm� and that Duj generates the Young measure ��
Taking vj � Duj� zj � �uj� vj� we obtain�

lim inf
j��

R
�

f�x� uj�x�� Duj�x��dx

� R
�

R
Rm�Mm�n

f�x� 
� 
�d�u	x
�
�� d�x�
�dx

�
R
�

R
Mm�n

f�x� u�x�� 
�d�x�
�dx�

The proof of the lower semicontinuity is thus reduced to the veri�cation of
the inequality Z

Mm�n

g�
��x�
� � g�Du�x�� � g�h�x� idi� ������

for the function
g�
� � f�x� u�x�� 
�

with �frozen� �rst and second argument� To see when ������ holds we need
to understand which Young measures are generated by gradients� This is the
topic of the next section�

��



� Which Young measures arise from gradients�

To employ Young measures in the study of crystal microstructure we need to
understand which Young measures arise from sequences of gradients fDujg�
As before ! � Rn denotes a bounded domain with Lipschitz boundary�

De�nition �
� A �weakly� measurable� map � � ! �M�Mm�n� is a W ��p

gradient Young measure if there exists a sequence of maps uj � ! � Rm such
that

uj � u in W ��p�!�Rm� �
�
� if p � ���

�Du	�

�
� � L�w �!�M�Mm�n���

Using this notion we may reformulate Problem � �approximate solutions� as
follows�

Problem �� Given a set K � Mm�n� characterize all W ���	 gradient
Young measures � such that

supp�x � K for a�e� x�

An abstract characterization of gradient Young measures due to Kinderlehrer
and Pedregal will be derived in Section ��� below� It involves the notion of
quasiconvexity� Quasiconvexity� �rst introduced by Morrey in ����� is clearly
the natural notion of convexity for vector	valued problems �see Section ����
but still remains largely mysterious since it is very hard to determine whether
a given function is quasiconvex� Therefore further notions of convexity were
introduced to obtain necessary or su�cient conditions for quasiconvexity� We
begin by reviewing these notions and their relationship�

�
� Notions of convexity

For a matrix F 
 Mm�n let M�F � denote the vector that consists of all

minors of F and let d�n�m� �
min	n�m
P

r��

	
n
r


	
m
r



denote its length�

De�nition �
� A function f � Mm�n � R � f��g � ����� is

�i� convex if
f�
A � ��� 
�B� � 
f�A� � ��� 
�f�B�

	 A�B 
Mm�n� 
 
 �
� ���

��



�ii� polyconvex if there exists a convex function g � Rd	n�m
 � R � f��g
such that

f�F � � g�M�F ���

�iii� quasiconvex if for every open and bounded set U with j�U j � 
 one
hasZ
U

f�F � D��dx �
Z
U

f�F �dx � jU jf�F � 	� 
 W ���
� �U �Rm�� �����

whenever the integral on the left hand side exists�

�iv� rank�� convex� if f is convex along rank�� lines� i�e� if

f�
A � ��� 
�B� � 
f�A� � ��� 
�f�B�

	 A�B 
Mm�n with rk�B � A� � �� 	 
 
 �
� ���

Remarks� �� If f 
 C� then rank	� convexity is equivalent to the Legendre	
Hadamard condition

��f

�F �
�F ��a� b� a� b� �

��f

�F i
��F

j
�

�F �aib�a
jb� � 
�

�� Quasiconvexity is independent of the set U � i�e� if ����� holds for one
open and bounded set with j�U j � 
 then it holds for all such sets� If f takes
values in R it su�ces to extend � by zero outside U and to translate and
scale U � For general f one can use the Vitali covering theorem�

�� If f takes values in R and is quasiconvex then it is rank	� convex
�see Lemma ��� below� and thus locally Lipschitz continuous �use that f is
convex and thus locally Lipschitz in each coordinate direction in Mm�n� see
�Da �� � Chapter �� Thm� ���� or �MP �� � Observation ��� for the details��
In this case the integral on the left hand side of ����� always exists�

It is sometimes convenient to consider quasiconvex functions that take
values in ������� The argument below shows that such functions are rank	
� convex and thus either take values in R or are identically ���

If n � � or m � � then convexity� polyconvexity and rank	� convexity are
equivalent and they are equivalent to quasiconvexity if� in addition� f takes
values in R�

��



Lemma �
� If n � �� m � � then the following implications hold�

f convex
� ��

f polyconvex
� ��

f quasiconvex
� f �� �� if m � �

f rank�� convex

The most di�cult question is whether rank	� convexity implies quasiconvex	
ity� �Sver�ak�s �Sv ��a ingenious counterexample solved this long standing
problem in the negative if m � �� the case m � �� n � � is completely open�

Proof� The �rst implication is obvious� the second follows from the fact
that minors are null Lagrangians �see Theorem ���� and Jensen�s inequality�
To prove the last implication let f be quasiconvex� consider A�B 
 Mm�n�
with rk�B � A� � �� and a convex combination F � 
A � �� � 
�B� After
translation and rotation we may assume that F � 
� A � ��� 
�a� e�� B �
�
a� e�� Let h be a �	periodic sawtooth function which satis�es h�
� � 
�
h� � ��� 
� on �
� 
� and h� � �
 on �
� ��� De�ne for x 
 Q � �
� ��n

uk�x� � ak��h�kx���
vk�x� � aminfk��h�kx��� dist��x� �Q�g�

where
dist��x� �Q� � inffkx� yk�� y 
 �Qg�
kxk� � supfjxij� i � �� � � � � ng�

Then Dvk 
 fA�Bg � f�a � eig� vk � 
 on �Q� and jfDvk �� Dukgj � 
 as
k � 
 �see Fig� ����

It follows from the de�nition of quasiconvexity that


f�A� � ��� 
�f�B� � lim
k��

Z
Q

f�Duk�dx � lim
k��

Z
Q

f�Dvk�dx � f�
��

as desired� Note that the inequality 
f�A� � ��� 
�f�B� � f�
� still holds
if f takes values in �������

As for the reverse implications� the minors �subdeterminants� of order
greater than one are trivially polyconvex but not convex� An example of a

��



���� ���k

�a� e�

a� e�

��k

��k

A B A B A B A B

Figure ��� The gradients of vk� for n � ��

quasiconvex but not polyconvex function is given below� �Sver�ak�s counterex	
ample of a rank	� convex function that is not quasiconvex will be discussed
in Section ���� �

Remark� The proof that quasiconvexity implies rank	� convexity is simi	
lar to Fonseca�s ��Fo �� � Theorem ����� In fact her method yields a slightly
stronger result� if f � Mm�n � ����� is �nite in a neighbourhood of
F and quasiconvex then f does not take the value �� on any rank*� line
through F and f is rank	� convex at F � i�e� f�F � � 
f�F � �� � 
�a � b�
���� 
�f�F � 
a � b�� 	 a 
 Rn� b 
 Rm� 
 
 �
� ��� To obtain this re�ne	
ment it su�ces to replace dist��x�Q� in the de�nition of vk by � dist��x�Q�
for small enough � � 
�

The following example� due to Dacorogna and Marcellini �AD �� � �DM �� �
�Da �� � may serve as a simple illustration of the di�erent notions of convex	

��



ity� Let n � m � � and consider

f�F � � jF j� � 	jF j� detF� �����

Then

f convex �� j	j � �
�

p
��

f polyconvex �� j	j � ��
f quasiconvex �� j	j � � � ��
f rank	� convex �� j	j � �p

�
�

It is known that � � 
� whether or not � � � � �p
�

is open�
Alberti raised the following interesting question which shows how little

we know about quasiconvexity� Let � � n � m and let g � Mm�n � R�
"g � Mn�m � R� "g�F � � g�F T ��

Question �Alberti�� g quasiconvex
��� "g quasiconvex�

Obviously equivalence holds for the other three notions of convexity�
Kru�zik recently answered Alberti�s question in the negative if g is allowed to
take the value �� and m � �� Re�ning his argument one can show that
�Sver�ak�s quartic polynomial provides a �nite	valued counterexample �see the
end of section �����

Ball� Kirchheim and Kristensen �BKK �� recently solved a long	standing
problem by proving that the quasiconvex hull of a C� function f �i�e� the
largest quasiconvex function below f� is again C�� provided that f satis�es
polynomial growth conditions� The representation of the quasiconvex hull
through gradient Young measures �see Section ���� plays a crucial r#ole in
their argument�

�
� Properties of quasiconvexity

Quasiconvexity is the fundamental notion of convexity for vector	valued vari	
ational problems� It is closely related to lower semicontinuity of integral
functionals� existence and regularity of minimizers and the passage from mi	
croscopic and macroscopic energies� Quasiconvex functions are the natural
dual objects to gradient Young measures �see Section �����

��



In the following ! always denotes a bounded �Lipschitz� domain in Rn

and we consider maps u � ! � Rm and the functional

I�u� �

Z
�

f�Du�dx�

In this section we merely summarize the results� Some of the proofs for
p � � are given in Sections ��� and ��� below� Further comments and
references can be found at the end of these notes�

Theorem �
� Suppose that f � Mm�n � R is continuous�

�i� The functional I is weak� sequentially lower semicontinuous �w�slsc

on W ����!�Rm� if and only if f is quasiconvex�

�ii� Suppose� in addition� that


 � f�F � � C�jF jp � �� �����

for some p 
 ������ If f is quasiconvex then I is wslsc onW ��p�!�Rm��

Remarks� If f � 
 it can be shown that I is �nite and wslsc on W ��p if
and only if f satis�es ����� and is quasiconvex �see �Kr �� �� Part �i� is an
essential ingredient in the classi�cation of gradient Young measures� Using
this classi�cation and simple general facts about Young measures �see Sec	
tion ���� one easily obtains similar lower semicontinuity results for integrands
f�x� u�x�� Du�x���

Theorem �
� �existence and relaxation

Suppose that p 
 ������ c � 
 and that f satis�es

cjF jp � f�F � � C�jF jp � ���

�i� If f is quasiconvex and v 
 W ��p�!�Rm� then I attains its minimum
in the class

W ��p
v �!�Rm� �� fu 
 W ��p�!�Rm� � u� v 
 W ��p

� �!�Rm�g�

��



�ii� If f qc denotes the quasiconvex envelope of f � i�e� the largest quasiconvex
function below f � then

inf
W ��p

v

I � min
W ��p

v

'I�

where
'I�u� �

Z
�

f qc�Du�� �����

Moreover� a function 'u is a minimizer of 'I in W ��p
v if and only if it is a

cluster point �with respect to weak convergence inW ��p
 of a minimizing
sequence for I�

�iii� For any f � Mm�n � ������ and every bounded domain U with
j�U j � 
 one has

f qc�F � � inf
��W ���

�

�

jU j
Z
U

f�F � D��dx� �����

The passage from I to 'I is called relaxation� It replaces a variational problem
which may have no solution by one which has a solution� This sounds almost
too good to be true and indeed there is a price to pay� The minimizers
of 'I are in general only weak limits of a minimizing sequence of I� and
important features of the sequence may be lost� If� for example� 'I has a
homogeneous minimizer it is not clear whether minimizing sequences of I are
�nearly� homogeneous or whether they involve an increasingly �ner mixture
of several states� A di�erent approach� that keeps more information about
the minimizing sequence is to derive a �relaxed� problem for the gradient
Young measures generated by minimizing sequences �see Theorem ��� of the
next section��

Physically� relaxation corresponds to the passage from a microscopic en	
ergy I to a macroscopic energy 'I� which is obtained by averaging over �ne
scale oscillations� cf� the representation ������

Theorem �
	 �regularity
� Suppose that f is smooth� satis�es


 � f�F � � C�jF j� � ��

and is uniformly quasiconvex� i�e� there exists c � 
 such thatZ
U

�f�F � D��� f�F � dx � c

Z
U

jD�j�� 	� 
 W ���
� �!�Rm��

��



Let 'u 
 W ����!�Rm� be a local minimizer of I� i�e�

I�'u � �� � I�'u� 	� 
 C�
� �!��

Then there exists an open set !� of full measure such that

u 
 C��!���

�
� Classi�cation of gradient Young measures

Recall that a map � � ! � M�Mm�n� is a W ��� gradient Young measure
if it is the Young measure generated by a sequence of gradients Duj� where

uj
�
� u W ��� �see De�nition �����

Theorem �
� ��KP ��

 A �weak� measurable
 map � � ! �M�Mm�n� is
a W ��� gradient Young measure if and only if �x � 
 a�e� and there exists a
compact set K � Mm�n and u 
 W ����!�Rm� such that the following three
conditions hold�

�i� supp�x � K for a�e� x�

�ii� h�x� idi � Du for a�e� x�

�iii� h�x� fi � f�h�x� idi� for a�e� x and all quasiconvex f � Mm�n � R�

Remarks� �� The key point is �iii� which is in nice duality with the def	
inition of quasiconvexity� Roughly speaking� quasiconvex functions satisfy
Jensen�s inequality for gradients� while gradient Young measures must sat	
isfy Jensen�s inequality for all quasiconvex functions�

�� Let K � Mm�n be compact� For future reference we de�ne the set
of nonnegative measures supported on K that satify condition �iii� of the
theorem as

Mqc�K� � f� 
 M�Mm�n� � � � 
� supp� � K�

h�� fi � f�h�� idi� 	f � Mm�n � R quasiconvexg������

By the theorem Mqc�K� consist exactly of the homogeneous gradient Young
measures supported in K� Similarly one de�nes Mrc�K� and Mpc�K� using
rank	one convex and polyconvex functions� respectively�

