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Preface

In these notes we give an introduction to mathematical statistical mechanics,
based on the six lectures given at the Max Planck institute for Mathematics in
the Sciences February/March 2006. The material covers more than what has
been said in the lectures, in particular examples and some proofs are worked
out as well the Curie-Weiss model is discussed in section 9.3. The course
partially grew out of lectures given for final year students at the University
College Dublin in spring 2004. Parts of the notes are inspired from notes of
Joe Pulé at University College Dublin.

The aim is to motivate the theory of Gibbs measures starting from basic
principles in classical mechanics. The first part covers Sections 1 to 5 and
gives a route from physics to the mathematical concepts of Gibbs ensembles
and the thermodynamic limit. The Sections 6 to 8 develop a mathematical
theory for Gibbs measures. In Subsection 6.4 we give a proof of the ex-
istence of phase transitions for the two-dimensional Ising model via Peierls
arguments. Translation invariant Gibbs measures are characterised by a vari-
ational principle, which we outline in Section 7. Section 8 gives a quick intro-
duction to the theory of large deviations, and Section 9 covers some models
of statistical mechanics. The part about Gibbs measures is an excerpt of
parts of the book by Georgii ([Geo88]). In these notes we do not discuss
Boltzmann’s equation, nor fluctuations theory nor quantum mechanics.

Some comments on the literature. More detailed hints are found through-
out the notes. The books [Tho88] and [Tho79] are suitable for people, who
want to learn more about the physics behind the theory. A standard ref-
erence in physics is still the book [Hua87]. The route from microphysics to
macrophysics is well written in [Bal91] and [Bal92]. The old book [Kur60] is
nice for starting with classical mechanics developing axiomatics for statistical
mechanics. The following books have a higher level with special emphasis
on the mathematics. The first one is [Khi49], where the setup for the micro-
canonical measures is given in detail (although not in used modern manner).
The standard reference for mathematical statistical mechanics is the book
[Rue69] by Ruelle. Further developments are in [Rue78] and [Isr79]. The
book [Min00] contains notes for a lecture and presents in detail the two-
dimensional Ising model and the Pirogov-Sinai theory, the latter we do not
study here. A nice overview of deep questions in statistical mechanics gives
[Gal99], whereas [Ell85] and [Geo79],[Geo88] have their emphasis on proba-
bility theory and large deviation theory. The book [EL02] gives a very nice
introduction to the philosophical background as well as the basic skeleton of
statistical mechanics.
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I hope these lectures will motivate further reading and perhaps even fur-
ther research in this interesting field of mathematical physics and stochastics.
Many thanks to Thomas Blesgen for reading the manuscript. In particular I
thank Tony Dorlas, who gave valuable comments and improvements.

Leipzig, Easter 2006 Stefan Adams
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1 Introduction

The aim of equilibrium Statistical Mechanics is to derive all the equilibrium
properties of a macroscopic system from the dynamics of its constituent par-
ticles. Thus its aim is not only to derive the general laws of thermodynamics
but also the thermodynamic functions of a given system. Mathematical Sta-
tistical Mechanics has originated from the desire to obtain a mathematical
understanding of a class of physical systems of the following nature:

• The system is an assembly of identical subsystems.
• The number of subsystems is large (N ∼ 1023, Avogardo’s number 6.023×
1023, e.g. 1cm3 of hydrogen contains about 2.7 × 1019 molecules/atoms).
• The interactions between the subsystems are such as to produce a thermo-
dynamic behaviour of the system.

Thermodynamic behaviour is phenomenological and refers to a macroscopic
description of the system. Now ”macroscopic description” is operationally
defined in the way that subsystems are considered as small and not individ-
ually observed.

Thermodynamic behaviour:

(1) Equilibrium states are defined operationally. A state of an isolated system
tends to an equilibrium state as time tends to +∞ (approach to equilibrium).
(2) An equilibrium state of a system consists of one or more macroscopically
homogeneous regions called phases.
(3) Equilibrium states can be parametrised by a finite number of thermody-
namic parameters (e.g. temperature, volume, density, etc) which determine
the thermodynamic functions (e.g. free energy, pressure, entropy, magneti-
sation, etc).

It is believed that the thermodynamic functions depend piecewise ana-
lytical (or smoothly) on the parameters and that singularities correspond to
changes in the phase structure of the system (phase transitions). Classical
thermodynamics consists of laws governing the dependence of the thermo-
dynamic functions on the experimental accessible parameters. These laws
are derived from experiments with macroscopic systems and thus are not
derived from a microscopic description. Basic principles are the zeroth, first
and second law as well as the equation of state for the ideal gas.

The art of the mathematical physicist consists in finding a mathematical
justification for the statements (1)-(3) from a microscopic description. A mi-
croscopic complete information is not accessible and is not of interest. Hence,
despite the determinism of the dynamical laws for the subsystems, random-

1



ness comes into play due to lack of knowledge (macroscopic description). The
large number of subsystems is replaced in a mathematical idealisation by in-
finitely many subsystems such that the extensive quantities are scaled to stay
finite in that limit. Stochastic limit procedures as the law of large numbers,
central limit theorems and large deviations principles will provide appropri-
ate tools. In these notes we will give a glimpse of the basic concepts. In
the second chapter we are concerned mainly with the Mechanics in the name
Statistical Mechanics. Here we motivate the basic concepts of ensembles via
Hamilton equations of motions as done by Boltzmann and Gibbs.

2 Ergodic theory

2.1 Microscopic dynamics and time averages

We consider in the following N identical classical particles moving in R
d, d ≥

1, or in a finite box Λ ⊂ R
d. We idealise these particles as point masses

having the mass m. All spatial positions and momenta of the single particles
are elements in the phase space

Γ =
(
R
d × R

d)2N or ΓΛ =
(
Λ × R

d)2N . (2.1)

Specify, at a given instant of time, the values of positions and momenta of the
N particles. Hence, one has to specify 2dN coordinate values that determine
a single point in the phase space Γ respectively ΓΛ. Each single point in
the phase space corresponds to a microscopic state of the given system of N
particles. Now the question arises whether the 2dN− dimensional continuum
of microscopic states is reasonable. Going back to Boltzmann [Bol84] it seems
that at that time the 2dN− dimensional continuum was not really deeply
accepted ([Bol74], p. 169):

Therefore if we wish to get a picture of the continuum in words,
we first have to imagine a large, but finite number of particles
with certain properties and investigate the behaviour of the en-
sembles of such particles. Certain properties of the ensemble may
approach a definite limit as we allow the number of particles ever
more to increase and their size ever more to decrease. Of these
properties one can then assert that they apply to a continuum,
and in my opinion this is the only non-contradictory definition of
a continuum with certain properties...

and likewise the phase space itself is really thought of as divided into a fi-
nite number of very small cells of essentially equal dimensions, each of which
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determines the position and momentum of each particle with a maximum
precision. Here the maximum precision that the most perfect measurement
apparatus can possibly provide is meant. Thus, for any position and momen-
tum coordinates

δp(j)

i δq
(j)

i ≥ h, for i = 1, . . . , N, j = 1, . . . , d,

with h = 6, 62 × 10−34 Js being Planck’s constant. Microscopic states of
the system of N particles should thus be represented by phase space cells
consisting of points in R

2dN (positions and momenta together) with given
centres and cell volumes hdN . In principle all what follows should be for-
mulated within this cell picture, in particular when one is interested in an
approach to the quantum case. However, in this lectures we will stick to the
mathematical idealisation of the 2dN continuum of the microscopic states,
because all important properties remain nearly unchanged upon going over
to the phase cell picture.

Let two functions W : R
d → R and V : R+ → R be given. The energy of

the system of N particles is a function of the positions and momenta of the
single particles, and it is called Hamiltonian or Hamilton function. It is
of the form

H(q, p) =
N∑
i=1

( p2
i

2m
+W (qi)

)
+
∑

1≤i<j≤N
V (|qi − qj|), (2.2)

where q = (q1, . . . , qN ), p = (p1, . . . , pN). Here, the function W is called the
external-potential at the spatial positions due to external forces (walls,
pressure,...) or external fields (gravitation, magnetic field,...), and the func-
tion V is called the pair potential, depending only on the spatial distances
of each pair of particles. Also more general many-particle interaction poten-
tials can be considered (see [Rue69] for details). In the following we assume
that the Hamiltonian H : Γ → R is twice continuously differentiable and we
abbreviate n = dN . The phase space dynamics is governed by Hamilton’s
equations of motion

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
, i = 1, . . . , N, (2.3)

where the dot denotes as usual differentiation with respect to the time vari-
able. If J denotes the 2n× 2n matrix(

0 1ln
−1ln 0

)
,
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1ln the identity in R
n, the Hamilton vector field is given as

v : Γ → Γ, x �→ J∇H(x)

with x = (q, p) ∈ R
2n and

∇H(x) =
(∂H
∂q1

, . . . ,
∂H

∂qN
,
∂H

∂p1
. . . ,

∂H

∂pN

)
.

With the vector field v we associate the differential equations

d

dt
x(t) = v(x(t)), (2.4)

where x(t) denotes a single microstate of the system for any time t ∈ R. For
each point x ∈ Γ there is one and only one function x : R → Γ such that
x(0) = x and dx(t)

dt
= v(x(t)) for any t ∈ R. For any t ∈ R we define a phase

space map
φt : Γ → Γ, x �→ φt(x) = x(t).

From the uniqueness property we get that Φ = {φt : t ∈ R} is a one-parameter
group which is called a Hamiltonian flow. Hamiltonian flows have the
following property.

Lemma 2.1 Let Φ be a Hamiltonian flow with Hamiltonian H, then any
function F = f ◦H of H is invariant under φ:

F ◦ φt = F

for all t ∈ R.

Proof. The proof follows from the chain rule and 〈x, Jx〉 = 0. Recall that
if G : R

n → R
m then G′(x) is the m× n matrix(

∂Gi

∂xj
(x)

)
i=1,...,m
j=1,...,n

for x ∈ R
n.

d

dt
F (φt(x)) = F ′(φt(x))

dφt
dt

(x)

= f ′(H(φt(x))) H
′(φt(x))

dφt
dt

(x)

= f ′(H(φt(x))) (∇H(φt(x)))
T dφt

dt
(x)

= f ′(H(φt(x))) 〈∇H(φt(x)),
dφt
dt

(x)〉

= f ′(H(φt(x))) 〈∇H(φt(x)) , J ∇H(φt(x))〉.
�

The following theorem is the well known Liouville’s Theorem.
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Theorem 2.2 (Liouville’s Theorem) The Jacobian | detφ′
t(x)| of a Hamil-

tonian flow is constant and equal to 1.

Proof. Let M(t) and A(t) be linear mappings such that

dM(t)

dt
= A(t)M(t)

for all t ≥ 0, then

detM(t) = detM(0) exp
(∫ t

0

trace A(s)ds
)
.

Now
dφt(x)

dt
= (v ◦ φt)(x).

Thus
dφ′

t(x)

dt
= v′(φt(x))φ

′
t(x)

so that det φ′
t(x) = exp

∫ t
0

trace v′(φs(x))ds because φ′
0(x) is the identity map

on Γ. Now
v(x) = J ∇H(x) and v′(x) = JH ′′(x),

where H ′′(x) =
(

∂2H
∂xi∂xj

)
is the Hessian of H at x. Since H is twice continu-

ously differentiable, H ′′(x) is symmetric. Thus

trace (JH ′′(x)) = trace((JH ′′(x))T ) = trace ((H ′′(x))TJT )

= trace (H ′′(x)(−J)) = −trace (JH ′′(x)).

Therefore trace (JH ′′(x)) = 0 and det(φ′
t(x)) = 1. �

From Lemma 2.1 and Theorem 2.2 it follows that a probability measure
on the phase space Γ, i.e., an element of the set P(Γ,BΓ) of probability
measure on Γ with Borel σ−algebra BΓ, whose Radon-Nikodym density with
respect to the Lebesgue measure is a function of the Hamiltonian H alone is
stationary with respect to the Hamiltonian flow Φ = {φt : t ∈ R}.

Corollary 2.3 Let µ ∈ P(Γ,BΓ) with density ρ = F ◦H for some function
F : R → R be given, ie., µ(A) =

∫
A
ρ(x)dx for any A ∈ BΓ. Then

µ ◦ φ−1
t = µ for any t ∈ R.
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Proof. We have

µ(A) =

∫
Γ

1lA(x)ρ(x)dx =

∫
Γ

1lA(φt(x))ρ(φt(x))| detφ′
t(x)|dx

=

∫
Γ

1lφ−1
t A(x)ρ(x)dx = µ(φ−1

t A). �

For such a stationary probability measure one gets a unitary group of time
evolution operators in an appropriate Hilbert space as follows.

Theorem 2.4 (Koopman’s Lemma:) Let Γ1 be a subset of the phase space
Γ invariant under the flow Φ, i.e., φtΓ1 ⊂ Γ1 for all t ∈ R. Let µ ∈
P(Γ1,BΓ1) be a probability measure on Γ1 stationary under the flow Φ that
is µ ◦ φ−1

t = µ for all t ∈ R. Define Utf = f ◦ φt for any t ∈ R and any
function f ∈ L2(Γ1, µ), then {Ut : t ∈ R} is a unitary group of operators in
the Hilbert space L2(Γ1, µ).

Proof. Since UtU−t = U0 = I, Ut is invertible and thus we have to prove
only that Ut preserves inner products.

〈Utf, Utg〉 =

∫
(f ◦ φt)(x)(g ◦ φt(x)µ(dx) =

∫
(f̄ g)(φt(x))µ(dx)

=

∫
(f̄ g)(x)(µ ◦ φ−1

t )(dx) =

∫
(f̄g)(x)µ(dx) = 〈f, g〉.

�

Remark 2.5 (Boundary behaviour) If the particles move inside a finite
volume box Λ ⊂ R

d according to the equations (2.3) respectively (2.4); these
equations of motions do not hold when one of the particles reaches the bound-
ary of Λ. Therefore it is necessary to add to theses equations some rules of
reflection of the particles from the inner boundary of the domain Λ. For ex-
ample, we can consider the elastic reflection condition: the angle of incidence
is equal to the angle of reflection. Formally, such a rule can be specified by a
boundary potential Vbc.

We discuss briefly Boltzmann’s Proposal for calculating measured values
of observables. Observables are bounded continuous functions on the phase
space. Let Γ1 be a subset of phase space invariant under the flow Φ, i.e.
φtΓ1 ⊂ Γ1 for all t ∈ R. Suppose that f : Γ → R is an observable and suppose
that the system is in Γ1 so that it never leaves Γ1. Boltzmann proposed that
when we make a measurement it is not sharp in time but takes place over
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a period of time which is long compared to say times between collisions.
Therefore we can represent the observed value by

f̄(x) = lim
T→∞

1

2T

∫ T

−T
dt(f ◦ φt)(x).

Suppose that µ is a probability measure on Γ1 invariant with respect to φt
then ∫

Γ1

f̄(x)µ(dx) = lim
T→∞

1

2T

∫ T

−T
dt

∫
Γ1

(f ◦ φt)(x)µ(dx)

= lim
T→∞

1

2T

∫ T

−T
dt

∫
Γ1

f(x)(µ ◦ φ−1
t )(dx)

= lim
T→∞

1

2T

∫ T

−T
dt

∫
Γ1

f(x)µ(dx)

=

∫
Γ1

f(x)µ(dx).

Assume now that the observed value is independent of where the system is
at t = 0 in Γ1, i.e. if f̄(x) = f̄ for a constant f̄ , then∫

Γ1

f̄(x)µ(dx) =

∫
Γ1

f̄µ(dx) = f̄ .

Therefore

f̄ =

∫
Γ1

f(x)µ(dx).

We have made two assumptions in this argument:

(1) lim
T→∞

1

T

∫ T

−T
dt(f ◦ φt)(x) exists.

(2) f̄(x) is constant on Γ1.

Statement (1) has been proved by Birkhoff (Birkhoff’s pointwise ergodic the-
orem (see section 2.3 below)): f̄(x) exists almost everywhere. We shall prove
a weaker version of this, Von Neumann’s ergodic theorem.
Statement (2) is more difficult and we shall discuss it later.

The continuity of the Hamiltonian flow entails that for each f ∈ Cb(R
d) and

each x ∈ Γ the function

fx : R → R, �→ fx(t) = f(x(t)) (2.5)
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is a continuous function of the time t. For any time dependent function ϕ
we define the following limit

〈ϕ〉 := lim
T→∞

1

2T

∫ T

−T
dtϕ(t) (2.6)

as the time average.

2.2 Boltzmann’s heuristics and ergodic hypothesis

Boltzmann’s argument (1896-1898) for the introduction of ensembles in sta-
tistical mechanics can be broken down into steps which were unfortunately
entangled.

1. Step: Find a set of time dependent functions ϕ which admit an invari-
ant mean 〈ϕ〉 like (2.6).

2. Step: Find a reasonable set of observables, which ensure that the time
average of each observable over an orbit in the phase space is indepen-
dent of the orbit.

Let Cb(R) be the set of all bounded continuous functions on the real line R,
equip it with the supremum norm ||ϕ||∞ = supt∈R

|ϕ(t)|, and define

M =
{
ϕ ∈ Cb(R) : 〈ϕ〉 = lim

T→∞

1

2T

∫ T

−T
dtϕ(t) exists

}
. (2.7)

Lemma 2.6 There exist positive linear functionals λ : Cb(R) → R, nor-
malised to 1, and invariant under time translations, i.e., such that

(i) λ(ϕ) ≥ 0 for all ϕ ∈ M,

(ii) λ linear,

(iii) λ(1) = 1,

(iv) λ(ϕs) = λ(ϕ) for all s ∈ R, where ϕs(t) = ϕ(t− s), t, s ∈ R,

such that λ(ϕ) = limT→∞
1

2T

∫ T
−T dtϕ(t) for all ϕ ∈ Cb(R) where this limit

exists.

Our time evolution

(t, x) ∈ R × Γ �→ φt(x) = x(t)

is continuous, and thus we can substitute fx in (2.5) for ϕ in the above result.
This allows to define averages on observables as follows.
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Lemma 2.7 For every f ∈ Cb(Γ) and every x ∈ Γ, there exists a time-
invariant mean λx given by

λx : Cb(Γ) → R, f �→ λx(f) = λ(fx),

with λx depending only on the orbit {x(t) : t ∈ R, x(0) = x}.

For any E ∈ R+ let

ΣE = {(q, p) ∈ Γ: : H(q, p) = E}

denote the energy surface for the energy value E for a given Hamiltonian
H for the system of N particles.

The strict ergodicity hypothesis

The energy surface contains exactly one orbit, i.e. for every x ∈ Γ
and E ≥ 0

{x(t) : t ∈ R, x(0) = x} = ΣE .

There is a more realistic mathematical version of this conjecture.

The ergodicity hypothesis

Each orbit in the phase space is dense on its energy surface, i.e.
{x(t) : t ∈ R, x(0) = x} is a dense subset of ΣE.

2.3 Formal Response: Birkhoff and von Neumann er-
godic theories

We present in this section briefly the important results in the field of ergodic
theory initiated by the ergodic hypothesis. For that we introduce the notion
of a classical dynamical system.

Notation 2.8 (Classical dynamical system) A classical dynamical sys-
tem is a quadruple (Γ,F , µ; Φ) consisting of a probability space (Γ,F , µ),
where F is a σ−algebra on Γ, and a one-parameter (additive) group T (R
or Z) and a group Φ of actions, φ : T × Γ → Γ, (t, x) �→ φt(x), of the group
T on the phase space Γ, such that the following holds.

(a) fT : T × Γ → R, (t, x) �→ f(φt(x)) is measurable for any measurable
f : Γ → R,

(b) φt ◦ φs = φt+s for all s, t ∈ T ,
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(c) µ(φt(A)) = µ(A) for all t ∈ T and A ∈ F .

Theorem 2.9 (Birkhoff) Let (Γ,F , µ; Φ) be a classical dynamical system.
For every f ∈ L1(Γ,F , µ), let

λTx (f) =
1

2T

∫ T

−T
dtf(φt(x)).

Then there exists an event Af ∈ F with µ(Af) = 1 such that

(i) λx(f) = limT→∞ λTx (f) exists for all x ∈ Af ,

(ii) λφt(x)(f) = λx(f) for all (t, x) ∈ R × Af ,

(iii) ∫
Γ

µ(dx)λx(f) =

∫
Γ

µ(dx)f(x).

Proof. [Bir31] or in the book [AA68]. �

Note that in Birkhoff’s Theorem one has convergence almost surely. There
exists a weaker version, the following ergodic theorem of von Neumann. We
restrict in the following to classical dynamical system with T = R, the real
time. Let H = L2(Γ1,F , µ) and define Utf = f ◦ φt for any f ∈ H. Then by
Koopman’s lemma Ut is unitary for any t ∈ R.

Theorem 2.10 (Von Neumann’s Mean Ergodic Theorem) Let

M = {f ∈ H : Utf = f ∀ t ∈ R},

then for any g ∈ H,

gT :=
1

T

∫ T

0

dtUtg

converges to Pg as T → ∞, where P is the orthogonal projection onto M.

For the proof of this theorem we need the following discrete version.

Theorem 2.11 Let H be a Hilbert space and let U : H → H be an unitary
operator. Let N = {f ∈ H : Uf = f} = ker(U − I) then

lim
N→∞

1

N

N−1∑
n=0

Ung = Qg

where Q is the orthogonal projection onto N .
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Proof of Theorem 2.10. Let U = U1 and g =
∫ 1

0
dtUtf , then

Ung =

∫ 1

0

dtUn+tf =

∫ n+1

n

dtUtf

and thus
N−1∑
n=0

Ung =

∫ N

0

dtUtf.

Therefore 1
N

∫ N
0

dtUtf converges as N → ∞. For T ∈ R+, by writing T =

N + r where 0 ≤ r < 1 and N ∈ N, we deduce that 1
T

∫ T
0

dtUtf converges as

T → ∞. Define the operator P̃ by

P̃ f = lim
T→∞

1

T

∫ T

0

dtUtf.

Note that P̃ f ∈ M and

P̃ ∗f = lim
T→∞

1

T

∫ T

0

dtU−tf ∈ M.

If f ∈ M then clearly P̃ f = f , while if f ∈ M⊥ for all g ∈ H, 〈P̃ f, g〉 =
〈f, P̃ ∗g〉 = 0 since P̃ ∗g ∈ M and therefore P̃ f = 0. Thus P̃ = P . �

Proof of the Discrete form, Theorem 2.11. We first check that

[ker(I − U)]⊥ = Range(I − U).

If f ∈ ker(I − U) and g ∈ Range(I − U), then for some h,

〈f, g〉 = 〈f, (I − U)h〉 = 〈(I − U∗)f, h〉
= −〈(I − U)f, Uh〉 = 0.

Thus Range(I − U) ⊂ [ker(I − U)]⊥. Since [ker(I − U)]⊥ is closed,

Range(I − U) ⊂ [ker (I − U)]⊥.

If f ∈ [Range(I − U)]⊥, then for all g

0 = 〈f, (I − U)U∗g〉 = 〈(I − U∗)f, U∗g〉 = −〈(I − U)f, g〉.

Therefore (I − U)f = 0, that is f ∈ ker(I − U). Thus

[Range (I − U)]⊥ ⊂ ker (I − U).
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Then
[ker (I − U)]⊥ ⊂ [Range (I − U)]⊥⊥ = Range (I − U).

If g ∈ Range(I − U), then g = (I − U)h for some h. Therefore

1

N

N−1∑
n=0

Ung =
1

N
{h− Uh + Uh− U2h+ U2h− U3h + . . .+ UN−1h− UNh}

=
1

N
{h− UNh}.

Thus ∥∥∥ 1

N

N−1∑
n=0

Ung
∥∥∥ ≤ 2‖h‖

N
→ 0 as N → ∞.

Approximating elements of Range(I − U) by elements of Range(I − U), we
have that 1

N

∑N−1
n=0 U

ng → 0 = Pg for all

g ∈ [ker (I − U)]⊥ = Range(I − U).

If g ∈ ker (I − U), then

1

N

N−1∑
n=0

Ung = g = Pg.

�

Definition 2.12 (Ergodicity) Let Φ = (φt)t∈R be a flow on Γ1 and µ a
probability measure on Γ1 which is stationary with respect to Φ. Φ is said to
be ergodic if for every measurable set F ⊂ Γ1 such that φt(F ) = F for all
t ∈ R, we have µ(F ) = 0 or µ(F ) = 1.

Theorem 2.13 (Ergodic flows) Φ = (φt)t∈R is ergodic if and only if the
only functions in L2(Γ1, µ) which satisfy f◦φt = f are the constant functions.

Proof. Below a.s.(almost surely) means that the statement is true except
on a set of zero measure. Suppose that the only invariant functions are the
constant functions. If φt(F ) = F for all t then 1lF is an invariant function
and so 1lF is constant a.s. which means that 1lF (x) = 0 a.s. or 1lF (x) = 1 a.s.
Therefore µ(F ) = 0 or µ(F ) = 1l.
Conversely suppose φt is ergodic and f ◦ φt = f . Let F = {x| f(x) < a}.
Then φtF = F since

φt(F ) = {φt(x)| f(x) < a} = {φt(x)| f(φt(x) < a} = F.

12



Therefore µ(F ) = 0 or µ(F ) = 1. Thus f(x) < a a.s. or f(x) ≥ a a.s. for
every a ∈ R. Let

a0 = sup{a| f(x) ≥ a a.s.}.
Then, if a > a0, µ({x| f(x) ≥ a}) = 0, and if a < a0, µ({x| f(x) < a}) = 0.
Let (an) and (bn) be sequences converging to a0 such that an > a0 > bn.
Then

{x| f(x) �= a0} = ∪n{x| f(x) ≥ an} ∪ {x| f(x) < bn}.
Thus

µ({x| f(x) �= a0}) ≤
∑
n

(µ({x| f(x) ≥ an}) + µ({x| f(x) < bn})) = 0,

and so f(x) = a0 a.s. �

If we can prove that a system is ergodic, then there is no problem in applying
Boltzmann’s prescription for the time average. For an ergodic system, by the
above theorem, M is the one-dimensional space of constant functions so that

Pg = 〈1, g〉1 =

∫
Γ1

g(x)µ(dx).

Therefore

lim
T→∞

1

2T

∫ T

−T
dtUtg =

∫
Γ1

g(x)µ(dx).

Remark 2.14 However proving ergodicity has turned out to be the most dif-
ficult part of the programme. There is only one example for which ergodicity
has been claimed to be proved and that is for a system of hard rods (Sinai).
This concerns finite systems. In the thermodynamic limit (see Chapter 5)
ergodicity should hold, but we do not discuss this problem.

2.4 Microcanonical measure

Suppose that we consider a system with Hamiltonian H and suppose also
that we fix the energy of the system to be exactly E. We would like to
devise a probability measure on the points of Γ with energy E such that the
measure is stationary with respect to the Hamiltonian flow.
Note that the energy surface ΣE is closed since ΣE = H−1({E}) and H is
assumed to be continuous. Clearly φt(ΣE) = ΣE since H ◦φt = H . Let A(Γ)
denote the algebra of continuous functions Γ → R with compact support.
The following Riesz-Markov theorem identifies positive linear functionals on
A(Γ) with positive measures on Γ.
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Theorem 2.15 (Riesz-Markov) If l : A(Γ) → R is linear and for any pos-
itive f ∈ A(Γ) it holds l(f) ≥ 0, then there is a unique Borel measure µ on
Γ such that

l(f) =

∫
Γ

f(x)µ(dx).