�




�� Every minor M is a quasia�ne function �i�e� ����� holds with equality�
see Theorem ����i��� Hence application of �iii� with �M yields the minors
relations

h�x�Mi � M�h�x� idi� �����

as a necessary condition for gradient Young measures� This condition in fact
follows directly from Theorem ��� �ii� and does not require Theorem ���� The
minors relations often prove very useful for problems with large symmetries
that arise e�g� in models of microstructure in crystals �see e�g� �Bh �� �� They
are� however� far from being su�cient in general�

Exercise� Find a nontrivial measure supported on three diagonal � � �
matrices without rank	� connections that satis�es ����� and compare with
Theorem ����

Hint� Look for matrices on the two hyperbolae given by fdet � �g�
Proof of Theorem ��	 �necessity
� Conditions �i� and �ii� follow from ba	

sic facts about Young measures �see Theorem ��� �ii� and �iii�� while �iii�
follows from Morrey�s lower semicontinuity result �Theorem ����ii��� applied
to all open subsets U of !� Su�ciency is discussed in Section ���� �

To �nish this section we brie�y mention the analogous result for p � �
and its relation to relaxation and generalized solutions� This may be omitted
on �rst reading�

Theorem �
� ��KP ��

 Let p 
 ������ A �weakly measurable
 map � �
! �M�Mm�n� is a W ��p gradient Young measure if and only if �x � 
 a�e�
and the following three conditions hold

�i�
R
�

R
Mm�n

jF jpd�x�F �dx ���

�ii� h�x� idi � Du� u 
 W ��p�!�Rm��

�iii� h�x� fi � f�h�x� idi� for a�e� x and all quasiconvex f with jf j�F � �
C�jF jp � ���

Young measures arise naturally as generalized solutions of variational
problems that have no classical solution� To this end extend the functional

I�u� �

Z
�

f�Du�dx

��



on functions to a functional

J��� �

Z
�

h�x� fidx

on Young measures� For v 
 W ��p�!�Rm� consider the admissible classes

A � fu 
 W ��p�!�Rm� � u� v 
 W ��p
� �!�Rm��

G � f� � ! �M�Rm� � � W ��p gradient Young measure�
h�x� idi � Du�x�� u 
 Ag�

Theorem �

 Suppose that f is continuous and satis�es cjF jp � f�F � �
C�jF jp � ��� c � 
� p � �� Then

inf
A
I � min

G
J����

Moreover the minimizers of J are Young measures that are generated by
gradients of minimizing sequences of I�

In particular� I has a minimizer in A if and only if there exists a mini�
mizer � of J such that �x is a Dirac mass for a�e� x�

�
� Convex hulls and resolution of Problem �

To return to the setting of Sections � and � we extend the di�erent notions of
convexity from functions to sets� We �rst recall that the quasiconvex �convex�
polyconvex� rank	� convex� envelope or hull of a function f � Mm�n � R is
the largest quasiconvex �convex� polyconvex� rank	� convex� function below
f and is denoted by f qc �f c � f ��� f pc� f rc�� Similarly the quasiconvex hull
of a set K �Mm�n is de�ned via sublevel sets as

Kqc � fF 
Mm�n � f�F � � inf
K
f� 	 f � Mm�n � R quasiconvexg�

with similar de�nitions for Kc� Kpc� Krc� Note that Kc is the closed convex
hull� A set is called quasiconvex if K � Kqc� In the case of rank	� convexity
one can also de�ne a hull by pointwise operations rather than by sublevel sets�
A set K is called lamination convex if the conditions A�B 
 K and rk�B �
A� � � imply that convex combinations of A and B are in K� The lamination
convex hull K lc of K is the smallest lamination convex set containing K� It

��



is easy to verify that K lc can equivalently be de�ned by inductively adding
rank	� segments�

K lc ��
��
i��

K	i
� K	�
 �� K�

K	i��
 �� K	i
 � f
A � ��� 
�B � A�B 
 K	i
� rk�B � A� � �� 
 
 �
� ��g�
One has the following inclusions �see Lemma �����

K lc � Krc � Kqc � Kpc � Kc� �����

The example in Section ��� shows that in general K lc �� Krc� In this example
K lc � K�Krc � K � fdiag�
� 
� � j
j � �� j
j � �g� The characterization of
laminates �see Section ���� as well as recent work of Matou�sek and Plech�a�c
�MP �� suggest that Krc is the more natural object� but more di�cult to
handle �Matou�sek and Plech�a�c use the terms set	theoretic rank	� convex hull
and functional rank	� convex hull to distinguish K lc and Krc��

The polyconvex hull is closest to the ordinary �closed� convex hull and
is in fact the intersection of a convex set with a nonconvex constraint� Let
M�F � denote the vector of all minors of F �see Section ���� and let

#K � fM�F � � F 
 Kg�

Exercise� Show that

Kpc � fF �M�F � 
 � #K�cg �����

and moreover
Kpc � fh�� idi � � 
 Mpc�K�g�

With this notation in place we have the following abstract resolution of
Problem � �see Section ����� Recall that the set Kapp �interpreted as the
macroscopically stress free a�ne deformations� was the set of all matrices F
such that there exists a sequence uj bounded in W ����!�Rm�� such that

dist�Duj� K� � 
 in measure in !� ����
�

uj � Fx on �!� ������

and that Mqc�K� denotes the set of homogeneous gradient Young measures
�see �������

��



Theorem �
�� Suppose that K is compact and denote by distK the distance
function from K� Then

�i� Kapp � Kqc�

�ii� Kqc � fdistqcK � 
g�
�iii� Kqc is the set of barycentres of homogeneous gradient Young measures�

Kqc � fh�� idi � � 
 Mqc�K�g�

Proof� After dilation we may assume that j!j ���
�i� To show that Kapp � Kqc let F 
 Kapp and let f � Mm�n � R

be quasiconvex and suppose that fujg is bounded in W ��� and satis�es
����
� and ������� We may assume that infK f � 
 and we need to show
f�F � � 
� Since f is continuous �see Remark � after De�nition ���� we have
f��Duj� � 
 in measure� and jf��Duj�j � C since Duj is bounded in L��
Quasiconvexity� ������ and dominated convergence yield

j!jf�F � � lim inf
j��

Z
�

f�Duj�dx � lim inf
j��

Z
�

f��Duj�dx � 
�

To prove the converse inclusion Kqc � Kapp let F 
 Kqc� Then distqcK�F � � 

by de�nition of Kqc� In view of the representation formula for distqcK �Theorem
��� �iii�� there exist �j 
 W ���

� �!�Rm� such that


 � distqcK�F � � lim
j��

Z
�

distK�F � D�j�dx�

The functions uj�x� � Fx � �j thus satisfy ����
� and ������� The problem
is that a priori Duj only needs to be bounded in L� �in fact weakly relatively
compact in L�� and may not be bounded in L�� Zhang�s lemma �see Lemma
���� �ii� below� assures that uj can be modi�ed on small sets such that ����
�
and ������ hold and Duj is bounded in L��

�ii� The inclusion � follows from the de�nition of Kqc� On the other hand
we have just shown that distqcK�F � � 
 implies F 
 Kapp � Kqc�

��



�iii� Let � 
 Mqc�K�� By de�nition f�h�� idi� � h�� fi � supK f and
hence h�� idi 
 Kqc� Suppose conversely that F 
 Kqc� We need to show that
there exists � 
 Mqc�K� with h�� idi � F � After an a�ne transformation we
may assume F � 
� By part �i� there exists a sequence uj �bounded in W ����
that satis�es ����
� and ������� Passing to a subsequence we may assume that

fDujg generates the Young measure � and Duj
�
� Du in L��!�Mm�n�� By

the divergence theorem Z
�

h�x� ididx �

Z
�

Dudx � 
� ������

To obtain a homogeneous Young measure we de�ne the average Av � by
duality as the unique Radon measure that satis�es

hAv �� fi �
�

j!j
Z
�

h�x� fidx 	f 
 C��M
m�n��

By Theorem ��� we have �x 
 Mqc�K� for a�e� x and hence Av � 
 Mqc�K��
Moreover ������ yields hAv�� idi � 
 as desired� �

�
� The two�well problem

To see what the various convexity notions can do to understand microstruc	
ture in crystals we consider the two	well problem in two dimensions� This
is the simplest multiphase problem consistent with the rotational symmetry
and was analyzed completely in a beautiful paper by �Sver�ak �Sv ��a � Let

K � SO���A � SO���B �M���� detB � detA � 
� ������

Various normalizations are possible� Multiplication by A��� polar decompo	
sition and diagonalization show� for example� that it su�ces to consider

A �

�
� 



 �

�
� B �

�

 



 


�
� 
 � 
 � 
� 

 � �� ������

The �rst step towards the resolution of Problems �	� is to look for rank	�
connections in K�

Exercise� Prove the following classi�cation�

�i� If 
 � � then there are no rank	� connections in K�

��



�ii� if 
 � � �and A �� B� each matrix in K is rank	� connected to exactly
one other matrix in K�

�iii� if 
 � � each matrix in K is rank	� connected to exactly two other
matrices in K�

Theorem �
�� Suppose that K given by �����
 contains no rank�� connec�
tions� Then every Young measure � � ! �M�M���� with supp�x � K is a
constant Dirac mass� Moreover

K lc � Krc � Kqc � Kpc � K ������

Remark� It is not known whether the same result holds for K � SO���A�
SO���B �M���� some special cases are known ��Sv ��a � �Ma �� ��

Proof� The crucial observation is that

det�F �G� � 
 	F�G 
 K�F �� G� ������

By symmetry and SO��� invariance it su�ces to verify this for G � Id�
The inequality clearly holds for F � B �by the above exercise� and hence
by connectedness and the absence of rank	� connections for G 
 SO���B�
Similarly det�Id � ��Id�� � 
 and hence by connectedness ������ holds also
for all other G 
 SO����

To determine Kqc consider �rst a homogeneous gradient Young measure
� supported in K and let '� � h�� idi denote its barycentre� We have for
F�G 
M���

det�F �G� � detF � cofF � G � detG�

where F � G � trF tG �
P

i�j FijGij� The minors relations yield


 � R
M����M���

det�F �G�d��F �d��G�

�
R

M����M���

�detF � cofF � G � detG�d��F �d��G�

�
R

M���

�det '� � cof '� � G � detG�d��G�

� det '� � cof '� � '� � det '� � det�'� � '�� � 
�

Hence the �rst inequality must be an equality� and ������ implies that the
product measure �� � is supported on the diagonal of M����M���� Hence
� must be a Dirac mass� This implies Kqc � K by Theorem ���
� Since the

��



argument used only the minors relations we even have Kpc � K�

Now let � � ! � M�Mm�n� be an arbitrary gradient Young measure
with supp�x � K a�e� By the above argument �x � �Du	x
 and Du�x� 
 K
a�e� We show that Du � const� To this end observe �rst that ������ can be
strengthened to

det�X � Y � � cjX � Y j�� c � 
� 	X� Y 
 K� ������

Indeed by compactness and SO��� invariance it su�ces to verify that the
tangent space of SO��� at the identity contains no rank	� connections� This
is obvious� Now let e be a unit vector in R�� and for 
 � h � � consider
the translates v�x� � u�x�he� and a cut	o� function � 
 C�

� �!�� Since the
determinant is a null Lagrangian �see Theorem ����i�� integration of ������
yields

c

Z
�

��jDu�Dvj� dx �
Z
�

det���Du�Dv� dx

�
Z
�

det�D���u� v�� dx�
Z
�

cofD���u� v�� � �u� v��D�dx

�

Z
�

det��u� v��D� dx

� c

�

Z
�

��jDu�Dvj� dx � C

Z
�

jD�j�ju� vj� dx�

Hence the di�erence quotients �Du�Dv
h

are uniformly bounded in L� and thus

Du 
 W ���
loc �!�Mm�n�� Therefore Du can only take values in one connected

component of K� and the assertion follows from Theorem ���� �

To consider the case where K has rank	� connections it is convenient to
introduce new coordinates on M���� Since A and B are not conformally
equivalent �as 
 � 
�� for every matrix F there exist a unique pair �y� z� 

R� �R� such that

F �

�
y� �y�
y� y�

�
�

�
z� �z�
z� z�

�
B�

��



Theorem �
�� Suppose that K is given by �����
� �����
 and that 
 � ��
Then

K lc � Krc � Kqc � Kpc

and
Kpc � Kc � fdet � �g� if detB � ��
Kpc � fF � �y� z� � jyj � detB�detF

detB�� � jzj � detF��
detB��g

if detB � ��

To characterize the polyconvex hull we use the following

Proposition �
�� The convex hull of the set K � Rn � Rn � R given by
K � f�y� 
� a� � jyj � �g � f�
� z� b� � jzj � �g is given by

Kc �

� f�y� z� a�� jyj� jzj � �g if a � b�
f�y� z� t�� jyj � b�t

b�a � jzj � t�a
b�ag if a � b�

Proof� This is obvious for n � �� and the general case follows by invariance
under �y� z� t� � �Ry�Qz� t�� R�Q 
 SO�n�� �

Proof of Theorem ����� The formula for Kpc follows from the charac	
terization ����� and Proposition ����� In view of the general relation �����
between the di�erent convex hulls it only remains to show that K lc � Kpc�

First case� detB � ��
Let F 
 Kpc � Kc�fdet � �g� If F � �y� z� 
 �Kc� then by Proposition

���� we have jyj � jzj � �� If y � 
 or z � 
 then F 
 K and we are
done� If y �� 
� z �� 
 then we can consider G�t� � �ty�jyj� ��� t�z�jzj�� Let
g�t� � detG�t�� Then g is quadratic in t and g�
� � g��� � g�jyj� � ��
Hence g � � and t � G�t� must be a rank	� line� This shows that F is a
rank	� combination of �y�jyj� 
� 
 K and �
� z�jzj� 
 K�

If F 
 intKc � fdet � �g then there exist a� n 
 S� such that cofF �
a�n � Fn 
a � 
� Hence the determinant is constant on the line F � ta�n
and this rank	� line intersects �Kc for positive and negative values of t�
Therefore every matrix in intKc � fdet � �g is a rank	� combination of two
matrices in �Kc�fdet � �g and thus belongs to K lc� This �nishes the proof
for detB � ��

Second case� detB � ��
Since every rank	� half	line through an interior point of Kpc intersects

�Kpc it su�ces to show �Kpc � K lc� Let 'F � �'y� 'z� 
 �Kpc and de�ne

f�y� z� � �detB � ��jyj � detB � detF�
g�y� z� � �detB � ��jzj� �� detF�

��



The polyconvex hull is given by ff � 
g � fg � 
g and thus f�'y� 'z� � 

or g�'y� 'z� � 
� For convenience we assume the latter� the other case is
analogous�

If f� 'F � � 
 then j'yj� j'zj � �� Moreover f and g are quadratic functions
on the segment t�'y�j'yj� 
����� t��
� 'z�j'zj�� and vanish at t � 
� �� j'yj� Hence
they vanish identically on the segment which therefore is a rank	� segment�
Thus F 
 K lc�

Now suppose that f� 'F � � 
� Using the SO��� invariance we may assume
that z� � 
� For de�niteness we suppose z� � 
� the case z� � 
 is analogous�
Note that the linear space fz� � 
g agrees with fF�� � F�� � 
g� We
claim that there exists a rank	� line in fz� � 
g through 'F on which g
vanishes �as long as z� � 
�� One way to see this is to consider "g�y� z� �
�detB � ��z� � � � detF and to note that "g � 
 de�nes a one sheeted
hyperboloid H in the three dimensional space fz� � 
g� Hence through
each point in H there exist two lines that lie on H and thus must be rank	�
lines since detF is an a�ne function on these lines� Alternatively one can
consider �y�t�� z�t�� � F �t� � 'F � t�
 � 
� a � Pa� with Pa � ��a�� a���
Then z��t� � 
� +z� � jaj� � 
 and "g is a�ne on the line t � F �t�� A short
calculation shows that d

dt
g�F �t��jt�� � �Qa� a� and the quadratic form

Q � �detB � ��Id �
�

�
�
� 
���cof 'F �P � P �cof 'F �T  

is inde�nite and hence has a nontrivial kernel�
Consider thus the rank	� line F �t� � 'F � t�
�
�a�Pa on which z� and

g vanish�
Let t� � 
 be de�ned by z��t�� � 
� Since g�F �t��� � 
 we deduce that

F �t�� � �y�
�� 
� 
 K� On the other hand f�F �
�� � 
 and using the fact
that g vanishes on F �t� we have f�F �t�� � �detB����jy�t�j�jz�t�j��� ��
as t � �� Hence there exist t� � 
 such that f�F �t��� � g�F �t��� � 
 and
therefore F �t�� 
 K lc by the considerations above� Thus 'F � F �
� 
 K lc

and the proof is �nished� �

�
	 Are all microstructures laminates�

Theorems ��� and ���
 completely classify gradient Young measures Mqc�K�
and quasiconvex hulls Kqc and thus lead to an abstract solution of problems
� and � in Section ���� The catch is that very few quasiconvex functions are
known and that the abstract results are therefore of limited use to understand

��



speci�c sets K� A manageable necessary condition is given by the minors
relations ������ In this section we discuss the issue of su�cient conditions�
i�e� constructions of �homogeneous� gradient Young measures supported on
a given set K� The simplest case is K � fA�Bg� If A and B are rank	�
connected every convex combination

� � 
�A � ��� 
��B� 
 
 �
� � �

is a �homogeneous� gradient Young measure� It arises as a limit of a sequence
of gradients Duj arranged in a �ne lamellar pattern �see Fig� ����

��� 
��j

Duj � B

Duj � A


�j

Figure ��� Fine layering of the rank	� connected matrices A and B generates
the homogeneous gradient Young measure 
�A � ��� 
��B�

We saw in Section ��� that this construction can be iterated for larger sets
K� More precisely let C be a matrix that is rank	� connected to 
A����
�B�
Then every convex combination

� � 
�
�A � ��� 
��B� � ��� 
��C ������

is a �homogeneous� gradient Young measure �see Figure ���
This construction can be iterated and motivates the following de�nition�

�




De�nition �
�� ��Da �	
� For a �nite family of pairs �
i� Fi� 
 �
� �� �
Mm�n the condition �Hl� is de�ned inductively as follows�

�i� Two pairs �
�� F��� �
�� F�� satisfy �H�� if

rk�F� � F�� � �� 
� � 
� � ��

�ii� A family f�
i� Fi�gi�������l satis�es �Hl� if� after possible renumbering

rk�Fl � Fl��� � � ������

and the new family f�"
i� "Fi�gi�������l�� given by

"Fl�� �

l��


l�� � 
l
Fl�� �


l

l�� � 
l

Fl� "
l�� � 
l�� � 
l� ����
�

�"
i� "Fi� � �
i� Fi� if i � l � �� ������

satis�es �Hl����

If we call the process de�ned by ������� ����
� and ������ contraction then
the family f�
i� Fi�gi�������l satis�es �Hl� if it can be inductively contracted to
��� 'F � where 'F �

P

iFi is the barycentre� Note that the Fi may take the

same value for di�erent i� To see that this can be useful consider the � matri	
ces fA�� � � �A�g and fI�� � � � I�g in the four gradient example in Section ����
The family ����� A��� ����� A��� ����� A��� ������ A��� ������ A��� ������ I��
satis�es �H��� but the family obtained by combining the two pairs involving
A� to ������� A�� does not satisfy �H���

De�nition �
�� A �probability� measure � on Mm�n is called a laminate
of �nite order if there exists a family f�
i� Fi�gi�������l that satis�es �Hl� and

� �
lX

i��


i�Fi�

A �probability� measure � is a laminate if there exists a sequence �j of lam�
inates of �nite order with support in a �xed compact set such that

�j
�
� � in M�Mm�n��

��




�k

��� 
��k

C

A

B

A

B

A

B
O���k��
�k�


A � ��� 
�B

BA

C

��� 
��k�

Figure ��� An order	� laminate that generates ������ and the corresponding
rank	� connections�

Example� Again in the context of the four gradient example in Section ���
the measures

�

�
�A�

�
�

�
�A�

�
�

�
�A�

�
�

��
�A�

�
�

��
�I�

or

��� �
�

��
�j��

�

��
�A�

�
�

��
�A�

�
�

��
�A�

�
�

��
�A�

� � �
�

��
�j�I�

are laminates of �nite order� while �
��
�A�

� �
��
�A�

� �
��
�A�

� �
��
�A�

is a laminate
but not a laminate of �nite order�

Condition �Hl� implies that for every rank	� convex function f � Mm�n �
R one has

h�� fi � f�h�� idi�
for all laminates of �nite order �� Since ��nite� rank	� convex functions are
continuous the same inequality holds for all laminates �� Pedregal �Pe �� 

��



showed that this property characterizes laminates�

Theorem �
�	 A compactly supported probability measure � 
 M�Mm�n�
is a laminate if and only if

h�� fi � f�h�� idi�

for all rank�� convex functions f � Mm�n � R� In other words� the laminates
supported on a compact set K are given exactly by Mrc�K��

The question raised in the title of this subsection may now be stated more
precisely�

Are all gradient Young measures laminates


In view of Theorem ���� this may be concisely stated as

Mrc �
� Mqc�

This would clearly be true if rank	� convexity implied quasiconvexity� Con	
versely if Mrc � Mqc then rank	� convexity would imply quasiconvexity in
view of the de�nition of Mrc and the fact that f qc�F � � inffh�� fi � � 
M qc�
h�� idi � Fg �one equality follows from the de�nition ofMqc� for the other use
Theorem ��� �iii� for ! � �
� ��n� extend � periodically� let �k�x� � k����kx�
and note that fD�kg generates a homogeneous gradient Young measure��

In the next section we discuss �Sver�ak�s example that shows that rank	
� convexity does not imply quasiconvexity if the target dimension satis�es
m � ��

�
� �Sver�ak�s counterexample

Theorem �
�� ��Sver�ak �Sv ��a

 Suppose that m � �� n � �� Then there
exists a function f � Mm�n � R which is rank�� convex but not quasiconvex�

Using this result Kristensen recently showed that there is no local condition
that implies quasiconvexity� This �nally resolves� for m � �� the conjecture
carefully expressed by Morrey in his fundamental paper �Mo �� � p� ��� �In
fact� after a great deal of experimentation� the writer is inclined to think
that there is no condition of the type discussed� which involves f and only
a �nite number of its derivatives� and which is both necessary and su�cient
for quasi	convexity in the general case��

��



To state Kristensen�s result let us denote by F the space of extended real	
valued functions f � Mm�n � ����� � An operator P � C��Mm�n� � F
is called local if the implication

f � g in a neighbourhood of F �� P�f� � P�g� in a neighbourhood of F

holds�

Theorem �
�� ��Kr �	a

 Suppose that m � �� n � �� There exists no local
operator P � C��Mm�n� � F such that

P�f� � 
 �� f is quasiconvex�

By contrast� the local operator

Prc�f��F � � inffD�f�F ��a� b� a� b� � a 
 Rm� b 
 Rng
characterizes rank	� convexity� At the end of this subsection we will give an
argument of �Sver�ak that proves Theorem ���� for m � ��

Most research before �Sver�ak�s result focused on choosing a particular
rank	� convex integrand f �e�g� the Dacorogna	Marcellini example given
by ������ and trying to prove or disprove that there exists a function u 

W ���

� �!�Rm� and F 
Mm�n such thatZ
�

f�F � Du�dx �

Z
�

f�F �dx� ������

�Sver�ak�s key idea was to �rst �x a function u and to look for integrands f that
satisfy ������ but are rank	� convex� He made the crucial observation that
the linear space spanned by gradients of trigonometric polynomials contains
very few rank	� direction and hence supports many rank	� convex functions�

To proceed� it is useful to note that quasiconvexity can be de�ned using
periodic test functions rather than functions that vanish on the boundary�

Proposition �
�
 A continuous function f � Mm�n � R is quasiconvex if
and only if Z

Q

f�F � Du�dx � f�F �

for all Lipschitz functions u that are periodic on the unit cube Q and all
F 
Mm�n�

��



Proof� Su�ciency of the condition is clear since it su�ces to verify con	
dition ����� for Q �see Remark � after De�nition ����� To establish ne	
cessity consider a periodic Lipschitz function u and cut	o� functions �k 

C�

� ���k� k�n� such that 
 � �k � �� �k � � on ���k � ��� �k � ���n and
jD�j � C� If we let vk � �ku� wk�x� � �

k
vk�kx� then quasiconvexity implies

that

�k � ��n
Z
Q

f�F � Du�dy �
Z

	�k�k
n
f�F � Dvk�dx� Ckn��

� kn
Z
Q

f�F � Dwk�dx� Ckn�� � knf�F �� Ckn���

Division by kn yields the assertion as k ��� �

Proof of Theorem ���	� Consider the periodic function u � R� � R�

u�x� �
�

��

�
� sin ��x�

sin ��x�

sin ���x� � x��

�
A �

Then

Du�x� �

�
� cos ��x� 



 cos ��x�

cos ���x� � x�� cos ���x� � x��

�
A

and

L �� spanfDu�x�gx�R� �

��
�
�
� r 



 s
t t

�
A � r� s� t 
 R

��
� �

The only rank	� lines in L are lines parallel to the coordinate axes� In
particular the function g�F � � �rst is rank	� convex �in fact rank	� a�ne�
on L� On the other handZ

	���
�

g�Du�x�� � ��

�
� 
 � g�
�� ������

To prove the theorem it only remains to show that g can be extended to a
rank	� convex function on M���� Whether this is possible is unknown� There
is� however� a rank	� convex function that almost agrees with g in L and this

��



is enough� Let P denote the orthogonal projection onto L and consider the
quartic polynomial

f��k�F � � g�PF � � ��jF j� � jF j�� � kjF � PF j��
We claim that for every � � 
 there exists a k��� � 
 such that f��k	�
 is
rank	� convex� Suppose otherwise� Then there exists an � � 
 such that f��k
is not rank	� convex for any k � 
� Hence there exist Fk 
Mm�n� ak 
 Rm�
bk 
 Rn� jakj � jbkj � � such that

D�f��k�Fk��ak � bk� ak � bk� � 
�

Now
D�f��k�F ��X�X� �

D�g�PF ��PX� PX� � ��jXj� � ���jF j�jXj� � �jF � Xj�� � kjX � PXj��
The term D�g�PF � is linear in F while the third term on the right hand
side is quadratic and positive de�nite� Hence Fk is bounded as k ��� and
passing to a subsequence if needed� we may assume Fk � 'F� ak � 'a� bk � 'b�
Since D�f��k � D�f��j for k � j we deduce