Now define a linear functional lE on A(Γ) by

lE(f) = lim
δ↓0

1

δ

∫
Σ[E,E+δ]

f(x)dx,

where Σ[E,E+δ] = {x| H(x) ∈ [E,E + δ]} is the energy-shell of thickness δ.
By the Riesz-Markov theorem there is a unique Borel measure µ′

E on Γ such
that

lE(f) =

∫
Γ

f(x)µ′
E(dx)

with the properties:

(i) µ′
E is concentrated on ΣE .

If suppf ∩ ΣE = ∅ then for δ small enough since suppf and Σ[E,E+δ]

are closed Σ[E,E+δ] ∩ suppf = ∅ and∫
Σ[E,E+δ]

f(x)dx =

∫
f(x)1lΣ[E,E+δ]

(x)dx = 0.

(ii) µ′
E is stationary with respect to φt.

Since the Lebesgue measure is stationary,

lE(f ◦ φt) = lim
δ↓0

1

δ

∫
Σ[E,E+δ]

(f ◦ φt)(x)dx = lim
δ↓0

1

δ

∫
φt(Σ[E,E+δ])

f(x)dx

= lim
δ↓0

1

δ

∫
Σ[E,E+δ]

f(x)dx = lE(f).

Definition 2.16 (Microcanonical measure) If ω(E) := µ′
E(Γ) < ∞ we

can normalise µ′
E to obtain

µE := µ′
E/ω(E) (2.8)

which is a probability measure on (Γ,BΓ), concentrated of the energy shell ΣE.
The probability µE is called the microcanonical measure or microcanon-
ical ensemble. The normalisation ω(E) is also called the microcanonical
partition function.
The expression S = k logω(E) is called the Boltzmann entropy or micro-
canonical entropy, where k = 1, 38× 10−23Js is Boltzmann’s constant.
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We now give an explicit expression for the microcanonical measure. First we
briefly recall briefly facts on curvilinear coordinates.
Let ζ : R

ν → A ⊂ R
ν be a bijection. Then we can use coordinates t1, t2, . . . tν

where the point x corresponds to the point t = ζ(x) in the new coordinates.
The coordinates are orthogonal if the level surfaces ti = constant, i = 1, . . . , ν
are orthogonal to each other, that is, for all x ∈ R

ν if i �= j,

〈∇ζi(x),∇ζj(x)〉 = 0.

Changing the variables of integration we then get∫
Rν

f(x)dx =

∫
A

f(ζ−1(t))| det(ζ−1)′(t)|dt =

∫
A

f(ζ−1(t))
dt

| det(ζ ′(ζ−1(t))|

=

∫
A

f(ζ−1(t))
dt∏ν

i=1 ‖(∇ζi)(ζ−1(t))‖ .

Note that if A is an n× n matrix with rows a1, . . . , an where 〈ai, aj〉 = 0 for
i �= j, then AAT is a diagonal matrix with diagonal entries ‖a1‖2, . . . , ‖an‖2.
Therefore det(A) =

∏n
i=1 ‖ai‖.

Let Σt1 be the level surface ζ1(x) = t1 (constant). We define the element of
surface area on Σt1 to be

dσt1 =
dt2 . . .dtν∏ν

i=2 ‖(∇ζi)(ζ−1(t))‖ .

Then

dx =
dt1

‖∇ζ1‖
dσt1 .

We apply this to the Microcanonical Measure.
Choose ζ : R

2n → A ⊂ R
2n such that ζ1 = H and so Σt1 is an energy surface.

Then ∫
Σ[E,E+δ]

f(x)dx =

∫ E+δ

E

dt1

∫
Σt1

f(ζ−1(t))

‖∇H(ζ−1(t))‖dσt1 .

Therefore

lim
δ→0

1

δ

∫
Σ[E,E+δ]

f(x)dx =

∫
ΣE

f(ζ−1(E, t2, . . . , t2n))dσE
‖∇H(ζ−1(E, t2 . . . , tn))‖

.

Thus

µ′
E(dx) =

dσE
‖∇H‖ .

In particular

ω(E) =

∫
ΣE

dσE
‖∇H‖ .
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Note also that∫
Γ

g(H(x))f(x)dx =

∫
dt1g(t1)

∫
Σt1

f(ζ−1(t))

‖∇H(ζ−1(t))‖dσt1 .

Notation 2.17 (Mircocanonical Gibbs ensemble) Let Λ ⊂ R
d and N ∈

N, and H (N)

Λ denotes the Hamiltonian for N particles in Λ with elastic bound-
ary conditions. Then we denote the microcanonical measure on (ΓΛ,BΛ) by
µ′
E,Λ and the partition function by

ωΛ(E,N) =
dσE

||H (N)

Λ ||
.

The microcanonical entropy is denoted by SΛ(E,N) = k logωΛ(E,N).

Remark 2.18 Measure which are constructed like the microcanonical mea-
sure on hyperplanes are called Gelfand-Leray measures. In general one might
imagine that there are several integrals of motions. For example the angular
momentum is conserved. Then one has to consider intersections of several
level surfaces. We will not discuss this in these lectures.

3 Entropy

3.1 Probabilistic view on Boltzmann’s entropy

We discuss briefly the famous Boltzmann formula S = k logW for the entropy
and give here an elementary probabilistic interpretation. For that let Ω be
a finite set (the state space) and let there be given a probability measure
µ ∈ P(Ω) on Ω, where P(Ω) denotes the set of probability measures on Ω
with the σ-algebra being the set of all subsets of Ω. In the picture of Maxwell
and Boltzmann, the set Ω is the set of all possible energy levels for a system of
particles, and the probability measure µ corresponds to a specific histogram
of energies describing some macrostate of the system. Assume that µ(x) is
a multiple of 1

n
for any x ∈ Ω, n ∈ N, i.e. µ is a histogram for n trials or a

macrostate for a system of n particles. A microscopic state for the system of
n particles is any configuration ω ∈ Ωn.

Boltzmann’s idea: The entropy of a macrostate µ ∈ P(Ω) corresponds to
the degree of uncertainty about the actual microstate ω ∈ Ωn when only µ
is known and thus can be measured by logNn(µ), the logarithmic number of
microstates leading to µ.
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The associate macrostate for a microstate ω ∈ Ωn is

Ln(ω) =
1

n

n∑
i=1

δωi ,

and Ln(ω) is called the empirical distribution or histogram of ω ∈ Ωn. The
number of microstates leading to a given µ ∈ P(Ω) ∩ 1

n
[0, 1]Ω is the number

Nn(µ) =
∣∣∣{ω ∈ Ωn : Ln(ω) = µ}

∣∣∣ = ( n!∏
x∈Ω(nµ(x))!

)
.

We may approximate µ ∈ P(Ω) by a sequence (µn)n∈N of probability mea-
sures µn ∈ P(Ω) with µn ∈ 1

n
[0, 1]Ω. Then we define the uncertainty H(µ) of

µ via Stirling’s formula as the n → ∞-limit of the mean-uncertainty of µn
per particle.

Proposition 3.1 Let µ ∈ P(Ω) and µn ∈ P(Ω) ∩ 1
n
[0, 1]Ω with n ∈ N and

µn → µ as n→ ∞. Then the limit limn→∞
1
n

logNn(µn) exists and equals

H(µ) = −
∑
x∈Ω

µ(x) logµ(x). (3.9)

Proof. A proof with exact error bounds can be found in [CK81]. �

The entropy H(µ) counts the number of possibilities to obtain the macrostate
or histogram µ, and thus it describes the hidden multiplicity of the ”true”
microstates consistent with the observed µ. It is therefore a measure of the
complexity inherent in µ.

3.2 Shannon’s entropy

We give a brief view on the basic facts on Shannon’s entropy, which was
established by Shannon 1949 ([Sha48] and [SW49]). We base the specific form
of the Shannon entropy functional on probability measures just on a couple of
clear intuitive arguments. For that we start with a sequence of four axioms on
a functional S that formalises the intuitive idea that entropy should measure
the lack of information (or uncertainty) pertaining to a probability measure.
For didactic reasons we limit ourselves to probability measures on a finite
set Ω = {ω1, . . . , ωn} of elementary events. Let P ∈ P(Ω) be the probability
measure with P ({ωi}) = pi ∈ [0, 1], i = 1, . . . , n, and

∑n
i=1 pi = 1. Now we

formulate four axioms for a functional S acting on the set P(Ω) of probability
measures.

Axiom 1: To express the property that S is a function of P ∈ P(Ω) alone
and not of the order of the single entries, one imposes:
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(a) For every permutation π ∈ Sn, where Sn is the group of permuta-
tions of n elements, and any P ∈ P(Ω) let πP ∈ P(Ω) be defined as
πP ({ωi}) = pπ(i) for any i = 1, . . . , n. Then

S(P ) = S(πP ).

(b) S(P ) is continuous in each of the entries pi = P ({ωi}), i = 1, . . . , n.

The next axiom expresses the intuitive fact that the outcome is most random
for the uniform distribution.

Axiom 2: Let P (uniform)({ωi}) = 1
n

for i = 1, . . . , n. Then

S(P ) ≤ S(P (uniform)) for any P ∈ P(Ω).

The next axiom states that the entropy remains constant, whenever we ex-
tend our space of outcomes with vanishing probability.

Axiom 3: Let P ′ ∈ P(Ω′) where Ω′ = Ω ∪ {ωn+1} and assume that
P ′({ωn+1}) = 0. Then

S(P ′) = S(P )

for P ∈ P(Ω) with P ({ωi}) = P ′({ωi}) for all i = 1, . . . , n.

Finally we consider compositions.

Axiom 4: Let P ∈ P(Ω) and Q ∈ P(Ω′) for some set Ω′ = {ω′
1, . . . , ω

′
m}

with m ∈ N. Define the probability measure P ∨Q ∈ P(Ω × Ω′) as

P ∨Q({ωi, ω′
l}) = Q({ω′

l}|{ωi})P ({ωi})

for i = 1, . . . , n, and l = 1, . . . , m. Here Q({ω′
l}|{ωi}) is the conditional

probability of the event {ω′
l} ∈ Ω′ conditioned that the event {ωi} ∈ Ω

occurred. Then
S(P ∨Q) = S(P ) + S(Q|P ),

where S(Q|P ) =
∑n

i=1 piSi(Q) is the expectation of

Si(Q) = −
m∑
l=1

Q({ω′
l}|{ωi}) logQ({ω′

l}|{ωi})

with respect to the probability measure P .
Si(Q) is the conditional entropy of Q given that event {ωi} ∈ Ω occurred.

Note that when P and Q are independent one has S(P ∨Q) = S(P )+S(Q).

Equipped with theses elementary assumptions we cite the following theorem
which gives birth to the Shannon entropy.
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Theorem 3.2 (Shannon entropy) Let Ω = {ωi, . . . , ωn} be a finite set.
Any functional S : P(Ω) → R satisfying Axioms (1) to (4) must be necessarily
of the form

S(P ) = −k
n∑
i=1

pi log pi for P ∈ P(Ω) with P ({ωi}) = pi, i = 1, . . . , n,

and where k ∈ R+ is a positive constant.

Proof. The proof can be found in the original work by Shannon and
Weaver [SW49] or in the book by Khinchin [Khi57]. �

Notation 3.3 (Entropy) The functional

H(µ) = −
∑
ω∈Ω

µ(ω) logµ(ω) for µ ∈ P(Ω)

is called the Shannon entropy of the probability measure µ.

The connection with the previous Boltzmann entropy for the microcanonical
ensemble is apparent from Axiom 2 above. Moreover, there are also con-
nections to the Boltzmann-H-function not mentioned at all. The interested
reader is referred to any of the following monographs [Bal91],[Bal92],[Gal99]
and [EL02].
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4 The Gibbs ensembles

In 1902 Gibbs proposed three Gibbs ensembles, the microcanonical, the
canonical and the grandcanonical ensemble. The microcanonical ensemble
was introduced in Section 2.4 as a probability measure on the energy sur-
face, a hyperplane in the phase space. The microcanonical ensemble is most
natural from the physical point of view. However, in practise mainly the
canonical and the grandcanonical Gibbs ensembles are studied. The main
reason is that these ensembles are defined as probability measures in the
phase space with a density, the so-called Boltzmann factor e−βH , where
β > 0 is the inverse temperature and H the Hamiltonian of the system.
The mathematical justification to replace the microcanonical ensemble by
the canonical or grandcanonical Gibbs ensemble goes under the name equiv-
alence of ensembles, which we will discuss in Subsection 5.3. In this section
we introduce first the canonical Gibbs ensemble. Then we study the so-called
Gibbs paradox concerning the correct counting for a system of indistinguish-
able identical particles. It follows the definition of the grandcanonical Gibbs
ensemble. In the last subsection we relate all the introduced Gibbs ensem-
bles to classical thermodynamics. This leads to the orthodicity problem,
namely the question whether the laws of thermodynamics are derived from
the ensembles averages in the thermodynamic limit.

4.1 The canonical Gibbs ensemble

We define the canonical Gibbs ensemble for a finite volume box Λ ⊂ R
d

and a fixed number N ∈ N of particles with Hamiltonian H (N)

Λ having ap-
propriate boundary conditions (like elastic ones as for the microcanonical
ensemble or periodic ones). In the following we denote the Borel-σ-algebra
on the phase space ΓΛ by BΛ. The universal Boltzmann constant is
k = kB = 1.3806505 × 10−23 joule/kelvin. In the following T denotes tem-
perature measured in Kelvin.

Definition 4.1 Call the parameter β = 1
kT

> 0 the inverse temperature.
The canonical Gibbs ensemble for parameter β is the probability measure
γβΛ,N ∈ P(ΓΛ,BΛ) having the density

ρβΛ,N(x) =
e−βH

(N)
Λ (x)

ZΛ(β,N)
, x ∈ ΓΛ, (4.10)

with respect to the Lebesgue measure. Here

ZΛ(β,N) =

∫
ΓΛ

dx e−βH
(N)
Λ (x) (4.11)
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is the normalisation and is called partition function (”Zustandsssume”).

Gibbs introduced this canonical measure as a matter of simplicity: he wanted
the measure with density ρ to describe an equilibrium, i.e., to be invari-
ant under the time evolution, so the most immediate candidates were to be
functions of the energy. Moreover, he proposed that ”the most simple case
conceivable” is to take the log ρ linear in the energy. The following theorem
was one of his justifications of the utility of the definition of the canonical
ensemble.

Theorem 4.2 Let Λ1,Λ2 ⊂ R
d, ΓΛ1 × ΓΛ2 be an aggregate phase space ΓΛ0

and γ0 ∈ P(ΓΛ0 ,B0) with Lebesgue density ρ0 be given. Define the reduced
probability measures (or marginals) γi ∈ P(Γi,Bi), i = 1, 2, as

γ1(A) =

∫
A×Γ2

1lA(x1)ρ0(x1, x2)dx2 for A ∈ B1,

γ2(B) =

∫
Γ1×B

1lA(x2)ρ0(x1, x2)dx1 for B ∈ B2

with the Lebesgue densities

ρ1(x1) =

∫
Γ0

ρ0(x1, x2)dx2 and ρ2(x2) =

∫
Γ0

ρ0(x1, x2)dx1.

Then the entropies

Si = −k
∫

Γi

ρi(x) log ρi(x)dx with i = 0, 1, 2,

satisfy the inequality
S0 ≤ S1 + S2

with equality S0 = S1 + S2 if and only if ρ0 = ρ1ρ2.

Proof. The proof is given with straightforward calculation and the use of
Jensen’s inequality for the convex function f(x) = x log x+ 1 − x. �

Gibbs himself recognised the condition for equality as a condition for inde-
pendence. He claimed that with the notations of Theorem 4.2 in the special
case ρ is the canonical ensemble density and the Hamiltonian is of the form
H0 = H1 +H2 with H1 (respectively H2) is independent of Γ2 (respectively
Γ1), the reduced densities (marginal densities) ρ1 and ρ2 are independent,
i.e., ρ0 = ρ1ρ2, and are themselves canonical ensemble densities.
In [Gib02] he writes:
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-a property which enormously simplifies the discussion, and is the
foundation of extremely important relations to thermodynamics.

Indeed, it follows from this that the temperatures are all equal, i.e., T1 =
T2 = T0.

Remark 4.3 (Lagrange multipliers) We note that the inverse tempera-
ture β in the canonical Gibbs ensemble can be seen as the Lagrange multipli-
cator for the extremum problem for the entropy under the constraint that the
mean energy is fixed with a parameter like β, see further [Jay89], [Bal91],
[Bal92], [EL02].

Theorem 4.4 (Maximum Principle for the entropy) Let β > 0,Λ ⊂
and N ∈ N be given. The canonical Gibbs ensemble γβΛ,N , where β > 0 is

determined by
∫
ΓΛ

dxρβΛ,N(x) = U , maximises the entropy

S(γ) = −k
∫

ΓΛ

ρ(x) log ρ(x)dx

for any γ ∈ P(ΓΛ,BΛ) having a Lebesgue density ρ subject to the constraint

U =

∫
ΓΛ

ρ(x)H (N)

Λ (x)dx. (4.12)

Moreover, the values of the temperature T and the partition function ZΛ(β,N)
are uniquely determined from the condition

U = − ∂

∂β
logZΛ(β,N) with β =

1

kT
.

Proof. We give only a rough sketch of the proof. We use that

a log a− b log b ≤ (a− b)(1 + log a) a, b ∈ (0,∞).

Let γ ∈ P(ΓΛ,BΛ) with Lebesgue density ρ. Put a = ρβΛ,N (x) and b = ρ(x)

for any x ∈ ΓΛ and recall that ρβΛ,N is the density of the canonical Gibbs
ensemble. Then

ρβΛ,N(x) log ρβΛ,N(x) − ρ(x) log ρ(x) ≤ (ρβΛ,N(x) − ρ(x))(1 − logZΛ(β,N)

− βH (N)

Λ (x)).
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Integrating with respect to Lebesgue we get

S(γβΛ,N) − S(µ) ≥ −k
{∫

ΓΛ

((1 − logZΛ(β,N) − βH (N)

Λ (x))ρβΛ,N(x)dx

−
∫

ΓΛ

(1 − logZΛ(β,N) − βH (N)

Λ (x))ρ(x))dx

}
= −k {(1 − logZΛ(β,N) − βU) − (1 − logZΛ(β,N) − βU)}
= 0.

Therefore
S(γβΛ,N) ≥ S(γ).

Note that the entropy for the canonical ensemble is given by

S(γβΛ,N) = k

∫
ΓΛ

(logZΛ(β,N) + βH (N)

Λ (x))ρβΛ,N(x)dx

= k logZΛ(β,N) + kβ

∫
ΓΛ

H (N)

Λ (x)ρβΛ,N (x)dx.

To prove the second assertion, note that

∂β logZΛ(β,N) = −
∫

ΓΛ

ρβΛ,N(x)H (N)

Λ (x)dx,

∂2
β logZΛ =

∫
ΓΛ

ρβΛ,N (x)
(
H (N)

Λ (x) −
∫

ΓΛ

ρβΛ,N(x)H (N)

Λ (x)dx
)2

dx ≥ 0.

�

Thermodynamic functions

For the canonical ensemble the relevant thermodynamical variables are the
temperature T (or β = (kT )−1) and the volume V of the region Λ ⊂ R. We
have already defined the entropy S of the canonical ensemble by

SΛ(β,N) = k logZΛ(β,N) +
1

T
EγβΛ,N

(H (N)

Λ ),

where U = EγβΛ,N
(H (N)

Λ ) =
∫
ΓΛ
H (N)

Λ (x)ρβΛ,N(x)dx, the expectation of HΛ,

sometimes denoted also by 〈H (N)

Λ 〉. We define the Helmholtz Free Energy
by A = U−TS, and we shall call the Helmholtz Free Energy simply the free
energy from now on. We have

A = U − TSΛ(β,N) = EγβΛ,N
(H (N)

Λ ) − T (k logZΛ(β,N) +
1

T
EγβΛ,N

(H (N)

Λ ))

= − 1

β
logZΛ(β,N).
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By analogy with Thermodynamics we define the absolute pressure P of the
system by

P = −
(
∂A

∂V

)
T

.

The other thermodynamic functions can be defined as usual:
The Gibbs Potential, G = U + PV − TS = A+ PV ,

The Heat Capacity at Constant Volume, CV =
(
∂U
∂T

)
V
.

Note that

S = −
(
∂A

∂T

)
V

is also satisfied. The thermodynamic functions can all be calculated from A.
Therefore all calculations in the canonical ensemble begin with the calcula-
tion of the partition function ZΛ(β,N).
To make the free energy density finite in the thermodynamic limit we redefine
the canonical partition function by introducing correct Boltzmann
counting

ZΛ(β,N) =
1

(n/d)!

∫
ΓΛ

e−βH
(N)
Λ (x)dx =

1

N !

∫
ΓΛ

e−βHΛ(x)dx, (4.13)

see the following Subsection 4.2 for a justification of this correct Boltzmann
counting.

Example 4.5 (The ideal gas in the canonical ensemble) Consider a non-
interacting gas of N identical particles of mass m in d dimensions, contained
in a box Λ ⊂ R

d of volume V . The Hamiltonian for this system is

HΛ(x) =
1

2m

N∑
i=1

p2
i , x = (q, p) ∈ ΓΛ.

We have for the partition function ZΛ(β,N)

ZΛ(β,N) =
1

N ! hNd

∫
ΓΛ

e−βHΛ(x)dx =
1

N ! hNd
V N

(∫
Rd

e−
βp2

2m dp

)N
=

1

N ! hNd
V N

(∫
R

e−
βp2

2m dp

)Nd
=

1

N !
V N

(
2πm

h2β

) 1
2
Nd

=
1

N !

(
V

λd

)N
,

(4.14)

where

λ =

(
h2β

2πm

) 1
2
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is called the thermal wavelength because it is of the order of the de Broglie
wavelength of a particle of mass m with energy 1

β
. The free energy AΛ(β,N)

is given by

AΛ(β,N) = − 1

β
logZΛ(β,N) =

1

β
(logN ! +Nd log λ−N log V ) .

Thus the pressure is given by

PΛ(β,N) = −
(∂AΛ(β,N)

∂V

)
T

=
N

βV
=
kTN

V
.

Let aN(β, v) be the free energy per particle considered as a function of the
specific density v, that is,

aN(β, v) =
1

N
AΛN (β,N),

where ΛN is a sequence of boxes with volume vN and let pN(β, v) = PΛN (β,N)
be the corresponding pressure. Then

pN(β, v) = −
(∂aN (β, v)

∂v

)
T
.

For the ideal gas we get then

aN (β, v) =
1

β

(
1

N
logN ! + d log λ− log v − logN

)
,

leading to

a(β, v) := lim
N→∞

aN (β, v) =
1

β
(d log λ− log v − 1) ,

since

lim
N→∞

(
1

N
logN ! − logN

)
= −1.

If p(β, v) := limN→∞ pN (β, v), one gets

p(β, v) = −
(∂a(β, v)

∂v

)
T
,

and thus p(β, v) = 1
βv

. We can also define the free energy density as a
function of the particle density ρ, i.e.,

fl(β, ρ) =
1

Vl
AΛl(β, ρVl),
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where Λl is a sequence of boxes with volume Vl with liml→∞ Vl = ∞ and

f(β, ρ) = lim
l→∞

fl(β, ρ).

The pressure p(β, ρ) then satisfies

p(β, ρ) = ρ

(
∂f(β, ρ)

∂ρ

)
T

− f(β, ρ).

Clearly f(β, ρ) = ρ a(β, 1
ρ
). For the ideal gas we get

f(β, ρ) =
ρ

β
(d log λ+ log ρ− 1)

and therefore

p(β, ρ) =
ρ

β
.

Finally we want to check the relative dispersion of the energy in the canonical
ensemble. Let 〈H (N)

Λ 〉 = EγβΛ,N
(H (N)

Λ ). Then

〈(H (N)

Λ − 〈H (N)

Λ 〉)2〉
〈H (N)

Λ 〉2
=

∂2
β logZΛ(β,N)

(∂β logZΛ(β,N))2
.

This gives for the ideal gas√
〈(H (N)

Λ − 〈H (N)

Λ 〉)2〉
〈H (N)

Λ 〉
= (

1

2
dN)−

1
2 = O(N− 1

2 ).

4.2 The Gibbs paradox

The Gibbs paradox illustrates an essential correction of the counting within
the microcanonical and the canonical ensemble. Gibbs 1902 was not aware
of the fact that the partition function needed a re-definition, for instance a
redefinition in (4.13) in case of the canonical ensemble. The ideal gas suffices
to illustrate the main issue of that paradox. Recall the entropy of the ideal
gas in the canonical ensemble

SΛ(β,N) = kN log(V T
d
2 ) +

d

2
kN(1 + log(2πm)) , β−1 = kT, (4.15)

where V = |Λ| is the volume of the box Λ ⊂ R
d. Now, make the following

”Gedanken”-experiment. Consider two vessels having volume Vi containing
Ni, i = 1, 2, particles separated by a thin wall. Suppose further that both
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vessels are in equilibrium having the same temperature and pressure. Now
imagine that the wall between the two vessels is gently removed. The ag-
gregate vessel is now filled with a gas that is still in equilibrium at the same
temperature and pressure. Denote by S1 and S2 the entropy on each side of
the wall. Since the corresponding canonical Gibbs ensembles are indepen-
dent of one another, the entropy S12 of the aggregate vessel - before the wall
is removed - is exactly S1 + S2. However an easy calculation gives us

S12 − (S1 + S2) = k((N1 +N2) log(V1 + V2) −N1 log V1 −N2 log V2)

= −k
(
N1 log

V1

V1 + V2
+N2 log

V2

V1 + V2

)
> 0.

(4.16)

This shows that the informational (Shannon) entropy has increased, while
we expected the thermodynamic entropy to remain constant, since the wall
between the two vessels is immaterial from a thermodynamical point of view.
This is the Gibbs paradox.
We have indeed lost information in the course of removing the wall. Imagine
the gas before removing the wall consists of yellow molecules in one vessel
and of blue molecules in the other. After removal of the wall we get a
uniform greenish mixture throughout the aggregate vessel. Before we knew
with probability 1 that a blue molecule was initially in the vessel where we
had put it, after removal of the wall we only know that it is in that part of
the aggregate vessel with probability N1

N1N2
.

The Gibbs paradox is resolved in classical statistical mechanics with an ad
hoc ansatz. Namely, instead of the canonical partition function ZΛ(β,N)
one takes 1

N !
ZΛ(β,N) and instead of the microcanonical partition function

ωΛ(E,N) one takes 1
N !
ωΛ(E,N). This is called the correct Boltzmann

counting. The appearance of the factorial can be justified in quantum
mechanics. It has something to do with the in-distinguishability of iden-
tical particles. A state describing a system of identical particles should be
invariant under any permutation of the labels identifying the single parti-
cle variables. However, this very interesting issue goes beyond the scope of
this lecture, and we will therefore assume it from now on. In Subsection 5.1
we give another justification by computing the partition function and the
entropy in the microcanonical ensemble.