D�g�P 'F ��P 'a� 'b� P 'a� 'b� � �� � jj'a� 'b� P 'a� 'bj� � 
 	j� ������

Thus P �'a � 'b� � 'a � 'b� i�e� 'a � 'b 
 L� Therefore t �� g�P � 'F � t'a � 'b��
is a�ne� and the �rst term in ������ vanishes� This yields the contradiction
� � 
�

Thus there exist k��� such that f� �� f��k	�
 is rank	� convex� By ������
and the de�nition of u� the function f� is not quasiconvex as long as � � 
 is
su�ciently small� �

An immediate consequence of �Sver�ak�s result and the considerations in
the previous section is that there exist gradient Young measures that are not
laminates� In fact the measure � de�ned by averaging �Du	x
� i�e�

h�� hi �

Z
	���
�

h�Du�x��dx� 	h 
 C��M
m�n��

provides an example� since h�� f�i � h�� gi�C� � f��h�� idi� �for small � � 
��
The following modi�cation� due to James� provides an even simpler ex	

ample and a nice illustration of the failure of quasiconvexity for g �or more
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Figure ��� The gradients in James� modi�cation of �Sver�ak�s example� Re	
gions of positive parity are shaded� The picture on the right shows the rank	�
connections between the eight gradients�

precisely f��� Let s � R � R denote the periodic sawtooth function with
mean zero and s� � � on �
� ����� ����� ��� s� � �� on ����� ���� and de�ne

"u�x� �

�
� s�x��

s�x��
s�x� � x��

�
A �

Then D"u 
 L and D"u takes � values which can be denoted by �� � ��� �� �
��� � � � according to the signs of ��"u�� ��"u� and ��"u� � ��"u�� We say that D"u
has positive parity if the number of � signs is even� The analogue of ������
can be proved by inspecting Figure ���Z

	���
�

g�D"u�x��dx � jfparityD"u � �gj � jfparityD"u � �gj � ��

�
�

In particular

� �
�

��
����� � ���� � ���� � ����� �

�

��
����� � ���� � ���� � �����

is a gradient Young measure that is not a laminate� Indeed for every laminate
that only involves the eight matrices ����� one has

��positive parity� � ��negative parity�

��



since �an arbitrarily small perturbation of� g and �g can be extended to
rank	� convex functions on M����

�Sver�ak�s example leaves open the question whether there exists a �com	
pact� set K �M��� that is rank	� convex �i�e� Krc � K� but not quasicon	
vex� For the gradient set above one has Krc � Kqc � Kc � unit cube in L�
Using a variant of James� modi�cation Milton �Mi �� has recently shown that
there exists a set K 
 M��� of seven matrices that satis�es Krc �� Kqc� His
motivation arose from the relation between quasiconvexi�cation and optimal
composites� His example shows that certain composites cannot be obtained
by successive lamination�

�Sver�ak showed that the complex version of the original example yields a
set K � M��� with Krc �� Kqc� With the usual identi�cation R� � C via
z � x � iy we de�ne

K �

��
�
�
� z� 



 z�
z� z�

�
A � zi 
 C� jzij � �� z� � z�z�

��
� � ������

L � spanK� P orthogonal projection M��� � L� The periodic function
w � R� � C�� given by

w�x� �

�
� eix

�

eix
�

ei	x
��x�


�
A

satis�es Dw 
 K� Hence 
 
 Kqc �use e�g� that distqcK�
� � 
 by Proposition
������

We claim that
Kqc � Kpc � K � f
g�

To prove this consider on L the function

g�z�� z�� z�� � jz�z� � z�j� � j'z�z� � z�j� � jz�'z� � z�j�

and note that g vanishes exactly on K � f
g� Now g can easily be extended
to a polyconvex function f on C��� �M��� with f � 
 outside L� If

F �

�
� F�� F��

F�� F��

F�� F��

�
A �

�
� F�

F�

F�

�
A

��



we may take

f�F � � j det�F�� F��� F��j� � j det� 'F�� F�� � F��j�
�j det�F�� 'F�� � F��j� � jF � PF j��

Therefore Kpc � K � f
g and equality holds since 
 
 Kqc � Kpc� Moreover
either Krc � K or Krc � K � f
g� The following result shows that rank	�
convexity is a local condition and hence Krc � K �� Kqc�

Lemma �
�� Let K� and K� be disjoint compact sets and suppose that K �
K� �K� is rank�� convex� Then both K� and K� are rank�� convex�

Proof� See �Pe �� � Thm� ��� or �MP �� � Prop� ����

There is also a simple direct proof that Krc � K� Note that f 
 C� and
Df ��
� � c Id� c � 
� Indeed f�
� � Df�
� � 
 and thus

D�f�
��F� F � � lim
t��

�

t�
f�tF � � jF��j� � jF��j� � jF��j� � jF � PF j�

and the right hand side vanishes only if F � 
� Hence there exists a neigh	
bourhood B�
� �� and a new function "f such that "f � 
 in B�
� ��� D� "f � c

�
Id

in B�
� ���� "f � f outside B�
� ��� Then "f is locally polyconvex and hence
rank	� convex and f "f � 
g � K� Thus Krc � K�

Note that "f is in particular locally quasiconvex �i�e� for every point there
is a neighbourhood in which "f agrees with a quasiconvex function� but not
quasiconvex since "f�
� � 
 and

R
T �

"f�Dw� �
R
T �

f�Dw� � 
� This proves

Kristensen�s theorem for m � ��
Kru�zik �Kr �� used �Sver�ak�s counterexample to show that there exists

an integrand f � M��� � R � f��g that is not quasiconvex such that
F �� "f�F � � f�F T � is quasiconvex� Recall that

L �

��
�
�
� r 



 s
t t

�
A � r� s� t 
 R

��
� �

and let

f�F � �

� �rst if F 
 L�
�� else�

��



Then f � and hence "F � is rank	� convex since ff ��g � L is convex and f
is rank	� convex on L� We have already seen that f is not quasiconvex and
it only remains to show thatZ

	���
�

"f�F � Du� dx � "f�F �

for all periodic �Lipschitz� functions u � R� � R�� We may assume that
�F � Du�T 
 L a�e� Since

R
	���
�

Du � 
 by periodicity we deduce that

F T 
 L and �Du�T 
 L a�e� Thus

��u
� � ��u

� � 
� ���u
� � u�� � 
�

Therefore u� is independent of x�� while u� is independent of x�� and di�er	
entiation of the second identity yields ����u

� � ����u
� � 
� Thus

u� � a�x�� � b�x��� u� � c�x�� � d�x���

Du �

�
a��x�� 
 b��x��


 c��x�� d��x��

�
�

and an application of Fubini�s theorem in connection with the rank	� con	
vexity of "f yields the desired estimate�

By a more re�ned argument one can show that the function

f	�k�F � � f�PF � � ��jF j� � jF j�� � kjF � PF j�

considered above provides a �nite	valued counterexample if � � 
 is small
enough and k � k���� To show thatZ

	���
�

"f	�k�F � Du�� "f	�k�F � � D "f	�k�F �Dudx � 
�

one introduces v � �v�� v�� v�� and w � �w�� w�� w�� by

P �D��T �

�
� v� 



 v�

v� v�

�
A � �D��T � P �D��T �

�
� 
 w�

w� 

w� �w�

�
A

and observes that the di�erential operator

A�Dv� � ���v
�� ��v

�� ��v
�� ��v

�� ��v
�� ��v

��

�




can be expressed as a linear combination of derivatives of w� Hence

kA�Dv�kW����	Q
 � Ck�D��T � P �D��TkL�	Q


and the crucial ingredient in the proof are the estimates����
Z
	���
�

v�v�v� dx

���� � Ckvk�L�kA�Dv�kW���������
Z
	���
�

vivj
���� � CkvkL�kA�Dv�kW����� for i �� j�

which are proved by a suitable decomposition of the �discrete� Fourier trans	
forms Fvi into a part that is supported in a narrow cone near the i	th coor	
dinates axis and a part that vanishes near that axis� The second part is then
easily estimated in terms of A�Dv��

�
� Proofs� lower semicontinuity and relaxation

Proof of Theorem ����i
 �W ���w�slsc is equivalent to quasiconvexity of
the integrand�� To establish necessity of quasiconvexity let Q � �
� ��n�
� 
 W ���

� �Q�Rm�� extend � �	periodically to Rn and let

uj�x� � Fx �
�

j
��jx�� for x 
 !�

Then uj


� u in W ����!�Rm�� u � Fx and

f�Duj�


� const �

Z
Q

f�F � D��y��dy in L��!��

cf� Section ��� a�� The necessity of quasiconvexity follows�

To prove su�ciency consider uj


� u in W ����!�Rm� and suppose �rst

that u�x� � Fx� If uj�u was zero on �! the assertion would follow from the
de�nition of quasiconvexity� For general uj consider a compactly contained
subdomain !� �� !� a cut	o� function � 
 C�

� �!� with � � � on !� and let

vj � u � ��uj � u��

Since uj � u locally uniformly in ! by the Sobolev embedding theorem �or
by the Arzela	Ascoli theorem� and since jDujj � C we may assume that

��



jDvjj � C � for j � j����� If we let M � supfjf�F �j � jF j � C � C �g and use
quasiconvexity we obtain

lim inf
j��

I�uj� � lim inf
j��

�
��Z
�

f�Dvj� dx �

Z
�n��

�f�Duj�� f�Dvj�� dx

�
��

� j!jf�F �� �M j! n !�j�
Since !� �� ! was arbitrary the assertion follows for u � Fx and similarly
for piecewise a�ne u�

For arbitrary u 
 W ����!�Rm� the result is established by approximation
as follows� For compactly contained subdomains !� �� !�� �� ! there exist
vk such that vk is piecewise a�ne in !�� u � vk in ! n !��� jDvkj � C�
Dvk � Du in measure �and hence in all Lp� p � ��� To construct such
vk �rst approximate u in !�� by a C� function and then consider piecewise
linear approximations on a su�ciently �ne �regular� triangulation� Let uj�k �
uj � vk � u� Then

uj�k


� vk in W ����!�Rm� as j ��� ������

jDuj�kj � C ������

Hence� by the previous result and the dominated convergence theorem

lim
k��

lim inf
j��

Z
��

f�Duj�k�dx � lim
k��

Z
��

f�Dvk� dx

�

Z
��

f�Du�dx �
Z
�

f�Du�� Cj! n !�j �

On the other hand by ������� the uniform continuity of f on compact sets
and the convergence of Dvk in measure

lim
k��

sup
j

Z
��

jf�Duj�k�� f�Duj�j dx � 
�

Hence

lim inf
j��

Z
�

f�Duj� dx �
Z
�

f�Du� dx� �Cj! n !�j�

��



and the assertion follows since !� was arbitrary� �

Proof of Theorem ����iii
 �formula for f qc��
Let

Qf�F� U� �� inf
��W ���

�

�

jU j
Z
U

f�F � D�� dx�

We have to show that f qc�F � � Qf�F� U�� A simple scaling and covering
argument shows that Qf is independent of U � By the de�nition of quasi	
convexity Qf � Qf qc � f qc� To prove the converse inequality Qf � f qc it
su�ces to show that Qf is quasiconvex since Qf � f � We �rst claim that

�

jU j
Z
U

Qf�F � D�� dx � Qf�F ��

	� 
 W ���
� �!�Rm�� � piecewise a�ne�

������

Let U be a �nite union �up to a null set� of disjoint open subsets Ui such
that � is a�ne on Ui and let � � 
� By the de�nition of Qf �applied to Ui�
there exist �i 
 W ���

� �Ui�R
m� such that

Qf�F � D�� � �

jUij
Z
Ui

f�F � D� � D�i� dx� � on Ui�

Set � � � �
P

�i 
 W ���
� �U �Rm�� Rearranging terms we �ndZ

U

Qf�F � D�� dx �
Z
U

f�F � D�� dx� �jU j

� Qf�F �� �jU j�
and assertion ������ follows as � � 
 was arbitrary� Now ������ is enough to
conclude that Qf is rank	� convex and therefore locally Lipschitz continous
�see Remark � after De�nition ����� Hence Qf is quasiconvex by ������ and
density arguments and therefore f qc � Qf �

So far we have assumed that Qf does not take the value ��� If Qf�F �
D�� � �� on Ui then an obvious modi�cation of the argument above
shows that ������ still holds� Hence Qf is rank	� convex �see the proof of
Lemma ���� and one easily concludes that f qc � Qf � �� since the rank	�
directions span the space of all matrices� �

��



�

 Proofs� classi�cation

The main point is to show that Jensen�s inequality for quasiconvex functions
characterizes homogeneous gradient Young measures �see Lemma ������ The
proof relies on the Hahn	Banach separation theorems and the representation
����� for f qc� The extension to nonhomogeneous Young measures uses mainly
generalities about measurable maps� in particular their approximation by
piecewise constant ones�

An important technical tool of independent interest is a truncation result
for sequences of gradients sometimes known as Zhang�s lemma� �Closely
related results were obtained previously by Acerbi and Fusco based on earlier
work of Liu�� It implies that every gradient Young measure supported on a
compact set K � Mm�n can be generated by a sequence fDvjg whose L�

norm can be bounded in terms of K alone� For the rest of this section we
adopt the following conventions�

K is a compact set in Mm�n�

U�! are bounded domains in Rn� j�!j � j�U j � 
�

Lemma �
�� �Zhang�s lemma
� Let jKj� � supfjF j � F 
 Kg�
�i� Let uj 
 W ���

loc �Rn�Rm� and suppose that

dist�Duj� K� � 
 in L��Rn�� ������

Then there exists a sequence vj 
 W ���
loc �Rn�Rm� such that

jDvjj � c�n�m�jKj�� ����
�

jfuj �� vjgj � 
� ������

�ii� Let U 
 Rn be a bounded domain and let uj 
 W ���
loc �U �Rm�� Suppose

that

dist�Duj� K� � 
 in L��U�� uj � u in L�
loc�U�� ������

Then there exist vj 
 W ���
loc �U �Rm� such that

jDvjj � c�n�m�jKj�� ������

jfuj �� vjgj � 
� vj � u near �U�

��



Remarks� Estimates ������ and ������ can be replaced by the stronger
assertion dist�Dvj� K

c� � 
 in L�� see �Mu ��b � Note also that the assertion
jfuj �� vjgj � 
 implies

jfDuj �� Dvjgj � 
�

since for any Sobolev function Du � 
 a�e� on fu � 
g�
Proof� Part �i� is essentially Lemma ��� in �Zh �� � Alternatively it follows

from �the proof of� Theorem ����� in �EG �� � pp� ���	���� with 
 � �CjKj��
Part �ii� follows by a standard localization argument� see �Mu ��b for the
details� �

Now suppose that fujg is bounded in W ����!�Rm� and fDujg generates the

�gradient� Young measure �� Then Duj
�
� Du in L�� Du�x� � h�x� idi and

uj � u �locally� in L�� We call u the underlying deformation of �� The
Young measure � � ! �M�Mm�n� is called homogeneous if it is constant in
! �up to a null set�� As usual we identify constant maps with their values and
view the set H�!� of homogeneous gradient Young measures as a subset of
M�Mm�n�� By H�!� K� we denote the set of homogeneous gradient Young
measures supported on K�

Lemma �
�� We have

�i� If � 
 H�!� K� and h�� idi � 
 then there exists a sequence uj 

W ���

� �!�Rm� such that Duj generates � and satis�es jDujj � CjKj��
�ii� H�!� K� is weak� compact in M�Mm�n��

�iii� The set H�!� K� is independent of !� If � is a gradient Young measure
with supp��x� � K a�e� whose underlying deformation u agrees with an
a�ne map on �! �in the sence of W ���

� 
 then the average Av� de�ned
by

hAv�� fi �
�

j!j
Z
�

h�x� fidx

belongs to H�K��

�iv� The set HF �K� � f� 
 H�K� � h�� idi � Fg is weak� closed and
convex�

��



Proof� Assertion �i� follows from the de�nition of H�!� K� and part �ii�
of Zhang�s lemma� The proof of �ii� uses �i� and a diagonalization argument�
Note that H�!� K� is contained in the weak� compact set P�K� of probability
measures on K� Hence the weak� topology is metrizable on P�K� and can

be described by sequences� Suppose that �k 
 H�!� K� and �k
�
� �� After

subtraction of a�ne functions in the generating sequences for �k we may
assume that h�k� idi � 
� By �i� there exist uk�j 
 W ���

� �!�Mm�n� such that

�Duk�j	�

�
�j�� �k in L�w �!�M�Mm�n��� jDuk�jj � CjKj��

Here we identi�ed �k with the constant map x �� �k� Since the weak�
topology is metrizable on L�w �!�P �B�
� CjKj���� we can apply a standard
diagonalization argument to �nd jk �� such that

�Duk�jk 	�

�
� � in L�w �!�M�Mm�n���

Since jDuk�jkj � C we have � 
 H�!� K�� Thus H�!� K� is weak� closed
and therefore weak� compact as a subset of P�K��

To prove �iii� consider �rst v 
 W ���
� �U �Rm� and the trivial Young mea	

sure given by 
�x� � �Dv	x
� We claim that Av
 is a homogeneous gradient
Young measure �for all domains !�� By the Vitali covering theorem there
exist disjoint scaled copies Ui � ai � riU of U that are contained in the unit
cube Q and cover it up to a null set� De�ne

w�x� �

�
riv
�
x�ai
ri

�
in Ui�


 in Q n Ui�

extend w �	periodically to Rn� and let wk�x� � k��w�kx�� Then for all
continuous functions g �see Section ��� a��

g�Dwk�
�
� 'g in L��Rn��

where

'g �

Z
Q

g�Dw�dx �
�

jU j
Z
U

g�Dv�dx � hAv
� gi�

Thus� for all !� �Dwk	�
 converges to the homogeneous Young measure Av
 in
L�w �!�M�Mm�n�� in the weak� topology� Hence Av
 
 H�!� as claimed�

Now let � satisfy the assumption of �iii�� We may suppose that u 

W ���

� �!�Rm�� By the de�nition of gradient Young measures and part �ii� of

��



Zhang�s lemma there exists a sequence uj 
 W ���
� �!�Rm� such that jDujj �

R and
�Duj	�


�
� � in L�w �!�M�Mm�n���

Taking test functions of the form �� g we see that

Av�Duj	�

�
� Av��

By the considerations above Av�Duj	�
 belongs to H�!� B�
� R�� for all !� By
�ii� the same holds for Av�� Since supp��x� � K a�e� in fact Av � 
 H�!� K��
If � 
 H�U�K� then Av� � � and hence H�!� K� is independent of !�

Regarding �iv� we may suppose F � 
� Let ��� �� 
 H��K�� Let
Q� � �
� 
�� �
� ��n��� Q� � �
� ��� �
� ��n��� By �i� there exist sequences
fDui�jg � W ���

� �Qi�R
m�� i � �� � that generate �i� Hence the gradients of

uj�x� �

�
u��j�x�� x 
 Q�

u��j�x�� x 
 Q�

generate

��x� �

�
��� x 
 Q�

��� x 
 Q�
�

By �iii� we have


�� � ��� 
��� � Av� 
 H��K�� �

Lemma �
�� �characterization of homogeneous gradient Young measures
�
We have

H�K� � Mqc�K��

Proof� Clearly H�K� � Mqc�K� by lower semicontinuity �see Theorem
����i��� To prove the converse it su�ces to consider measures with barycen	
tre zero� Now H��K� is weak� closed and convex� and C�K� is the dual
of �M�K�� weak�� �see e�g� �Ru �� � Thm� ���
�� By the Hahn	Banach
separation theorem it su�ces to show that� for all f 
 C�K��

h�� fi � � 	� 
 H��K�� ������

implies
h
� fi � � 	
 
 Mqc

� �K��

��



Fix f 
 C�K�� consider a continuous extension to C��M
m�n� and let

fk�F � � f�F � � kdist��F�K��

We claim that
lim
k��

f qck �
� � �� ������

Once this is shown we are done since by de�nition every 
 
 Mqc
� �K� satis�es

h
� fi � h
� fki � h
� f qck i � f qck �
��

Suppose now ������ was false� Then there exist � � 
 such that

f qck �
� � �� ��� 	 k�
By Theorem ����iii� there exist uk 
 W ���

� �Q�Rm� such thatZ
Q

fk�Duk�dy � �� �� ������

In particular we may assume uk � u in W ���
� �Q�Rm� and

dist�Duk� K� � 
 in L��Q��

By part �ii� of Zhang�s lemma there exists vk 
 W ���
� �Q�Rm� such that

jDvkj � C� jf�Duk �� Dvkgj � 
� ������

In particular a further subsequence of fDvkg generates a gradient Young mea	
sure � with supp��x� � K and underlying deformation u 
 W ���

� �Q�Rm��
Thus Av� 
 H��K� by Lemma ���� �iii�� Since f is bounded from below we
deduce from ������ and ������

lim inf
k��

Z
Q

fj�Duk� � lim inf
k��

Z
Q

fj�Dvk�

�

Z
Q

h�x� fjidx � hAv�� fji � ��

This contradicts ������ as fk � fj if k � j� and ������ is proved� �

��



Proof of Theorem ��	� Necessity of conditions �i� 	 �iii� was established in
Section ���� To prove su�ciency we �rst consider the case that the underlying
deformation vanishes� Let

A � f� 
 L�w �!�M�Mm�n�� � ��x� 
 Mqc
� �K� a�e�g

denote the set of maps that satisfy �i� 	 �iii� with Du � 
� We have to show
that every element of A is a gradient Young measure�

To do so we use some generalities about measurable maps to approximate
the elements of A by piecewise constant maps� First note that the set of
subprobability measures M� � f
 
 M�Mm�n� � � � 
� k�k� �g is weak�
compact in M�Mm�n�� Hence the weak� topology is metrizable on M�� To
de�ne a speci�c metric let ffig � C��M

m�n� be a countable dense set in the
unit sphere of C��M

m�n� and let

d�
� 
�� �
�X
i��

��ijh
� 
�� fiij�

The space �M�� d� is a compact metric space� Since d induces the weak�
topology� a map � � ! �M�Mm�n� that takes �a�e�� values in M� is weak�
measurable if and only if � � ! � �M�� d� is measurable�

The set f� 
 L�w �!�M�Mm�n�� � ��x� 
 M� a�e�g is also weak� compact
in L�w �!�M�Mm�n�� �cf� the proof of Theorem ����� A metric "d that induces
weak� convergence on that set may be de�ned as follows� Let fhjg be a
countable dense set in the unit ball of L��!� and let

"d��� � �� �
�X

i�j��

��i�jjh� � � �� hj � fiij�

It thus follows from Proposition ���� below that every � 
 A can be arbitrar	
ily well approximated in "d by a map "� with the following properties� There
exist �nitely many disjoint open sets Ui with j�Uij � 
 such that "� � �i on
Ui� �i 
 Mqc

� �K�� "� � �� on !n�Ui� Application of Lemma �����i� to each Ui

shows that "� is a gradient Young measure �extend the generating sequence
by zero to !n�Ui�� Hence the closure of gradient Young measures with sup	
port in K � � K � f
g contains A� On the other hand the set of these Young
measures is �weakly� compact �see the proof of Lemma ���� �ii��� Thus every
� 
 A is a gradient Young measure� This �nishes the proof if Du � 
�

��



The remaining case Du �� 
 can now be easily treated by translation� For
a measure 
 de�ne its push	forward unter translation by

hTF
� fi � h
� f�
� F �i

so that TF �� � �F � Now if � satis�es the hypotheses of Theorem ��� and
"��x� � T�Du	x
��x� then "� 
 A� Hence there exists a sequence fDvjg that
generates "� and one easily veri�es that Duj � Dvj � Du generates � �use
e�g� Corollary ��� with f�x� F � � g�Du�x� � F �� g 
 C��M

m�n��� �

Proposition �
�� Let �X� d� be a compact metric space and M � X� Sup�
pose that � � ! � X is measurable and ��x� 
Ma�e� Then� for every k 
 N�
there exists a �nite number of disjoint open sets Ui with j�Uij � 
 and values
�i 
M such that the map

"� �

�
�i on Ui

�� on ! n Ui

satis�es

jfx � d���x�� "��x�� �
�

k
gj � �

k
�

Proof� By compactness X can be covered by a �nite number of open balls
Bi with radius �

�k
� The sets "Ei � ����Bi� are measurable� To obtain disjoint

sets Ei� we de�ne E� � "E�� E� � "E� n E�� etc� If jEij � 
 then there exist
xi 
 Ei such that �i �� ��xi� 
M � There exist disjoint compact sets Ki � Ei

such that X
jEi nKij � ��k� ������

if jEij � 
 we take Ki � �� The Ki have positive distance and thus there exist
disjoint open sets Ui � Ki with j�Uij � 
 �consider e�g� suitable sublevel sets
of the distance function of Ki�� Now Ei � "Ei � Ki and thus d���x�� �i� � ��k
in Ki� The assertion follows from ������� �

�




� Exact solutions

Approximate solutions are characterized by the quasiconvex hull Kqc and
set Mqc�K� of Young measures� The construction of exact solutions is more
delicate� In view of the negative result for the two	gradient problem �see
Proposition ���� it was widely believed that exact solutions are rather rare�
Recent results suggest that many exact solutions exist but that they have
to be very complicated� This is reminiscent of rigidity and �exibility results
for isometric immersions and other geometric problems �see �Na �� � �Ku �� �
�Gr �� � Section ��������

To illustrate some of the di�culties consider again the two	dimensional
two	well problem �see Section ����

Du 
 K a�e� in !� u � Fx on �!� �����

K � SO���A � SO���B� �����

A � Id � B � diag�
� 
�� 
 � 
 � � � 
� 

 � �� �����

If we ignore boundary conditions the simplest solutions of Du 
 K are
simple laminates� see Figure ��� A short analysis of the rank	� connections
in K shows that such laminates are perpendicular to one of the normals n�
or n�� determined by the two solutions of the equation

QA�B � a� n� �����

There is� however� no obvious way to combine the two laminates �see
Fig� ���� It was thus believed that the problem ����� * ����� has no nontrivial
solutions� This is false� The construction of nontrivial solutions is based on
Gromov�s method of convex integration�

�
� Existence of solutions

First� one observes that the open version of the two	gradient problem admits
a solution� Here and for the rest of this section we say that a map u � ! � Rm

is piecewise linear if it is Lipschitz continuous and if there exist �nitely or

��



Q�B

n� n�

Q�B

A

Q�B

A A

A

Q�B

Figure ��� Two possible laminates for the two	well problem�

Q�B

Q�B

A

Q�B

Q�B

A Q�A

Figure ��� None of the above constructions satis�es the rank	� condition
across every interface�

��



countably many disjoint open sets !i whose union has full measure in ! such
that uj�i

is a�ne�

Lemma �
� ��MS ��

� Suppose that rk�B�A� � �� F � 
A����
�B� 
 

�
� ��� Then� for a bounded domain ! and every � � 
 there exists a piecewise
linear map u such that

u�x� � Fx on �!

dist�Du� fA�Bg� � ��

sup ju�x�� Fxj � ��

Remark� It is even possible to handle certain constraints� If n � m � �
and detA � detB � c �� 
 then one can achieve detDu � c� How many
constraints can be handled is a largely open problem�

Proof� The construction has some similarities with Fonseca�s work� in
particular her proof of Theorem ��� of �Fo �� � There are some di�erences�
however� so I give the proof in �MS �� which is slightly simpler� We will
�rst construct a solution for a special domain U � The argument will then be
�nished by an application of the Vitali covering theorem�

By an a�ne change of variables we may assume without loss of generality
that

A � �
a� en� B � ��� 
�a� en� F � 
� and jaj � ��

Let � � 
� let
V � ���� ��n�� � ��
� ���� 
��

and de�ne v � V � Rm by

v�x� � ��
��� 
�a �

� �
axn if xn � 
�
��� 
�axn if xn � 
�

Then Dv 
 fA�Bg and v � 
 at xn � ��
� �� and xn � �
� but v does not
vanish on the whole boundary �V � Next let

h�x� � �
��� 
�a
n��X
i��

jxij�

Then h is piecewise linear and jDhj � �
��� 
�
p
n� �� Set

"u � v � h�

��



Note that "u � 
 on �V and let

U � fx 
 V � "u�x� � 
g�
Then

"ujU is piecewise linear � "uj�U � 
�
dist�D"u� fA�Bg� � �
��� 
�

p
n� ��

j"uj � �
��� 
��

By the Vitali covering theorem one can exhaust ! by disjoint scaled copies
of U � More precisely there exist xi 
 Rn and ri � 
 such that the sets

Ui � xi � riU

are mutually disjoint and j! n �iUij � 
� De�ne u by

u�x� �

�
ri"u�x�xi

ri
� if x 
 Ui�


 else�

Note that

Du�x� � D"u�
x� xi
ri

� ifx 
 !i�

It follows that u is piecewise linear� that uj�� � 
 and that dist�Du� fA�Bg� �
� for a suitable � � 
� Moreover by choosing ri � � one can also obtain the
estimate for ju� Fxj� �

Lemma ��� can be easily iterated� and using the notion of the lamination
convex hull of a set �see Section ���� one obtains the following result �see
�MS �� for the details��

Lemma �
� Suppose that U �Mm�n is open� Let v � ! � Rm be piecewise
a�ne and Lipschitz continuous and suppose Dv 
 U lc a�e� Then there exist
u � ! � Rm such that

Du 
 U a�e� in !� u � v on �!�

The crucial step is the passage from open to compact sets K � Mm�n�
Following Gromov we say that a sequence of sets Ui is an in	approximation
of K if

�i� the Ui are open and contained in a �xed ball

�ii� Ui � U lc
i��

��



�iii� Ui � K in the following sense� if Fik 
 Uik � ik �� and Fik � F � then
F 
 K�

Theorem �
� ��Gr ��
� p� ���� �MS ��

� Suppose that K admits an in�
approximation fUig� Let v 
 C��!�Rm� with

Dv 
 U��

Then there exists a Lipschitz map u such that

Du 
 K 
 ! a�e�� u � v on �!�

Proof� The proof uses a sequence of approximations obtained by succes	
sive application of Lemma ���� To achieve strong convergence each approxi	
mation uses a much �ner spatial scale than the previous one� similar to the
construction of continuous but nowhere di�erentiable functions� This is one
of the key ideas of convex integration�

We �rst construct a sequence of piecewise linear maps ui that satisfy

Dui 
 Ui a�e�
sup jui�� � uij � �i��� ui�� � ui on �!�

sup ju� � vj � ���� u� � v on �!�

To construct u� note that if !� is open and !� �� ! then dist�Dv�x�� �U�� �
c�!�� � 
 for all x 
 !�� Hence it is easy to obtain u�j!� by introducing a
su�ciently �ne triangulation� Now exhaust ! by an increasing sequence of
sets !i �� !�

To construct ui�� and �i�� from ui and �i we proceed as follows� Let

!i � fx 
 ! � dist�x� �!� � ��ig�
Let � be a usual mollifying kernel� i�e� let � be smooth with support in the
unit ball and

R
� � �� Let

���x� � ��n��x����

Since the convolution �� �Dui converges to Dui in L��!i� as � � 
 we can
choose �i 
 �
� ��i� such that

jj��i �Dui �DuijjL�	�i
 � ��i� �����

��



Let
�i�� � �i�i� �����

Use Lemma ��� to obtain ui�� such that Dui�� 
 Ui��� ui�� � ui on �! and

sup
�
jui�� � uij � �i��� �����

Since �i�� � �i�� we have
�X
i��

�i � ����

Thus
ui � u� uniformly�

and u� is Lipschitz since the ui are uniformly Lipschitz �by �ii� in the de�	
nition of an in	approximation�� Moreover u� � v on �!�

It only remains to show that Du� 
 K� The key point is to ensure strong
convergence of Dui� Since jjD��jjL� � C�� we deduce from ����� and �����

jj��k � �Duk �Du��jjL�	�k
 � jjD��k � �uk � u��jjL�	�k


� C
�k

sup juk � u�j � C
�k

P�
j�k�� �j

� � C
�k
�k�� � C ��k�

�����

Taking into account ����� it follows that

jjDuk �Du�jjL�	�
 � C ��k � ��k � jj��k �Du� �Du�jjL�	�k


� jjDuk �Du�jjL�	�n�k
�

Since Duk and Du� are bounded we obtain Duk � Du� inL��!�� There	
fore there exists a subsequence ukj such that

Dukj � Du� a�e�

It follows from the de�nition of an in	approximation that

Du� 
 K a�e�

Hence u � u� has the desired properties� �

For the two	well problem ����� 	 ����� one can construct an in	approximation
using the explicit formula in Theorem ����� The details can be found in
�MS �� � for a di�erent approach based on Baire�s theorem see Dacorogna
and Marcellini �DM ��a � �DM ��b � �DM �� �

��



Theorem �
� Suppose that 

 � �� Then the two�well problem ����� 	 �����
has a solution if

F 
 intK lc�

where

K lc �

�
F � �y� z� � jyj � 

� detF



� �
� jzj � detF � �



� �

�
�

Remark� A similar result holds if 

 � � provided that in the de�nition
of in	approximation and interior one considers relatively open sets subject to
the constraint detF � �� One only needs to use the remark after Lemma ���
to achieve detDu � �� provided that detA � detB � ��

A more detailed analysis shows that in the de�nition of in	approximation
one can replace the lamination convex hull which is based on explicit rank	�
connections by the rank	� convex hull de�ned by duality with functions �see
Section ����� This has a striking consequence for the four	gradient example

K �

�
�
�

� 


 �

�
� �

� �� 


 �

��

discussed in Section ���� see in particular Figure �� For any matrix

F 
 Krc �
��

F�� 


 F��

�
� jF��j � �� jF��j � �

�

and any open neighbourhood U � K there exists a map u � ! � R� such
that

Du 
 U a�e� in !�
u � Fx on �!�

This is true despite the fact that small neigbourhoods contain no rank	� con	
nections so at �rst glance there seems to be no way to start the construction�

This obstacle is overcome by �rst constructing a �piecewise linear� map
that satis�es Dv 
 U rc a�e� and Dv 
 U except on a set of small measure�
One can then show that the exceptional set can be inductively removed�

The major outstanding problem is whether in the de�nition of an in	
approximation one can replace the lamination convex hull �or rank	� convex
hull� by the quasiconvex hull� One key step would be to resolve the following
question�

��
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Figure ��� Structure of solutions with �nite perimeter� The normals n�� n�
are determined by ������

Conjecture �
� Let K be a compact quasiconvex set� i�e� Kqc � K and
let � 
 Mqc�K�� Then for every open set U � K there exists a sequence
uj � �
� ��n � Rm such that Duj generates � and Duj 
 U a�e�

The conjecture is true for compact convex sets �Mu ��a � this re�nes Zhang�s
Lemma �see Lemma ����� which implies the existence of uj such that Duj 

B�
� R� for a su�ciently large ball�

�
� Regularity and rigidity

The construction outlined above yields very complicated solutions of the two	
well problem ����� 	 ������ This raises the question whether the geometry of
the solutions can be controlled� Consider the set

E � fx 
 ! � Du�x� 
 SO���Ag
where Du takes values in one connected component of K �or one phase in
the applications to crystals�� The perimeter of a set E � ! � Rn is de�ned
as

PerE � sup

��
�
Z
E

div � dx � � 
 C�
��!�Rn�� j�j � �

��
� �

For smooth or polyhedral sets this agrees with the �n� �� dimensional mea	
sure of �E�

Theorem �
	 ��DM ��

� If u is a solution of ����� 	 ����� and if PerE ��
then u is locally a simple laminate and �E consists of straight line segments
that can only intersect at �!�

��



The proof combines geometric and measure	theoretic ideas� The geo	
metric idea is that the Gauss curvature K�g� of the pull	back metric g �
�Du�TDu should vanish �in a suitable sense�� Since g only takes two values
this should give information on E�

One key step in the implementation of this idea is a �nite perimeter
version of Liouville�s theorem on the rigidity of in�nitesimal rotations �cf�
Theorem ����� In this framework connected components are replaced by
indecomposable components� A set A of �nite perimeter is indecomposable
if for every A� � A with PerA � PerA� � PerA nA� the set A� or A nA� has
zero measure� It can be shown that each set of �nite perimeter is a union of
at most countably many indecomposable components�

Theorem �
� Suppose that u � ! � Rn � Rn belongs to W ����!�Rn� and
that detDu � c � 
� Suppose further that E � ! has �nite perimeter and

Du 
 SO�n� a�e� in E�

Then Du is constant on each indecomposable component of E�

To �nish the proof of Theorem ��� one can decompose Du as ei�g��� �where
g � �Du�TDu 
 fATA�BTBg� and analyze the jump conditions at the
boundary of each indecomposable component to deduce that , only takes
two values and solves �in the distributional sense� a wave equation with
characteristic directions n� and n��

B� Kirchheim recently devised more �exible measure	theoretic arguments�
and combining them with algebraic ideas he established a generalization of

Theorem ��� to the three	well problem K �
�S

i��

SO���Ui in three dimensions

with U� � diag�
�� 
�� 
��� U� � diag�
�� 
�� 
��� U� � diag�
�� 
�� 
��� 
i �

� A major additional di�culty in this case is that the gauge group SO���
is not abelian and one cannot hope to derive a linear equation for a quantity
like , in the two	dimensional situation�

��



� Length scales and surface energy

Minimization of the continuum elastic energy is a drastic simpli�cation� in
particular if a very �ne mixture of phases is observed� It neglects interfacial
energy as well as discreteness e�ects due to the atomic lattice� It is therefore
not surprising that elastic energy minimization often predicts an in�nitesi	
mally �ne mixture of phases �in the sense of a nontrivial Young measure��
whereas in any real crystal all microstructures are of �nite size�

Nonetheless elastic energy minimization does surprisingly well� It often
correctly predicts the phase proportions and in combination with considera	
tions of rank	� compatibility the orientation of phase interfaces� It recovers
in particular the predictions of the crystallographic theory of martensite� In
fact one of the major achievements was to realize that the predictions of that
theory can be understood as consequences of energy minimization� This al	
lows one to bring to bear the powerful methods of the calculus of variations
in the analysis of microstructures�

The problem that elastic energy minimization does not determine the
length scale and �ne geometry of the microstructure remains� It can be over	
come by introducing a small amount of interfacial energy or higher gradient
terms� One expects these contributions which penalize rapid changes to be
small since otherwise a very �ne structure would not arise in the �rst place�
The most popular functionals are

I��u� �

Z
�

W �Du�dx�

Z
�

��jD�uj�dx �����

and

J ��u� �

Z
�

W �Du�dx�

Z
�

�jD�ujdx� �����

The second functional allows for jumps in the gradient� and jD�uj is under	
stood as the total variation of a Radon measure�

The small parameter � � 
 introduces a length scale and as � � 
 both
models approach �at least formally� pure elastic energy minimization� More
realistic models should of course involve anisotropic terms in D�u or more
generally terms of the form h�Du� �D�u�� Even the basic models ����� and
����� are� however� far from being understood for maps u � ! � R� � R�� In
the following we discuss brie�y two simple scalar models which already show

�




some of the interesting e�ects generated by the interaction of elastic energy
and surface energy�

	
� Selection of periodic structures

As a simple one	dimensional counterpart of the two	well problem consider
the problem