4.3 The grandcanonical ensemble

We give a brief introduction to the grandcanonical Gibbs ensemble. One
can argue that the canonical ensemble is more physical since in experiments
we never consider an isolated system and we never measure the total energy
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but we deal with systems with a given temperature. Similarly we like not to
specify the number of particles but the average number of particles. In the
grandcanonical ensemble the system can have any number of particles with
the average number determined by external sources. The grandcanonical
Gibbs ensemble is obtained if the canonical ensemble is put in a ”particle-
bath”, meaning that the particle number is no longer fixed, only the mean of
the particle number is determined by a parameter. This was similarly done
in the canonical ensemble for the energy, where one considers a ”heat-bath”.
The phase space for exactly N particles in box Λ ⊂ R

d can be written as

ΓΛ,N = {ω ⊂ (Λ × R
d) : ω = {(q, pq) : q ∈ ω̂},Card (ω̂) = N}, (4.17)

where ω̂, the set of positions occupied by the particles, is a locally finite
subset of Λ, and pq is the momentum of the particle at positions q. If the
number of the particles is not fixed, then the phase space is

ΓΛ = {ω ⊂ (Λ × R
d) : ω = {(q, pq) : q ∈ ω̂},Card (ω̂) finite}. (4.18)

A counting variable on ΓΛ is a random variable N∆ on ΓΛ for any Borel set
∆ ⊂ Λ defined by N∆(ω) = Card (ω̂ ∩ ∆) for any ω ∈ ΓΛ.

Definition 4.6 (Grandcanonical ensemble) Let Λ ⊂ R
d, β > 0 and µ ∈

R. Define the phase space ΓΛ = ∪∞
N=0ΓΛ,N , where ΓΛ,N = (Λ × R

d)2N is the
phase space in Λ for N particles, and equip it with the σ-algebra B∞

Λ generated
by the counting variables. The probability measure γβ,µΛ ∈ P(ΓΛ,B∞

Λ ) such
that the restrictions γβ,µΛ

∣∣
ΓΛ,N

onto ΓΛ,N have the densities

ρ(N)

β,µ(x) = ZΛ(β, µ)−1e−β(H
(N)
Λ (x)−µN) , N ∈ N,

where H (N)

Λ is the Hamiltonian for N particles in Λ, and partition function

ZΛ(β, µ) =

∞∑
N=0

∫
ΓΛ,N

e−β(H
(N)
Λ (x)−µN)dx (4.19)

is called the grandcanonical ensemble in Λ for the inverse temperature β
and the chemical potential µ.

Instead of the chemical potential µ sometimes the fugacity or activity eβµ

is used for the grandcanonical ensemble. Observables are now sequences
f = (f0, f1, . . .) with f0 ∈ R and fN : ΓΛ,N → R, N ∈ N, are functions on
the N -particle phase spaces. Hence, the expectation in the grandcanonical
ensemble is written as

Eγβ,µΛ
(f) =

1

ZΛ(β, µ)

∞∑
N=0

eβµNZΛ(β,N)

∫
ΓΛ,N

fN (x)ρβΛ,N(dx). (4.20)
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If N denotes the particle number observable we get that

Eγβ,µΛ
(N ) =

1

β

∂

∂µ
logZΛ(β, µ).

For the grandcanonical measure we have a Principle of Maximum En-
tropy very similar to those for the other two ensembles. We maximise the
entropy subject to the constraint that the mean energy Eγβ,µΛ

(HΛ) and the

mean particle number Eγβ,µΛ
(N ) are fixed, where HΛ = (H (0)

Λ , H (1)

Λ , . . .) is the

sequence of Hamiltonians for each possible number of particles.

Theorem 4.7 (Principle of Maximum Entropy) Let P be a probability
measure on ΓΛ such that its restriction to ΓΛ,N , denoted by PN , is absolutely
continuous with respect to the Lebesgue measure, that is

PN(A) =

∫
A

ρN (x)dx for any A ∈ B(N)

Λ .

Define the entropy of the probability measure P to be

S(P ) = −kρ0 log ρ0 − k

∞∑
N=1

∫
ΓΛ,N

ρN (x) log(N !ρN (x))dx.

Then the grandcanonical ensemble/measure γβ,µΛ , where β and µ are deter-
mined by Eγβ,µΛ

(HΛ) = E and Eγβ,µΛ
(N ) = N0, N0 ∈ N, maximises the entropy

among the absolutely continuous probability measures on ΓΛ with mean en-
ergy E and mean particle number N0.

Proof. As in the two previous cases we use a log a − b log b ≤ (a − b)(1 +
log a) and so

a log ta− b log tb ≤ (a− b)(1 + log a + log t).

Let ρβ,µN (x) =
eβµNe−βHN (x)

N !ZΛ(β, µ)
and put a = ρ(N)

β,µ(x), b = ρN(x) and t = N !.

Then, writing Z for ZΛ(β, µ),

ρ(N)

β,µ(x) log(N !ρ(N)

β,µ(x)) − ρN(x) log(N !ρN (x))

≤ (ρ(N)

β,µ(x) − ρN (x))(1 − logZ − βH (N)

Λ (x) + βµN).
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Integrating with respect to the Lebesgue measure on ΓΛ,N and summing over
N we get

S(µβ,µ) − S(µ) ≥ −k
{ ∞∑
N=1

∫
ΓΛ,N

(1 − logZ − βH (N)

Λ (x) + βµN)ρ(N)

β,µ(x)dx

+ (1 − logZ)ρ(0)

β,µ −
∞∑
N=1

∫
ΓΛ,N

(1 − logZ − βH (N)

Λ (x) + βµN)ρN(x))dx

− (1 − logZ)ρ0

}
= −k {(1 − logZ − βE + βµN0) − (1 − logZ − βE + βµN0)} = 0.

Therefore
S(µβ,µ) ≥ S(µ).

Note that the entropy for the grandcanonical ensemble is given by

S(µβ,µ) = k logZΛ(β, µ) + kβEγβ,µΛ
(HΛ) − kβµEγβ,µΛ

(N ).

�
Thermodynamic Functions:

We shall write Z for ZΛ(β, µ) and we suppress for a while some obvious
sub-indices and arguments. We have already defined the entropy S by

S = k logZ +
1

T
(Eγβ,µΛ

(HΛ) − µEγβ,µΛ
(N )),

and as before we define the internal energy of the system U by U = Eγβ,µΛ
(HΛ).

We then define the Helmholtz Free Energy as before by A = U − TS, and
we shall call the Helmholtz Free Energy simply the free energy from now on.
We have

A =U − TS = Eγβ,µΛ
(HΛ) − T (k logZ +

1

T
(Eγβ,µΛ

(HΛ) − µEγβ,µΛ
(N )))

= − 1

β

(
logZ − µβEγβ,µΛ

(N )
)
.

In analogy with thermodynamics we should define the absolute pressure P
of the system by

P = −
(
∂A

∂V

)
T

with the constraint
Eγβ,µΛ

(N ) = constant.
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This constraint means that µ is a function of V and β. Therefore

P =
1

β

∂µ

∂V

∂

∂µ

(
logZ − µβEγβ,µΛ

(N )
)

+
1

β

∂

∂V
logZ =

1

β

∂

∂V
logZ.

It is argued that
1

V
logZ should be independent of V for large V and therefore

we can write

P =
1

β

∂

∂V
logZ =

1

β

∂

∂V

(
V

1

V
logZ

)
=

1

βV
logZ +

V

β

∂

∂V

(
1

V
logZ

)
≈ 1

βV
logZ.

Therefore we define the pressure by the equation

P =
1

βV
logZ.

This definition can be justified a posteriori when we consider the equivalence
of ensembles, see Subsection 5.3. The other thermodynamic functions can
be defined as usual:
The Gibbs Potential G = U + PV − TS = A+ PV ,

The heat capacity at constant volume, CV =
(
∂U
∂T

)
V
. Note

S = −
(∂A
∂T

)
V

is also satisfied.

All the thermodynamic functions can be calculated from Z = ZΛ(β, µ).
Therefore all calculations in the grandcanonical ensemble begin with the
calculation of the partition function Z = ZΛ(β, µ).

4.4 The ”orthodicity problem”

We refer to one of the main aims of statistical mechanics, namely to derive
the known laws of classical thermodynamics from the ensemble theory. The
following question is called the Orthodicity Problem.

Which set E of statistical ensembles or probability measures has the property
that, as an element µ ∈ E changes infinitesimally within the set E , the
corresponding infinitesimal variations dU and dV of U and V are related to
the pressure P and to the average kinetic energy per particle,

Tkin =
Eµ(Tkin)

N
, Tkin =

1

2m

N∑
i=1

p2
i ,

31



such that the differential
dU + PdV

Tkin

is an exact differential at least in the thermodynamic limit. This will then
provide the second law of thermodynamics. Let us provide a heuristic check
for the canonical ensemble. Here,

E
β
γΛ,N

(Tkin) =
1

ZΛ(β,N)

∫
ΓΛ,N

Tkin(x)e
−βH(N)

Λ (x)dx,

and U = −∂βZΛ(β,N). The pressure in the canonical ensemble can be
calculated as

P (γβΛ,N) =
∑
Q

N

ZΛ(β,N)

∫
p>0

e−βH
(N)
Λ (x) 1

2m
p2 a

A

dq2 · · ·dqNdp1 · · ·dpN
N !

,

where the sum goes over all small cubes Q adjacent to the boundary of the
box Λ with volume V by a side with area a while A =

∑
Q a is the total

area of the container surface and q1 is the centre of Q. Let n(Q, v)dv, where
v = 1

2m
p is the velocity, be the density of particles with normal velocity −v

that are about to collide with the external walls of Q. Particles will cede a
momentum 2mv = p in normal direction to the wall at the moment of their
collision (−mv → mv due to elastic boundary conditions). Then∑

Q

∫
v>0

dvn(Q, v)(2mv)
va

A

is the momentum transferred per unit time and surface area to the wall.
Gaussian calculation gives then after a couple of steps that due to FΛ(β,N) =
−β−1 logZΛ(β,N) and SΛ(E;N) = (U − FΛ(β,N))β we have that T =

(kβ)−1 = 2
dk

Tkin

N
, and that

TdSΛ = d(FΛ + TSΛ) + pdV = dU + pdV,

with p = β−1 ∂
∂V

logZΛ(β,N). Details can be found in [Gal99], where also
references are provided for rigorous proofs for the orthodicity in the canonical
ensemble. The orthodicity problem is more difficult in the microcanonical
ensemble. The heuristic approach goes similar. However, for a rigorous proof
of the orthodicity one needs here a proof that the expectation of the kinetic
energy in the microcanonical ensemble satisfies

E(T αkin) = E(Tkin)
α(1 + θN ) , α > 0,
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with θN → 0 as N → ∞ (thermodynamic limit). The last requirement
would be easy for independent velocity, but this is not the case here due
to the microcanonical energy constraint, and therefore this refers not to an
application of the usual law of large numbers. A rigorous proof concerning
any fluctuations and moments of the kinetic energy in the microcanonical
ensemble is in preparation [AL06].

5 The Thermodynamic limit

In this section we introduce the concept of taking the thermodynamic limit ,
give a simple example in the microcanonical ensemble and prove in Subsec-
tion 5.2 the existence of the thermodynamic limit for the specific free energy
in the canonical Gibbs ensemble for a given class of interactions. In the last
subsection we briefly discuss the equivalence of ensembles and the thermo-
dynamic limit at the level of states/measures.

5.1 Definition

Let us call state of a physical system an expectation value functional on the
observable quantities for this system. The averages, i.e., the expectation val-
ues with respect to the Gibbs ensembles, are such states. We shall say that
the systems for which the expectation with respect to the Gibbs ensembles
is taken are finite systems (e.g. finitely many particles in a region with
finite volume), but we may also consider the corresponding infinite sys-
tems which contain an infinity of subsystems and extend throughout R

d or
Z
d for lattice systems. Thus the discussion in the introduction leads us to as-

sume that the ensemble expectation for finite systems approach in some sense
states/measures of the corresponding infinite system. Besides the existence
of such limit states/measures one is also interested in proving that these are
independent on the choice of the ensemble leading to the question of equiv-
alence of ensembles. One of the main problems of equilibrium statistical
mechanics is to study the infinite systems equilibrium states/measures and
their relation to the interactions which give rise to them. In Section 6 we in-
troduce the mathematical concept of Gibbs measures which appear as natural
candidates for equilibrium states/measures. We turn down one level in our
study and consider the problem of determination of the thermodynamic func-
tions from statistical mechanics in the thermodynamic limit . We introduced
earlier for each Gibbs ensemble a partition function, which is the total mass
of the measure defining the Gibbs ensemble. The logarithm of the partition
function divided by the volume of the region Λ containing the system has a
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limit when this systems becomes large ( Λ ↑ R
d), and this limit is identified

with a thermodynamic function. Any singularities for these thermodynamic
functions in the thermodynamic limit may correspond to phase transitions
(see [Min00],[Gal99] and [EL02] for details on theses singularities).

Taking the thermodynamic limit thus involves letting Λ tend to infin-
ity, i.e., approaching R

d or Z
d respectively. We have to specify how Λ tends

to infinity. Roughly speaking we consider the following notion.

Notation 5.1 (Thermodynamic limit) A sequence (Λn)n∈N of boxes Λn ⊂
R
d is a cofinal sequence approaching R

d if the following holds,

(i) Λn ↑ R
d as n→ ∞,

(ii) If Λh
n = {x ∈ R

d : dist(x, ∂Λ) ≤ h} denotes the set of points with
distance less or equal h to the boundary of Λ, the limit

lim
n→∞

|Λh
n|

|Λ| = 0

exists.

The thermodynamic limit consists thus in letting n → ∞ for a cofinal se-
quence (Λn)n∈N of boxes with the following additional requirements for the
microcanonical and the canonical ensemble:

Microcanonical ensemble: There are energy densities εn ∈ (0,∞), given
as εn = En

|Λn| with En → ∞ as n → ∞, and particle densities ρn ∈ (0,∞),

given as ρn = Nn
Λn

with Nn → ∞ as n → ∞, such that εn → ε and
ρn → ρ ∈ (0,∞) as n→ ∞.

Canonical ensemble: There are particle densities ρn ∈ (0,∞), given as
ρn = Nn

Λn
with Nn → ∞ as n→ ∞, such that ρn → ρ ∈ (0,∞) as n→ ∞.

In some models one needs more assumptions on the cofinal sequence of
boxes, for details see [Rue69] and [Isr79].

We check the thermodynamic limit of the following simple model in the
microcanonical ensemble, which will give also another justification of the
correct Boltzmann counting.

Ideal gas in the microcanonical ensemble

Consider a non-interacting gas of N identical particles of mass m in d di-
mensions, contained in the box Λ of volume V = |Λ|. The gradient of the
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Hamiltonian for this system is

∇HΛ(x) = ∇ 1

2m

n∑
i=1

p2
i =

1

m
(0, . . . , 0, p1, . . . , pn) , x ∈ ΓΛ,

where as usual n = Nd. We have

|∇H(x)|2 =
1

m2

n∑
i=1

p2
i =

2

m
H(x) , x ∈ ΓΛ,

where | · | denotes the norm in R
2n. Therefore on the energy surface ΣE ,

|∇H| = (2E
m

)
1
2 . Let Sν(r) be the hyper sphere of radius r in ν dimensions,

that is Sν(r) = {x| x ∈ R
ν , |x| = r}. Let Sν(r) be the surface area of Sν(r).

Then
Sν(r) = cνr

ν−1 for some constant cν .

For the non-interacting gas, we have ΣE = ΛN × Sn((2mE)
1
2 ) and

ω(E) =
( m

2E

) 1
2

∫
ΣE

dσ =
( m

2E

) 1
2

V NSn((2mE)
1
2 )

=
( m

2E

) 1
2
V NcNd(2mE)

1
2
(Nd−1) = mV NcNd(2mE)

1
2
Nd−1.

The entropy S is given by

exp(S/k) = ω(E) = mV NcNd(2mE)
1
2
Nd−1

and therefore

(2mE)
1
2
Nd−1 =

exp(S/k)V −N

mcdN
.

Thus, the internal energy follows as

U(S, V ) = E =
1

2m

exp
(

2S
k(Nd−2)

)
V − 2N

(Nd−2)

(mcNd)
2

(Nd−2)

,

and the temperature as the partial derivative of the internal energy with
respect to the entropy is

T =
(∂U
∂S

)
V

=
2

k(Nd− 2)
U =

2U

kNd(1 − 2
Nd

)
≈ 2U

kNd

for large N . This gives for large N the following relations

U ≈ d

2
NkT,
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CV =
(∂U
∂T

)
V
≈ d

2
Nk.

P = −
(∂U
∂V

)
S

=
2

d(1 − 2
Nd

)

U

V
≈ 2U

dV
≈ NkT

V
.

The previous relation is the empirical ideal gas law in which k is Boltzmann’s
constant. We can therefore identify k in the definition of the entropy with
Boltzmann’s constant.
We need to calculate cν . We have via a standard trick

π
ν
2 =
(∫ ∞

−∞
e−x

2

dx
)ν

=

∫
Rν

e−|x|2dx =

∫ ∞

0

Sν(r)e−r
2

dr

= cν

∫ ∞

0

rν−1e−r
2

dr =
cν
2

∫ ∞

0

t
ν
2
−1e−tdt =

cν
2

Γ
(ν

2

)
.

This gives cν = 2π
ν
2

Γ( ν
2
)
, where Γ is the Gamma-Function, defined as

Γ(x) =

∫ ∞

0

tx−1e−tdt.

Note that if n ∈ N then Γ(n) = (n − 1)!. The behaviour of Γ(x) for large
positive x is given by Stirling’s formula

Γ(x) ≈
√

2πxx−
1
2 e−x.

This gives limx→∞( 1
x

log Γ(x)− log x) = −1. We now have for the entropy of
the non-interacting gas in a box Λ of volume V

SΛ(E,N) = k log
(
mV N 2π

Nd
2

Γ(Nd
2

)
(2mE)

1
2
Nd−1
)
.

Let v be the specific volume and ε the energy per particle, that is

v =
V

N
and ε =

E

N
.

Let sN(ε, v) be the entropy per particle considered as a function of ε and v,

sN(ε, v) =
1

N
SΛN (εN,N),
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where ΛN is a sequence of boxes with volume vN . Then

sN (ε, v) =
1

N
k log

(
mvNNN 2π

Nd
2

Γ(Nd
2

)
(2mεN)

1
2
Nd−1
)

≈ k

(
log v +

d+ 2

2
logN +

d

2
log(4πmε) − 1

N
log Γ

(Nd
2

))
≈ k

(
log v + logN +

d

2
log(4πmε) +

d

2
− d

2
log(

d

2
)

)
≈ k logN.

We expect sN(ε, v) to be finite for large N . Gibbs (see Section 4.2) postu-
lated that we have made an error in calculating ω(E), the number of states
of the gas with energy E. We must divide ω(E) by N !. It is not possi-
ble to understand this classically since in classical mechanics particles are
distinguishable. The reason is inherently quantum mechanical. In quan-
tum mechanics particles are indistinguishable. We also divide ω(E) by hdN

where h is Planck’s constant. This makes classical and quantum statistical
mechanics compatible for high temperatures.
We therefore redefine the microcanonical entropy of the system to be

SΛ(E,N) = k log
(ωΛ(E,N)

(n/d)!

)
= k log

(ωΛ(E,N)

N !

)
, (5.21)

where we put Planck’s constant h = 1. Then

sN(ε, v) ≈ k

(
log v + logN +

d

2
log(4πmε) +

d

2
− d

2
log(

d

2
) − d log h

− 1

N
log(N !)

)
→ k

(
d+ 2

2
+ log v +

d

2
log ε− d

2
log
( h√

4πm

)
− d

2
log(

d

2
)

)
as N → ∞.

5.2 Thermodynamic function: Free energy

We shall prove that the canonical free energy density exists in the thermody-
namic limit for very general interactions. We consider a general interacting
gas of N identical particles of mass m in d dimensions, contained in the box
Λ of volume of V with elastic boundary conditions. The Hamiltonian for this
system is

H (N)

Λ =
1

2m

N∑
i=1

p2
i + U(r1, . . . , rN).

37



We have for the partition function ZΛ(β,N)

ZΛ(β,N) =
1

N ! hNd

∫
Γ

e−βH
(N)
Λ (x)dx =

1

N !

(∫
Rd

e−
βp2

2m dp

)N ∫
ΛN

e−βU(q)dq

=
1

N !

(
2πm

h2β

) 1
2
Nd ∫

ΛN
e−βU(q)dq =

1

N !

1

λdN

∫
ΛN

e−βU(q)dq.

We shall assume that the interaction potential is given by a pair interaction
potential φ : R → R, that is

U(q1, . . . , qN) =
∑

1≤i<j≤N
φ(|qi − qj |) , (q1, . . . , qN) ∈ R

dN ,

where |x| denotes the norm for a the vector x ∈ R
d.

Definition 5.2 Let the pair potential function φ : R → R be given.

(i) The pair potential φ is tempered if there exists R > 0 such that
φ(|q|) ≤ 0 if |q| > R, q ∈ R

d.

(ii) The pair potential φ is stable if there exists B ≥ 0 such that for all
q1, r2, . . . , qN in R

d ∑
1≤i<j≤N

φ(|qi − qj |) ≥ −NB.

(iii) If the pair potential φ is not stable then it is said to be catastrophic.

Recall that the free energy in a box Λ ⊂ R
d for an inverse temperature β

and particle number N is given by

AΛ(β,N) = − 1

β
logZΛ(β,N).

Theorem 5.3 (Fisher-Ruelle) Let φ be a stable and tempered pair poten-
tial. Let R be as above in Definition 5.2 and for ρ ∈ (0,∞) let L0 be such that
ρ(L0 +R)d ∈ N. Let Ln = 2n(L0 +R) −R and let Λn be the cube centred at
the origin with side Ln and volume Vn = |Λn| = Ldn. Let Nn = ρ(L0 +R)d2dn.
If

fn(β, ρ) =
1

Vn
AΛn(β,Nn),

then limn→∞ fn(β, ρ) exists.
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Figure 1: typical form of φ
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n-1
(1)

n-1

(2)

Rn

n-1
(4)

n-1
(3)

R

Figure 2: Λn contains 4 cubes of side length Ln−1

Proof. Note that limn→∞Nn/Vn = ρ. Note also that Nn = 2dNn−1 and
Ln = 2Ln−1 + R. Because of the last equation Λn contains 2d cubes of side

Ln−1 with a corridor of width R between them. Denote these by Λ
(i)
n−1, i =

1, . . . , 2d and let

UN(q1, . . . , qN) =
∑

1≤i<j≤N
φ(|qi − qj |).

Let Zn = ZΛn(β,Nn) and gn = 1
Nn

logZn. It is sufficient to prove that gn
converges.

Zn =
1

Nn!λdNn

∫
ΛNnn

dq1 . . .dqNne
−βUNn (q1,...,qNn).

Let
Ωn = {(r1, . . . rNn) ∈ ΛNn

n | each Λ
(i)
n−1 contains Nn−1 rk

′s}.
Note that for (q1, . . . qNn) ∈ Ωn there are no rk’s in the corridor between the

Λ
(i)
n−1.

Let

Ω̃n = {(q1, . . . qNn) ∈ ΛNn
n : q1, . . . , qNn−1 ∈ Λ

(1)
n−1, qNn−1+1, . . . , q2Nn−1 ∈ Λ

(2)
n−1,

. . . , q(2d−1)Nn−1+1, . . . q2dNn−1
∈ Λ

(2d)
n−1}.
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Since Ωn ⊂ ΛNn
n

Zn ≥ 1

Nn!λdNn

∫
Ωn

dq1 . . .dqNne
−βUNn (q1,...,qNn)

=
Nn!

(Nn−1!)2d

1

Nn!

1

λdNn

∫
Ω̃n

dq1 . . .dqNne
−βUNn (q1,...qNn).

Since φ is tempered, we get for q1, . . . , qNn ∈ Ω̃n

UNn(q1, . . . , qNn) ≤UNn−1(q1, . . . , qNn−1) . . .

+ UNn−1(q(2d−1)Nn−1+1, . . . , q2dNn−1
).

Thus

Zn ≥ 1

(Nn−1!))2d

1

λdNn

(∫
Λ
Nn−1
n−1

dq1 . . .dqNn−1e
−βUNn−1

(q1,...,qNn−1
)

)2d

= (Zn−1)
2d.

Therefore

gn =
1

Nn
logZn =

1

2dNn−1
logZn ≥ 1

2dNn−1
log(Zn−1)

2d = gn−1.

The sequence (gn)n∈N is increasing. To prove that gn converges it is sufficient
to show that gn is bounded from above. Since the pair potential φ is stable
we have

UNn(q1, . . . , qNn) ≥ −BNn

and therefore

Zn =
1

Nn!λdNn

∫
ΛNnn

dq1 . . .dqNne
−βUNn (q1,...,qNn)

≤ 1

Nn!λdNn

∫
ΛNnn

dq1 . . .dqNne
βBNn ≤ Vn

Nn

Nn!λdNn
eβBNn .

Thus

gn ≤ log Vn −
1

Nn
logNn! − d log λ+ βB = − log

(
Nn

Vn

)
+ logNn

− 1

Nn

logNn! − d log λ+ βB

≤ − log ρ+ 2 − d log λ+ βB

for large n since

lim
n→∞

Nn

Vn
= ρ and lim

n→∞

(
logNn −

1

Nn
logNn!

)
= 1.

�
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5.3 Equivalence of ensembles

The equivalence of the Gibbs ensemble is the key problem of equilibrium
statistical mechanics. It goes back to Gibbs 1902, who conjectured that both
the canonical and the grandcanonical Gibbs ensemble are equivalent with
the microcanonical ensemble. The main difficulty to answer the question of
equivalence lies in the precise definition of the notion equivalence. Nowadays
the term can have three different meanings, each on a different level of infor-
mation. We briefly introduce these concepts, but refer for details to one of
the following research articles ([Ada01], [Geo95], [Geo93]).

Equivalence at the level of thermodynamic functions

Under general assumptions on the interaction potential, e.g. stability and
temperedness as in Subsection 5.2, one is able to prove the following thermo-
dynamic limits of the thermodynamic functions given by the three Gibbs en-
sembles. Let (Λn)n∈N be any cofinal sequence of boxes with corresponding se-
quences of energy densities (εn)n∈N and particle densities (ρn)n∈N. Then there
is a closed packing density ρ(cp) ∈ (0,∞) and an energy density ε(ρ) ∈ (0,∞)
such that the following limits exist under some additional requirements (de-
tails are in [Rue69]) depending on the specific model chosen.

Grandcanonical Gibbs ensemble Let β > 0 be the inverse temperature
and µ ∈ R the chemical potential. Then the function p(β, µ), defined by

βp(β, µ) = lim
n→∞

1

|Λn|
logZΛn(β, µ),

is called the pressure.
Canonical Gibbs ensemble Let β > 0 be the inverse temperature and
(ρn)n∈N with ρn → ρ ∈ (0, ρ(cp)) a sequence of particle densities ρn = Nn

|Λn| .

Then the function f(β, ρ), defined by

−βf(β, ρ) = lim
n→∞

1

|Λn|
logZΛn(β, ρn|Λn|),

is called the free energy.
Microcanonical Gibbs ensemble Let (ρn)n∈N with ρn → ρ ∈ (0, ρ(cp)) be
a sequence of particle densities ρn = Nn

|Λn| , and let (εn)n∈N with εn → ε ∈
(ε(ρ),∞) be a sequence of energy densities εn = En

|Λn| . Then the function

s(ε, ρ) = lim
n→∞

1

|Λn|
logωΛn(εn|Λn|), ρn|Λn|) is called entropy.

42



Now equivalence at the level of thermodynamic functions is given if all three
thermodynamic functions in the thermodynamic limit are related to each
other by a Legendre-Fenchel transform for specific regions of parameter re-
gions of ε, ρ, β and µ. Roughly speaking this kind of equivalence is mainly
given in absence of phase transitions, i.e., only for those parameters where
there are no singularities. For details see the monograph [Rue69], where the
following transforms are established.