Minimize I�u� �

�Z
�

�u�x � ��� � u� dx �����

subject to periodic boundary conditions� Clearly I�u� � 
 since the condi	
tions u � 
 a�e� and ux � �� a�e� are incompatible� On the other hand
inf I � 
� since a sequence of �nely oscillating sawtooth functions uj can
achieve ujx 
 f��g� uj � 
 uniformly� For any such sequence ujx generates
the �unique� Young measure � � �

�
��� � �

�
�� �see Section ���b��� Note that

there are many �di�erent� sequences that generate this Young measure�
Minimizers of the singularly perturbed functional

I��u� �

�Z
�

��u�xx � �u�x � ��� � u� dx

yield a very special minimizing sequence for I�

Theorem 	
� If � � 
 is su�ciently small then every minimizer of I�

�subject to periodic boundary conditions
 is periodic with minimal period
P � � �������� �O�������

A more detailed analysis shows that the minimizers u� look approximately
like a sawtooth function with slope �� and involve two small length scales�
the sawtooth has period � ����� and its corners are rounded o� on a scale
� � �see Fig� ����

The heuristics behind the proof of Theorem ��� is simple and relies on
two observations� First� the condition I��u�� � 
 enforces that u� is almost a
sawtooth function with slopes ��� Second� a key observation of Modica and
Mortola is that the �rst two terms of the energy combined essentially count ��
times� the number of changes in the slope from � to 	� and vice versa� Indeed
the arithmetic geometric mean inequality yields for any interval �a� b� � �
� ��

��
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u	x

�
� �

�

� ����

Figure ��� Sketch of u�x for a minimizer of I�

over which ux changes sign

bR
a

��u�xx � �u�x � ��� dx �
bR
a

��j�u�x � ��uxxj dx

� � j
bR
a

H ��ux� dxj � � jH�ux�b���H�ux�a��j

� � jH����H����j�

where H ��t� � �jt� � �j� On the other hand the above estimates can be
made sharp if one choose u as a solution of the ODE �uxx � �u�x � ���� e�g�
ux � tanh x�x�

�
�

The two observations strongly suggest that ����� is essentially equivalent
to the following �sharp	interface problem�

��



Minimize �A�N �

�Z
�

u� dx

among periodic function with juxj � ��

�����

Here N denotes the number of sign changes of ux and A� � H��� �
H���� � ���� For �xed N ����� is a discrete problem� and a short calculation
shows that in this case periodically spaced sign changes of ux are optimal and
the second term in the energy becomes �

��
N��� Minimization over N yields

the assertion�
The actual proof of Theorem ��� uses the expected analogy between �����

and ����� only as a guiding principle and proceeds by careful approximations
and estimates for odes� Nonetheless it would be very useful to relate ����� and
����� in a rigorous way� also as a test case for higher dimensional problems
where the �ne ode methods are not available� Conventional -	convergence
methods do not apply since the problem involves two small length scales and
the passage from ����� to ����� corresponds to removing only the faster one
�i�e� the smoothing of the sawtooth�s corners�� Recently G� Alberti and the
writer developped a new approach that allows one to do that� One of the
main ideas is to introduce a new variable y that corresponds to the slower
scale and to view

v��x� y� �� �����u�x � ����y�

as a map V � from �
� �� into a suitable function space X via V ��x� � v��x� 
��
One can endow X with a topology that makes it a compact metric space
and study of the Young measure � generated by V �� For each x 
 �
� ��
the measure �x is a probability measure on the function space X� If u� is a
sequence of �almost� minimizers of I� then one can show that �x is supported
on translates of sawtooth functions with the optimal period � �����

One easily checks that the asymptotic behaviour is the same for minimiz	
ers of ������ and this gives a precise meaning to the assertion that ����� and
����� are asymptotically equivalent�

This approach is inspired by the idea of two	scale convergence ��Al �� �
�E �� � �Ng �� �� A crucial di�erence is that two	scale convergence usually
only applies if the period of the microstructure is �xed and possible phase
shifts are controlled� This is the case if� for example� the solutions are of the
form "u�x� x

����
� where "u is periodic in the second variable�

��



	
� Surface energy and domain branching

Consider the two	dimensional scalar model problem �see �KM �� for the
relation with three	dimensional elasticity�

I�u� �

�Z
�

LZ
�

u�x � �u�y � ���dx dy
�� min�

u � 
 on x � 
� �����

The integrand is minimized at Du � �ux� uy� � �
����� The preferred
gradients are incompatible with the boundary condition� The in�mum of I
subject to ����� is zero but not attained� The gradients Duj of any mini	
mizing sequence generate the Young measure �

�
�	����
 � �

�
�	���
� One possible

construction of a minimizing sequence is as follows �see Fig� �
�� Let sh be a
periodic sawtooth function with period h and slope�� and let u�x� y� � sh�y�
for x � �� u�x� y� � x

�
sh�y� for 
 � x � �� Then consider a limit h� 
� � � 


such that h�� remains bounded� Similar reasoning applies if we replace �����
by the condition that u vanishes on the whole boundary of �
� L � �
� � �

linear interpolation

h

u � �

� L

uy � �

uy � �� h��

Figure �
� Construction of a minimizing sequence�

To understand the in�uence of regularizing terms on the length scale and
the geometry of the �ne scale structure we consider

I��u� �

�Z
�

LZ
�

u�x � �u�y � ��� � ��u�yydx dy�

��



h � ����L���

��L �L L

Figure ��� The self	similar construction with ��� � , � ���� Only two
generations of re�nement are shown�

subject to ������ Instead of the second derivatives in y one can consider other
regularizing terms� e�g� jD�uj�� The derivatives in y are� however� the most
important ones� since we expect that �ne scale oscillations arise mainly in
the y direction� It was widely believed that for small � � 
 the minimizers
of I� look roughly like the construction uh�� depicted in Figure �
 �with the
corners of the sawtooth �rounded o�� and optimal choices ����� h����� This
is false� Indeed a short calculation shows that ���� � ��L����� h��� � ��L����

and I��u�h�L� � ����L���� On the other hand one has

Theorem 	
� ��Sch ��

 For 
 � � � � there exists constants c� C � 
 such
that

c����L��� � min
u�� at x��

I� � C����L����

The upper bound is obtained by a smooth version of the self	similar con	
struction depicted in Figure ���

The mathematical issues become clearer if we again replace I� by a sharp
interface version

J ��u� �

LZ
�

�Z
�

u�x � �juyyjdydx �����

subject to

��



juyj � � a�e� �����

Thus y �� u�x� y� is a sawtooth function and
R �

�
juyyjdy denotes twice the

number of jumps of uy� Minimization of ����� subject to ����� is in fact a
purely geometric problem for the set

E � f�x� y� � uy�x� y� � �g�

The �rst term in J � is a nonlocal energy in terms of E� while the second is
essentially the length of �E �more precisely its projection to the x	axis� as
before we consider this to be the essential part since oscillations occur mainly
in the y direction�� The functional and the constraint are invariant under
the scaling

u��x� y� � 
��u�
���x� 
y�

which suggests a self	similar construction with , �
	
�
�


���
�

Theorem 	
� ��KM ��

� For 
 � � � � one has

c����L��� � min
	���
	���


J � � C����L����

Moreover� if 'u is a minimizer of J � subject to ������ ����� then

c����l��� �
�Z

�

lZ
�

'u�x � �j'uyyjdxdy � C����l���� �����

The scaling in ����� is exactly the scaling predicted by the self	similar con	
struction with � � ��

�
�����

The prediction of re�nement of the microstructure �domain branching�
towards the boundary x � 
 in the simple model ����*����� inspired new ex	
perimental investigations ��Sch �� �� In closely related models for magnetiza	
tion domains in ferromagnetic materials domain branching is experimentally
well established ��Li �� � �Hu �� � �Pr �� �� a rigorous mathematical analysis
is just beginning to emerge ��CK ��b � �CKO �� �� Already a quick look at
some of the sophisticated constructions in �Pr �� suggests that a lot is to be
discovered�

��



	 Outlook

There are many other interesting aspects of microstructure and I can mention
only three areas� alternative descriptions of microstructure� dynamics and
computation�

�
� Alternative descriptions of microstructure

Young measures are but one way to describe microstructure and to extract
�relevant� information from a sequence of rapidly oscillating functions� They
determine the asymptotic local distribution of function values but contain
no information about the direction� length scale or �ne geometry of the os	
cillations� As we saw in Section ��� the Young measure does not su�ce to
determine the limits of natural nonlocal quantities such as the magnetostatic
energy or the self	correlation function�

There is an intense search for new objects that record additional informa	
tion� see �Ta �� for a survey� One such object was introduced independently
by Tartar �Ta �
 and G�erard �Ge �� under the names �H	measure� and �mi	
crolocal defect measure�� respectively� They show that for every sequence
fujg that converges to zero weakly in L��!� there exists a subsequence fujkg
and a Radon measure 
 on '!� Sn�� �the H	measure of fujkg� such that for
every pseudo	di�erential operator A of order zero with �su�ciently regular�
symbol a�x� �� one has

hAujk� ujkiL� �
Z

���Sn��
ad
�

For Rm	valued sequences one similarly obtains a matrix	valued �hermitian�
measure � � ��ij��	i�j	m� The H	measure su�ces� for example� to compute
the limit of the micromagnetic energy discussed in Example � of Section ���
�the corresponding matrix valued symbol is just a��� � 


j
j � 

j
j�� Other ap	

plications of the H	measure include small amplitude homogenization� com	
pensated compactness with variable coe�cients� compactness by averaging
in kinetic equations and the propagation of energy concentrations in linear
hyperbolic systems�

Two outstanding open problems are the relation between H	measures
and Young measures �see �MT �� � �Ta �� for partial results� and a useful

��



generalization that allows one to compute limits of nonquadratic quantities�
even the case of trilinear expressions is open�

The H	measure tracks the energy of oscillations depending on the direc	
tion� but regardless of length scales� P� G&erard �Ge �
 introduced a variant
of the H	measure� called semiclassical measure� that allows one to study the
e�ect of oscillations on a typical length scale hj � 
 �see also �LP �� �� A
completely di�erent approach to analyze the detailed behaviour on small
length scales was brie�y discussed at the end of Section ����

�
� Dynamics

Three fundamental questions are�

Can realistic dynamics create microstructure


Can one deduce a law for the evolution of microstructure from the
macroscopic laws� and possibly reasonable additional assumptions


What is a �good� evolution law for interfaces in complex microstructures
and how can one model hysteresis


A typical setting for the �rst question is a dynamical system that admits a
Liapunov function �such as energy or entropy� for which there exist no classi	
cal minimizer� Will the dynamics drive the Liapunov function to its in�mum
and hence create �ne scale oscillations or will the dynamics generate compact
orbits �in a suitable energy space� and thus prevent global minimization of
the Liapunov function


The papers �Ba �
a and �BHJPS �� give nice surveys� Friesecke and
McLeod �FM �� solved a longstanding problem by showing that one	dimen	
sional viscoelastic dynamics with a nonconvex elastic energy does not gener	
ate microstructure�

A precise setting for the second question is as follows� Consider a sequence
of rapidly oscillating initial data that generate a certain Young measure �or
H	measure� semiclassical measure� � � � �� Is the Young measure of the solution
at a later time determined by the Young measure of the initial data
 In
physical language this is closely related to the idea of coarse	graining� Given
an evolution law for a very complex pattern are there simpler laws for certain
gross quantities such as the local phase average �� Young measure � one	
point statistics�
 If this can be achieved it can lead not only to new insights

��



but also to huge savings in computer time and more reliable results since it
is no longer needed to resolve the �nest scale of the pattern�

A typical obstacle in attacking these questions is the closure problem�
Often the time derivatives of certain moments of the Young measure involve
higher moments� Even worse� sometimes the time derivative of the Young
measure involves terms that depend on two	point or higher correlations which
cannot be determined from the Young measure �see Example � of Section �����

The �rst results on the evolution of Young measures and creation or
non	creation of oscillations were obtained by Tartar for kinetic models and
more general semilinear hyperbolic systems ��Ta �
 � �Ta �� � �Ta �� � �Ta �� �
�Ta �� � �MPT �� �� see �Jo �� � �JMR �� � �Mi �� for further developments�
In �FBS �� Tartar�s ideas were used to study the evolution of Young mea	
sures for a viscoelastically damped wave equation with nonmonotone stress	
strain relation� Theil �Th �� recently obtained very sharp results on this
problem by a modi�cation of the method that relies on transport theory
rather than on a study of the moments of the measure� Otto derived equa	
tions for the evolution of microstructure in unstable two	phase �ow through
porous media �Ot �� and in magnetic �uids �Ot �� � further references on
the evolution of microstructure include �De �� and �HR �� �

Regarding the third question about evolution laws and hysteresis Chu and
James observed that the hysteresis curves obtained in cyclic biaxial loading
of a Cu	Al	Ni single crystal cannot be explained by usual kinetic laws� One
alternative approach is based on metastability induced by lack of rank	�
connections �BCJ �� � another interesting route is explored in �ACJ �� � the
energy landscape in function space contains many local minima �that corre	
spond to di�erent microstructures�� and the study of the e�ective evolution
laws for such �wiggly� potentials yields surprising conclusions already in a
simple model� see also �Kin �� � For other views of hysteresis� see the sur	
vey article of Huo and I� M�uller �HM �� � the recent monograph of Brokate
and Sprekels �BS �� and the series of lectures �Br �� � general references for
hysteresis include �KP �� and �Vi �� �

�
� Computation

The computation of microstructure by numerical energy minimization is a
very challenging task� see Luskin �Lu �� for a recent survey� If microstruc	
ture is numerically observed� it often forms on the scale of the underlying
mesh� Hence calculations are notoriously mesh dependent unless �expensive�

��



regularizations are included or special care is taken�
So far most numerical schemes do not make use of analytical insights�

except for scalar problems where relaxation leads not only to a drastic speed
up but also to more accurate results ��CP �� �� Some other exceptions are
discussed in Sections � and � of �Lu �� � One di�culty in using analytical in	
formation in higher dimensions is that quasiconvexity while being the natural
convexity notion �see Section ���� is still largely mysterious and no e�cient
algorithm for the computation of the quasiconvex hull is known� At least for
rank	convex hulls there has been some progress in �MP �� and �Do �� �

One important issue is how to represent microstructures numerically in
an e�cient way� Currently mostly �nite element approaches are used but
they require a lot of unknowns to represent simple microstructures such as
an order � laminate �cf� Fig� ���� Ideally a good representation should
both yield a high compression ratio and be well adapted to the numerical
algorithm� The search for better analytical objects to describe microstructure
discussed above may well be relevant here�

�
� Some solved and unsolved problems

The following table gives an overview of the state of Problems � and � for
sets K without rank	one connections� Further examples and references can
be found in �Ba �
b � �BFJK �� � �Sv �� �
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Notes

Here I have collected some additional references to the literature without any
pretention to be exhaustive or impartial�

Chapter � The idea to use nonlinear continuum theory for elastic crystals
and solid	solid phase transformations goes back to Ericksen �Er �� � �Er �� �
�Er �
 � �Er �� � �Er �� �see also �Gu �� � �Ja �� � �Pa �� � �Pi �� � and was
developed in the context of the calculus of variations by Ball and James
��BJ �� � �BJ �� �� Chipot and Kinderlehrer �CK �� � Fonseca �Fo �� and
subsequently by many others� There is a similar theory for micromagnetism
��Br �� � �DS �� � �JK �
 � and magnetostriction ��Br �� � �JK �� ��

The analytical foundations of the theory go back to the fundamental work
of Morrey ��Mo �� � �Mo �� � on lower semicontinuity �extended by Reshet	
nyak �Re �� � �Re �� to problems in quasiconformal geometry and by Ball
�Ba �� to nonlinear elasticity� and to the pioneering work of Tartar on com	
pensated compactness �partly in collaboration with Murat� and on weak con	
vergence as a tool to pass from microscopic to macroscopic descriptions� His
work in the seventies is summarized in the seminal paper �Ta ��b � some more
recent developments are discussed in �Ta �
 � �Ta �� and �Ta �� � and a com	
prehensive treatment will appear in �Ta �� � While the current notes focus
mostly on variational problems Tartar�s approach is more general� In view of
applications to nonlinear partial di�erential equations in continuum mechan	
ics he considers general combinations of pointwise constraints w 
 K � Rd

a�e� �these usually arise from constitutive equations� and di�erential con	
straints

P
j�k aijk�jw

k � 
 �or in a compact set of W���p� these correspond to
the balance laws�� The situation considered in the current notes corresponds
to the constaint curl w � 
�

Partially motivated by Eshelby�s classic work on ellipsoidal inclusions
�Es ��� Es ��� Es �� � Khachaturyan� Roitburd and Shatalov ��Kh �� � �KSh �� �
�Ro �� � �Ro �� � developed already in the sixties a theory of microstructure
based on energy minimization in the context of linear elasticity� see �Kh �� 
for a comprehensive treatment� Comparisons between the linear and the
nonlinear theory appear in �BJ �� � �Bh �� and �Ko �� �

For lack of space I have not been able to discuss the close relation between
the variational approach to microstructures and the theory of optimal design
and optimal composites� Some constructions used in optimal design closely
resemble observed phase arrangements in solid	solid phase transitions� Early

�
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work in this direction includes �Ta �� � �Ta ��b � �Mu �� and �KL �� � A
number of important papers that were previously di�cult to access have
recently appeared in English translation in �CK ��a � Further references can
be found both in the introduction and the individual articles of that volume
as well as in the forthcoming books �Mi �� and �Ta �� �

The approach to microstructures via energy minimization provides a new
foundation for the crystallographic theory of martensite ��BM �� � �WLR �� �
and has found important applications which include� new criteria for the re	
versible shape	memory e�ect based on the possibility of self	accommodation
of the transformed phase �Bh �� � bounds for the recoverable strains in poly	
crystals and their dependence on the symmetry of the phase transformation
and material texture ��BK �� � �BK �� � �BRL �� �� a proposed design of mi	
cromachines that are based on thin �lms of shape	memory materials �BhJ �� 
and the discovery of a new magnetostrictive material with greatly enlarged
magnetostrictive constant �JW �� �

The book by Pitteri and Zanzotto �PZ �� and the forthcoming book by
Ball and James �BJ �� as well as the collection of reviews �AMM �� give
an overview of the theory and engineering applications� More on the math	
ematical side� the recent book of Pedregal �Pe �� reviews the relevance of
microstructure and Young measures in various areas of application� while
Roub�.�cek�s book �Ro �� focuses more on the functional analytic aspects�
Evans� notes �Ev �
 are an excellent introduction to the application of weak
convergence methods to partial di�erential equations� Many further exam	
ples can be found in �BFJK �� and �Sv �� �

The experimental observations described in Section ��� are discussed in
detail in �CJ �� and in Chu�s thesis �Ch �� � a careful comparison of theory
and experiment for a variety of solid	solid phase transformations was under	
taken by Hane �Ha �� �

Chapter � The connection with the Cauchy	Riemann equation appears in
�Sv ��a � A counterpart of Theorem ��� holds for quasiconformal maps� i�e�
K � R�SO�n�� n � �� In this case one is led to degenerate elliptic equations
and Reshetnyak�s work ��Re ��a � �Re �� � was a breakthrough in the study of
quasiconformal and quasiregular maps by pde methods� Part �i� of Theorem
��� was proved in �Zh and also follows from more general results in �JO �
 �
the proof given is due to Kirchheim�

Lemma ��� is called the �span restriction� in �BFJK �� because it implies
�in view of Corollary ���� that the span of the support of a nontrivial gradient

�
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Young measure must contain a rank	� line� The result is essentially a special
case of Theorem � in Tartar�s work �Ta �� � It was probably known in some
form to Serre �Se �� and is implicit in �DP �� � The use of elliptic theory is
a common idea in the theory of microstructures� see e�g� �DP �� � �Ma �� �
�Sv ��b � �Sv �� �

Chapter � Young measures �also known as parametrized measures� re	
laxed controls� chattering controls or generalized curves� were invented by
L�C� Young �Yo �� � his book �Yo �� is a delightful read �see also McShane
�MS �
 for early applications of the theory and �MS �� for a personal re	
view�� The theory was generalized to much more general domains� target
spaces and integrals by Berliocchi and Lasry �BL �� � Balder �Ba �� and
many others including Kristensen �Kr �� � recent surveys with extensive ref	
erences are �Va �
 and �Va �� � Varifolds �see �Al �� � �Al �� � �Re ��b � are
a generalization of Young measures in a geometric setting� Tartar �Ta ��b�
Ta �� introduced Young measures as a fundamental tool for the study of os	
cillation e�ects as well as compactness and existence questions in nonlinear
partial di�erential equations� His theory of compensated compactness allows
one to derive nontrivial constraints on the Young measure from the combina	
tion of pointwise and di�erential constraints on the generating sequence� One
of the early successes of the theory were applications to conservation laws
��Ta �� � �DP �� �� for other applications see e�g� �Ev �
 � �Sv �� � �Ta �� �

The presentation here follows �Ba �� � Section ��� is based on �BJ �� �
Another phenomenon that Young measures cannot detect are concentration
e�ects� Varifolds� currents �FF �
� Fe ��� GMS ��� GMS �� or H	measures
�Ge ��� Ta �
 do better in this regard� see also �FMP �� � There are various
alternative proofs of the fundamental theorem� via disintegration of measures
on !�Rd �see e�g� �BL �� for a much more general setting and �Ev �
 for
a short proof�� via L� weak� precompactness of bounded sequences and the
theory of multivalued maps �see �Sy �� � or by consideration of countable
dense sets of integrands fj and test functions �k and diagonalization� Corol	
lary ��� is a special case of results in �Ba �� �

Chapter � The fundamental connection between quasivonvexity and lower
semicontinuity was discovered by Morrey �see �Mo �� � �Mo �� �� Dacorogna
�Da �� � �Da ��a discovered the relation between quasiconvexity and relax	
ation �see also �AF �� �� his book �Da �� gives a comprehensive treatment of
the di�erent notions of convexity� The work of Acerbi and Fusco �AF �� and

�
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Marcellini �Ma �� brought a major technical re�nement with the coverage
of Carath�eodory integrands� Since then many further re�nements and gen	
eralizations have been achieved� a selection is �ABF �� � �BFM �� � �Fo �� �
�Kr ��b � �Ma �� � and many further references can be found there� For the
connection between quasiconvexity� regularity and compactness see �Ev �� �
�EG �� � �FH �� and �GM �� �

Tartar has pointed out various weaknesses of quasiconvexity� First� quasi	
convexity might not be necessary to obtain existence of minimizers� In view
of Ekeland�s variational principle �Ek �� �which makes use of the Bishop	
Phelps argument �BP �� � one can choose minimizing sequences that satisfy
in addition div�k � 
 in W���q where �k � �f

�F
�Duk� is the stress and hence

one does not need to verify lower semicontinuity along arbitrary sequences�
To my knowledge this line of thought has not been explored in detail� Sec	
ondly it is not clear �indeed rather doubtful� whether quasiconvexity implies

the stability of equilibria� i�e� whether the conditions uk
�
� u in W ����

�k
�
� � in L� and div�k � div� in W���� do imply � � �f

�F
�Du� �by con	

trast Jensen obtained a nice classi�cation in the scalar case� see �Ta ��b �
Theorem ���� �Sver�ak has shown �Sv �� � �Sv �� that the compactness ar	
guments that are the cornerstone of the regularity theory for minimizers for
�uniformly� quasiconvex integrals fail for solutions of the equilibrium equa	
tions� For arguments in favour of quasiconvexity� in addition to those in the
text� see �BMa �� �cf� also �Me �� � pp����*���� and �BM �� � Theorem ����

Sections ��� and ��� are partially based on �BJ �� � In the de�nition
of quasiconvexity often additional restrictions on the integrand are imposed�
H�usseinov �Hu �� � �Hu �� realized that this is not necessary� see also �Fo �� �
Section ��� follows partially unpublished lectures by �Sver�ak� see also �Sv �� �
�Sver�ak�s counterexample is reminiscent of a counterexample by Tartar in
the theory of compensated compactness �see �Ta ��b � pp����*����� The
proof of the classi�cation result follows roughly Kinderlehrer and Pedregal�s
original work �KP �� �see also �Kr �� �� Some simpli�cations� in particular
for the nonhomogeneous case� are based on discussions with Alberti� Sychev
�Sy �� recently presented independently a similar approach for the case � �
p � �� The idea to use the Hahn	Banach theorem to characterize Young
measures appears e�g� in �Ta ��b � p����� for the case without di�erential
constraints� in a similar vein the Krein	Milman theorem is used in �BL �� �
p����� The proof of Theorem �����i� is by now standard �see �Mo �� �� the
proof of Theorem ����iii� is the same as Fonseca�s �Fo �� � see also �Hu �� �

�
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Truncation arguments that are closely related to what I called Zhang�s lemma
were used earlier by Acerbi and Fusco �AF �� � �AF �� � based on work of
Liu �Li �� �

Gradient Young measures and quasiconvexity correspond to the con	
straint curlv � 
� As mentioned above� in continuum mechanics and elec	
tromagnetism one also meets more general systems of �rst order constraints
A�Dv� � 
� If A satis�es a constant rank condition there is a largely parallel
theory ��Da ��b � �FM �� � �in an Lp	setting� � � p ��� while the situation
is widely open even in simple examples where this condition fails �see �Ta �� ��

Chapter � Most of the material is taken from �MS �� and �Mu ��c � The
basic existence result is the theorem on p���� of Gromov�s book �Gr �� � A
detailed proof for a special case and the application to the two	well problem
are described in �MS �� � The case K � O��� is studied in �CP �� �here some
simpli�cations occur since K lc � convK�� results for more general isometric
maps appear in �Gr �� � Chapter ������� For variable prescribed singular val	
ues see also �CPe �� �

Chapter � This chapter is based on �Mu ��c � Theorem ��� is taken from
�Mu �� � the ���� scaling had been predicted earlier by Tartar based on
matched asymptotic expansions� The Modica	Mortola inequality �MM ��a�
MM ��b was found shortly after De Giorgi had introduced the notion of
-	convergence �DG �� � �DGF �� � but was initially somewhat overlooked�
With the growing interest in the gradient theory of phase transitions since
the mid	�
�s �see �BF �� � �Bo �
 � �FT �� � �Gu �� �KS �� � �Mo �� and the
references therein� it later became a crucial tool� Dal Maso�s book �DM �� is
a good reference on -	convergence with a very useful commented bibliogra	
phy� The in�uence of surface energy on phase transformations in crystals was
studied in a series of papers by Parry and others �MP �� � �Pa ��a � �Pa ��b �
�Pa �� � mostly in one	dimensional situations�
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