βp(β, µ) = sup
ρ≤ρ(cp),ε>ε(ρ)

{s(ε, ρ) − βε− ρµ}

f(β, ρ) = inf
ε>ε(ρ)

{ε− β−1s(ε, ρ)}

p(β, µ) = sup
ρ≤ρ(cp)

{ρµ− f(β, ρ)}.

Equivalence at the level of canonical and microcanonical Gibbs
measures

In Section 6 we introduce the concept of Gibbs measures. A similar concept
can be formulated for canonical Gibbs measures (see [Geo79] for details)
as well as for microcanonical Gibbs measures (see [Tho74] and [AGL78] for
details). The idea behind these concepts is roughly speaking to condition
outside any finite region on particle density and energy density events.
Equivalence at the level of canonical and microcanonical Gibbs measures is
then given if the microcanonical and canonical Gibbs measures are certain
convex combinations of Gibbs measures (see details in [Tho74], [AGL78] and
[Geo79]).

Equivalence at the level of states/measures

At the level of states/measures one is interested in any weak (in the sense
of probability measures, i.e., weak-∗-topology) limit points (accumulation
points) of the Gibbs ensembles. To define a consistent limiting procedure we
need an appropriate phase or configuration space for the infinite systems in
the thermodynamic limit. We consider here only continuous systems whose
phase space (configuration space) for any finite region Λ and finitely many
particles is ΓΛ. In Section 6 we introduce the corresponding configuration
space for lattice systems. Define

Γ = {ω ⊂ (Rd × R
d) : ω = {(q, pq) : q ∈ ω̂}},

where ω̂, the set of occupied positions, is a locally finite subset of R
d, and pq

is the momentum of the particle at position q. Let B denote the σ-algebra of
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this set generated by counting variables (see [Geo95] for details). Then each
Gibbs ensemble can be extended trivially to a probability on (Γ,B) just by
putting the whole mass on a subset. Therefore it makes sense to consider
all weak limit points in the thermodynamic limit. If the limit points are not
unique, i.e., there are several accumulation points, one considers the whole
set of accumulation points closed appropriately as the set of equilibrium
states/measure or Gibbs measures.
Equivalence at the level of states/measures is given if all accumulation points
of the different Gibbs ensembles belong to the same set of equilibrium points
or the same set of Gibbs measure ([Geo93],[Geo95],[Ada01]).

In the next section we develop the mathematical theory for Gibbs mea-
sures without any limiting procedure.

6 Gibbs measures

In this section we introduce the mathematical concept of Gibbs measures,
which are natural candidates to be the equilibrium measures for infinite sys-
tems, i.e., for systems after taking the thermodynamic limit. We will restrict
our study from now on to lattice systems, i.e., the phase space is given as the
set of functions (configurations) on some countable discrete set with values
in a finite set, called the state space.

6.1 Definition

Let Z
d the square lattice for dimensions d ≥ 1 and let E be any finite set.

Define Ω := EZd = {ω = (ωi)i∈Zd : ωi ∈ E} the set of configurations with
values in the state space E. Let E be the power set of E, and define the
σ−algebra F = EZd such that (Ω,F) is a measurable space. Denote the set
of all probability measures on (Ω,F) by P(Ω,F).

Definition 6.1 (Random field) Let µ ∈ P(Ω,F). Any family (σi)i∈Zd of
random variables which is defined on the probability space (Ω,F , µ) and which
takes values in (E, E) is called a random field.

If one considers the canonical setup, where σi : Ω → E are the projections
for any i ∈ Z

d, a random field is synonymous with a probability measure
µ ∈ P(Ω,F). Let S = {Λ ⊂ Z

d : |Λ| < ∞} be the set of finite volume
subsets of the square lattice Z

d. Cylinder events are defined as {σΛ ∈ A}
for any A ∈ EΛ and any projection σΛ : Ω → EΛ for Λ ∈ S. Then F is the
smallest σ- algebra containing all cylinder events. If Λ ∈ S the σ− algebra
FΛ on Ω contains all cylinder events {σΛ′0 ∈ A} for all A ∈ E and Λ′ ⊂ Λ.
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If we return to our physical intuition we are interested in random fields for
which the so-called spin variables σi exhibit a particular type of dependence.
We employ a similar dependence structure as for Markov chains, where the
dependence is expressed as a condition on past events. This approach was
introduced by Dobrushin ([Dob68a],[Dob68b],[Dob68c]) and Lanford and Ru-
elle ([LR69]). Here, we condition on the complement of any finite set Λ ⊂ Z

d.
To prescribe these conditional distributions of all finite collections of variables
we define the σ-algebras

TΛ = FZd\Λ for any Λ ∈ S. (6.22)

The intersection of all these σ-algebras is denoted by T = ∩Λ∈STΛ and called
the tail-σ-algebra or tail-field.
The dependence structure will be described by some functions linking the
random variables and expressing the energy for a given dependence structure.

Definition 6.2 An interaction potential is a family Φ = (φA)A∈S of func-
tions φA : Ω → R such that the following holds.

(i) φA is FA-measurable for all A ∈ S,

(ii) For any Λ ∈ S and any configuration ω ∈ Ω the expression

HΛ(ω) =
∑

A∈S,A∩Λ 
=∅

φA(ω) (6.23)

exists. The term exp(−βHΛ(ω)) is called the Boltzmann factor for
some parameter β > 0, where β is the inverse temperature.

Example 6.3 (Pair potential) Let φA = 0 whenever |A| > 2 and let
J : Z

d ×Z
d → R, ϕ : E ×E → R and ψ : E → R symmetric and measurable.

Then a general pair interaction potential is given by

φA(ω) =

⎧⎨⎩
J(i, j)ϕ(ωi, ωj) if A = {i, j}, i �= j,

J(i, i)ψ(ωi) if A = {i},
0 if |A| > 2

for ω ∈ Ω.

We combine configurations outside and inside of any finite set of random
variable as follows. Let ω ∈ Ω and ξ ∈ ΩΛ,Λ ∈ S, be given. Then ξωZd\Λ ∈ Ω
with σΛ(ξωZd\Λ) = ξ and σZd\Λ(ξωZd\Λ) = ωZd\Λ. With this notation we can
define a nearest-neighbour Hamiltonian with given boundary condition.
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Example 6.4 (Hamiltonian with boundary) Let Λ ∈ S and η ∈ Ω and
the functions J, ϕ and ψ as in Example 6.3 be given. Then

Hη
Λ(ω) =

1

2

∑
i,j∈Λ,〈i−j〉=1

J(i, j)ϕ(ωi, ωj) +
∑

i∈Λ,j∈Λc,
〈i−j〉=1

ϕ(ωi, ηj) +
∑
i∈Λ

J(i, i)ψ(ωi)

denotes a Hamiltonian in Λ with nearest-neighbour interaction and with con-
figurational boundary condition η ∈ Ω, where 〈x, y〉 = maxi∈{1,...,d} |xi − yi|
for x, y ∈ Z

d. Instead of a given configurational boundary condition one can
model the free boundary condition and the periodic boundary condition as
well.

In the following we fix a probability measure λ ∈ P(E, E) on the state space
and call it the reference or a priori measure. Later we may also con-
sider the Lebesgue measure as reference measure. Choosing a probability
measure as a reference measure for finite sets Λ gives just a constant from
normalisation.

Definition 6.5 (Gibbs measure)

(i) Let η ∈ Ω,Λ ∈ S, β > 0 the inverse temperature and Φ be an interac-
tion potential. Define for any event A ∈ F

γΦ
Λ(A|η) = ZΛ(η)−1

∫
ΩΛ

λΛ(dω)1lA(ωηZd\Λ) exp
(
− βHΛ(ωηZd\Λ)

)
(6.24)

with normalisation or partition function

ZΛ(η) =

∫
ΩΛ

λΛ(dω) exp
(
− βHΛ(ωηZd\Λ)

)
.

Then γΦ
Λ(·|η) is called the Gibbs distribution in Λ with boundary

condition ηZd\Λ, with interaction potential Φ, inverse temperature β
and reference measure λ.

(ii) A probability measure µ ∈ P(Ω,F) is a Gibbs measure for the inter-
action potential Φ and inverse temperature β if

µ(A|FΛ) = γΦ
Λ(A|·) µ a.s. for all A ∈ F ,Λ ∈ S, (6.25)

where γΦ
Λ is the Gibbs distribution for the parameter β (6.24). The set

of Gibbs measures for inverse temperature β with interaction potential
Φ is denoted by G(Φ, β).
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(iii) An interaction potential Φ is said to exhibit a first-order phase transi-
tion if |G(Φ, β)| > 1 for some β > 0.

If the interaction potential Φ is known we may skip the explicit appearance
of the interaction potential and write instead G(β) for the set of Gibbs mea-
sure with inverse temperature β. However, the parameter β can ever be
incorporated in the interaction potential Φ.

Remark 6.6

(i) γΦ
Λ(A|·) is TΛ-measurable for any event A ∈ F .

(ii) The equation (6.25) is called the DLR-equation or DLR-condition
in honour of R. Dobrushin, O. Lanford and D. Ruelle.

6.2 The one-dimensional Ising model

In this subsection we study the one-dimensional Ising model. If the state
space E is finite, then one can show a one-to-one correspondence between
the set of all positive transition matrices and a suitable class of nearest-
neighbour interaction potentials such that the set G(Φ) of Gibbs measures
is the singleton with the Markov chain distribution. This is essentially for a
geometric reason in dimension one, the condition on the boundary is a two-
sided Markov chain, for details see [Geo88]. A simple one-dimensional model
which shows this equivalence was suggested 1920 by W. Lenz ([Len20]), and
its investigation by E. Ising ([Isi24]) was a first and important step towards
a mathematical theory of phase transitions. Ising discovered that this model
fails to exhibit a phase transition and he conjectured that this will hold also
in the multidimensional case. Nowadays we know that this is not true. In
Subsection 6.4 we discuss the multidimensional case.

Let E = {−1,+1} be the state space and consider the lattice Z. At
each site the spin can be downwards , i.e., −1, or be upwards, i.e., +1. The
nearest-neighbour interaction is modelled by a constant J , called the coupling
constant, through the expression Jωiωj for any i, j ∈ Z with |i− j| = 1:

J > 0: Any two adjacent spins have minimal energy if and only if they
are aligned in that they have the same sign. This interaction is therefore
ferromagnetic.

J < 0: Any two adjacent spins prefer to point in opposite directions. Thus
this is a model of an antiferromagnet.
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h ∈ R: A constant h describes the action of an external field (directed
upwards when h > 0).
Hence the nearest-neighbour interaction potential ΦJ,h = (φJ,hA )A∈S reads

φJ,hA (ω) =

⎧⎨⎩
−Jωiωi+1 , if A = {i, i+ 1},

−hω , if A = {i},
0 , else

for ω ∈ Ω. (6.26)

We employ periodic boundary conditions, i.e., for Λ ⊂ Z finite and with
Λ = {1, . . . , |Λ|} we set ω|Λ|+1 = ω1 for any ω ∈ Ω. The Hamiltonian in Λ
with periodic boundary conditions reads

H (per)

Λ (ω) = −J
|Λ|∑
i=1

ωiωi+1 − h

|Λ|∑
i=1

ωi. (6.27)

The partition function depends on the inverse temperature β > 0, the cou-
pling constant J and the external field h ∈ R, and is given by

ZΛ(β, J, h) =
∑
ω1=±1

· · ·
∑

ω|Λ|=±1

exp
(
− βH (per)

Λ (ω)
)
. (6.28)

We compute this by the one-dimensional version of transfer matrix formalism
introduced by [KW41] for the two-dimensional Ising model. More details
about this formalism and further investigations on lattice systems can be
found in [BL99a] and [BL99b]. Crucial is the identity

ZΛ(β, J, h) =
∑
ω1=±1

· · ·
∑

ω|Λ|=±1

Vω1,ω2Vω2,ω3 · · ·Vω|Λ|−1,|Λ|Vω|Λ|,ω1

with

Vωiωi+1
= exp

(1

2
βhωi + βJωiωi+1 +

1

2
βhωi+1

)
for any ω ∈ Ω and i = 1, . . . , |Λ|. Hence, ZΛ(β, J, h) = Trace V

|Λ| with the
symmetric matrix

V =

(
eβ(J+h) e−βJ

e−βJ eβ(J−h)

)
that has the eigenvalues

λ± = eβJ cosh(βh) ±
(
e2βJ sinh2(βh) + e−2βJ

) 1
2
. (6.29)

This gives finally
ZΛ(β, J, h) = λ

|Λ|
+ + λ

|Λ|
− . (6.30)
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This is a smooth expression in the external field parameter h and the inverse
temperature β; it rules out the appearance of a discontinuous isothermal
magnetisation: so far, no phase transition. The thermodynamic limit of the
free energy per volume is

f(β, J, h) = lim
Λ↑Z

1

β|Λ| logZΛ(β, J, h) = − 1

β
log λ+, (6.31)

because |Λ|−1 logZΛ(β, J, h) = − log λ+− 1
|Λ|

(
1+(λ−

λ+
)|Λ|
)
. The magnetisation

in the canonical ensemble is given as the partial derivative of the specific free
energy per volume,

m(β, J, h) = −∂hf(β, J, h) =
sinh(βh)√

sinh2(βh) + e−4βJ

.

This is symmetric, m(β, J, 0) = 0 and limh→±∞m(β, J, h) = ±1 and for all
h �= 0 we have |m(β, J, h)| > |m(β, 0, h)| saying that the absolute value of the
magnetisation is increased by the non-vanishing coupling constant J . The
set G(Φ, β) of Gibbs measures contains only one element, called µβJ,h, see
[Geo88] for the explicit construction of this measure as the corresponding
Markov chain distribution, here we outline only the main steps.
1.) The nearest-neighbour interaction ΦJ,h in (6.26) defines in the usual way
the Gibbs distributions γJ,hΛ (·|ω) for any finite Λ ⊂ Z and any boundary
condition ω ∈ Ω. Define the function g : E3 → (0,∞) by

γJ,h{i} (σi = y|ω) = g(ωi−1, y, ωi+1), y ∈ E, i ∈ Z, ω ∈ Ω. (6.32)

We compute

g(x, y, z) = eβy(h+Jx+Jz)/2 cosh(β(h+ Jx+ Jz)) for x, y, z ∈ E. (6.33)

Fix any a ∈ E. Then the matrix

Q =

(
g(a, x, y)

g(a, a, y)

)
x,y∈E

(6.34)

is positive. By the well-known theorem of Perron and Frobenius we have
a unique positive eigenvalue q such that there is a strictly positive right
eigenvector r corresponding to q.
2.) The matrix PJ,h, defined as

PJ,h =

(
Q(x, y)r(y)

qr(x)

)
x,y∈E

(6.35)
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is uniquely determined by the matrix Q and therefore by g in (6.33). Clearly,
PJ,h is stochastic. We then let µβJ,h ∈ P(Ω) denote (the distribution of) the
unique stationary Markov chain with transition matrix PJ,h. It is uniquely
defined by

µβJ,h(σi = x0, σi+1 = x1, . . . , σi+n = xn) = αPJ,h(x0)
n∏
i=1

PJ,h(xi−1, xi), (6.36)

where i ∈ Z, n ∈ N, x0, . . . , xn ∈ E, and αPJ,h satisfies αPJ,hPJ,h = αPJ,h.

The expectation at each site is given by

EµJ,h(σi) =
(
e−4βJ + sinh2(βh)

)− 1
2
sinh(βh) , i ∈ Z.

In the low temperature limit one is interested in the behaviour of the set
G(Φ, β) of Gibbs measures as β → ∞. A configuration ω ∈ Ω is called a
ground state of the interaction potential Φ if for each site i ∈ Z the pair
(ωi, ωi+1) is a minimal point of the function

ψ : {−1,+1}2 → R; (x, y) �→ ψ(x, y) = −Jxy +
1

2
h(x+ y).

Note that the interaction potential Ψ = (ψA)A∈S with

ψA =

{
ψ(σi, σi+1) , if A = {i, i+ 1}

0 , otherwise

is equivalent to the given nearest neighbour interaction potential Φ. We
denote the constant configuration with only upward-spins by ω+ (respectively
the constant configuration with only downward-spins by ω−). The Dirac
measure on these constant configurations is denoted by δ+ respectively δ−.
Then, for h > 0, we get that

µβJ,h → δ+ weakly in sense of probability measures as β → ∞,

and hence ω+ is the unique ground state of the nearest-neighbour interaction
potential Φ. Similarly, for h < 0, we get that

µβJ,h → δ− weakly in sense of probability measures as β → ∞,

and hence ω− is the unique ground state of the nearest-neighbour interaction
potential Φ. In the case h = 0 the nearest neighbour interaction potential Φ
has precisely two ground states, namely ω+ and ω−, and hence we get

µβJ,0 →
1

2
δ+ +

1

2
δ− weakly in sense of probability measures as β → ∞.
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6.3 Symmetry and symmetry breaking

Before we study the two-dimensional Ising model, we briefly discuss the role
of symmetries for Gibbs measures and their connections with phase transi-
tions. As is seen by the spontaneous magnetisation below the Curie tem-
perature, the spin system takes one of several possible equilibrium states
each of which is characterised by a well-defined direction of magnetisation.
In particular, these equilibrium states fail to be preserved by the spin re-
versal (spin-flip) transformation. Thus breaking of symmetries has some
connection with the occurrence of phase transitions.
Let T denote the set of transformations

τ : Ω → Ω, ω �→ (τiωτ−1∗ i)i∈Zd ,

where τ∗ : Z
d → Z

d is any bijection of the lattice Z
d, and the τi : E → E, i ∈

Z
d, are invertible measurable transformations of E with measurable inverses.

Each τ ∈ T is a composition of a spatial transformation τ∗ and the spin
transformations τi, i ∈ Z

d, which act separately at distinct sites of the square
lattice Z

d.

Example 6.7 (Spatial shifts) Denote by Θ = (θi)i∈Zd the group of all
spatial transformations or spatial shifts or shift transformations
θj : Ω → Ω, (ωi)i∈Zd �→ (ωi−j)i∈Zd.

Example 6.8 (Spin-flip transformation) Let the state space E be a sym-
metric Borel set of R and define the spin-flip transformation

τ : Ω → Ω, (ω)i∈Zd �→ (−ωi)i∈Zd.

Notation 6.9 The set of all translation invariant probability measures on Ω
is denoted by PΘ(Ω,F) = {µ ∈ P(Ω,F) : µ = µ ◦ θ−1

i for any i ∈ Z
d}.

The set of all translation invariant Gibbs measures for the interaction poten-
tial Φ and inverse temperature β is denoted by GΘ(Φ, β) = {µ ∈ G(Φ, β) : µ =
µ ◦ θ−1

i for any i ∈ Z
d}.

Definition 6.10 (Symmetry breaking) A symmetry τ ∈ T is said to be
broken if there exists some µ ∈ G(Φ, β) such that τ(µ) �= µ for some β.

A direct consequence of symmetry breaking is that |G(Φ, β)| > 1, i.e.,
when there is a symmetry breaking the interaction potential exhibit a phase
transition. There are models where all possible symmetries are broken as
well as models where only a subset of symmetries is broken. A first exam-
ple is the one-dimensional inhomogeneous Ising model, which is probably the
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simplest model showing symmetry breaking. The one-dimensional inhomoge-
neous Ising model on the lattice N has the inhomogeneous nearest-neighbour
interaction potential Φ = (φA)A∈S defined for a sequence (Jn)n∈N of real
numbers Jn > 0 for all n ∈ N such that

∑
n∈N

e−2Jn <∞, as follows

φA =

{
−Jnσnσn+1 , if A = {n, n + 1},
0 otherwise ,

.

This model is spatial inhomogeneous, the potential Φ is invariant under the
spin-flip transformation τ , but some Gibbs measures are not invariant un-
der this spin-flip transformation (for details see [Geo88]) for β > 0. The
simplest spatial shift invariant model which exhibits a phase transition is
the two-dimensional Ising model, which we will study in the next subsec-
tion 6.4. This model breaks the spin-flip symmetry while the shift-invariance
is preserved. Another example of symmetry breaking is the discrete two-
dimensional Gaussian model by Shlosman ([Shl83]). Here the spatial shift
invariance is broken. More information can be found in [Geo88] or [GHM00].

6.4 The Ising ferromagnet in two dimensions

Let E = {−1, 1} be the state space and define the nearest-neighbour inter-
action potential Φ = (φA)A∈S as

φA =

{
−σiσj , if A = {i, j}, |i− j| = 1

0 , otherwise
.

The interaction potential Φ is invariant under the spin flip transformation τ
and the shift-transformations θi, i ∈ Z

d. Let δ+, δ− be the Dirac measures for
the constant configurations ω+ ∈ Ω and ω− ∈ Ω. The interaction potential
takes its minimum at ω+ and ω−, hence ω+ and ω− are ground states for
the system. The ground state generacy implies a phase transition if ω+, ω−
are stable in the sense that the set of Gibbs measure G(Φ, β) is attracted by
each of the measures δ+ and δ− for β → ∞. Let d denote the Lévy metric
compatible with weak convergence in the sense of probability measures.

Theorem 6.11 (Phase transition) Under the above assumptions it holds

lim
β→∞

d(GΘ(Φ, β), δ+) = lim
β→∞

d(GΘ(Φ, β), δ−) = 0.

For sufficiently large β there exist two shift-invariant Gibbs measure µβ+, µ
β
− ∈

GΘ(Φ, β) with τ(µβ+) = µβ− and

µβ−(ω0) = Eµβ−
(ω0) < 0 < µβ+(ω0) = Eµβ+

(ω0).
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Remark 6.12

(i) µβ+(ω0) is the mean magnetisation. Thus: The two-dimensional Ising
ferromagnet admits an equilibrium state/measure of positive magnetisa-
tion although there is no action of an external field. This phenomenon
is called spontaneous magnetisation.

(ii)
∣∣GΘ(Φ, β)

∣∣ > 1 ⇔ µβ+(ω0) > 0 goes back to [LL72]. Moreover, the Grif-

fith’s inequality implies that the magnetisation µβ+(ω0) is a non-negative
non-decreasing function of β. Moreover there is a critical inverse tem-
perature βc such that

∣∣GΘ(Φ, β)
∣∣ = 1 when β < βc and

∣∣GΘ(Φ, β)
∣∣ > 1

when β > βc. The value of βc is

βc =
1

2
sinh−1 1 =

1

2
log
(
1 +

√
2)

and the magnetisation for β ≥ βc is

µβ+(ω0) =
(
1 − (sinh 2β)−4

) 1
8 .

(iii) For the same model in three dimensions one has again µβ+, µ
β
− ∈ GΘ(Φ, β),

but there also exist non-shift-invariant Gibbs measures ([Dob73]).

Proof of Theorem 6.11. Let Λ ⊂ Z
2 be a centred cube. Denote by

BΛ = {{i, j} ⊂ Z
2 : |i− j| = 1, {i, j} ∩ Λ �= ∅}

the set of all nearest-neighbour bonds which emanate from sites in Λ. Each
bond b = {i, j} ∈ BΛ should be visualised as a line segment between i
and j. This line segment crosses a unique ”dual” line segment between two
nearest-neighbour sites u, v in the dual cube Λ∗ (shift by 1

2
in the canonical

directions). The associate set b∗ = {u, v} is called the dual bond of b, and we
write

B
∗
Λ = {b∗ : b ∈ BΛ} = {{u, v} ⊂ Λ∗ : |u− v| = 1}

for the set of all dual bonds. Note

b∗ = {u ∈ Λ+ : |u− (i+ j)/2| =
1

2
}.

A set c ⊂ B
∗
Λ is called a circuit of length l if c = {{u(k−1), u(k)} : 1 ≤ k ≤ l} for

some (u(0), . . . , u(l)) with u(l) = u(0), |{u(1), . . . , u(l)}| = l and {u(k−1), u(k)} ∈
B
∗
Λ, 1 ≤ k ≤ l. A circuit c surrounds a site a ∈ Λ if for all paths (i(0), . . . , i(n))

in Z
2 with i(0) = a and i(n) /∈ Λ and {i(m−1), i(m)} ∈ BΛ for all 1 ≤ m ≤ n there

exits a m ∈ N with {i(m−1), i(m)}∗ ∈ c. We denote the set of circuits which
surround a by Ca. We need a first lemma.
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Lemma 6.13 For all a ∈ Λ and l ≥ 1 we have∣∣{c ∈ Ca : |c| = l}
∣∣ ≤ l3l−1.

Proof. Each c ∈ Ca of length l contains at least one of the l dual bonds

{a+ (k − 1, 0), a+ (k, 0)}∗ k = 1, . . . , l,

which cross the horizontal half-axis from a to the right for example. The
remaining l − 1 dual bonds are successively added, at each step there are at
most 3 possible choices. �

The ingenious idea of Peierls ([Pei36]) was to look at circuits which occur in
a configuration. For each ω ∈ Ω we let

B
∗
Λ(ω) = {b∗ : b = {i, j} ∈ BΛ, ωi �= ωj}

denote the set of all dual bonds in B
∗ which cross a bond between spins of

opposite sign. A circuit c with c ⊂ B
∗
Λ(ω) is called a contour for ω. We let

ω outside of Λ be constant. As in Figure 3 we put outside + -spins. If a site
a ∈ Λ is occupied by a minus spin then a is surrounded by a contour for ω.

The idea for the proof of Theorem 6.11 is as follows. Fix ω+ boundary
condition outside of Λ. Then the minus spins in Λ form (with high proba-
bility) small islands in an ocean of plus spins. Then in the limit Λ ↑ Z

2 one
obtains a µβ+ ∈ G(βΦ) which is close to the delta measure δ+ for β sufficiently

large. As δ+ and δ− are distinct, so are µβ+ and µβ− when β is large. Hence∣∣G(βΦ)
∣∣ > 1 when β is large. We turn to the details. The next lemma just

ensures the existence of a contour for positive boundary conditions and one
minus spin in Λ. We just cite it without any proof.

Lemma 6.14 Let ω ∈ Ω with ωi = +1 for all i ∈ Λc and ωa = −1 for some
a ∈ Λ. Then there exists a contour for ω which surrounds a.

Now we are at the heart of the Peierls argument, which is formulated in the
next lemma.

Lemma 6.15 Suppose c ⊂ B
∗
Λ is a circuit. Then

γβΦ
Λ (c ⊂ B

∗
Λ(·)|ω) ≤ e−2β|c|

for all β > 0 and for all ω ∈ Ω.
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Figure 3: a contour for + boundary condition
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Proof. Note that for all ξ ∈ Ω we have

−HΛ(ξ) =
∑

{i,j}∈BΛ

ξiξj = |BΛ| −
∑

{i,j}∈BΛ

(1 − ξiξj)

= |BΛ| − 2|{{i, j} ∈ BΛ : ξ �= ξj}| = |BΛ| − 2|B∗
Λ|.

Now we define two disjoint sets of configurations which we need later for an
estimation.

A1 = {ξ ∈ Ω: ξZd\Λ = ωZd\Λ, c ⊂ B
∗
Λ(ξ)}

A2 = {ξ ∈ Ω: ξZd\Λ = ωZd\Λ, c ∩ B
∗
Λ(ξ) = ∅}.

There is a mapping τc : Ω → Ω with

(τcξ)i =

{
−ξ , if i is surrounded by c,
ξ , otherwise

,

which flips all spins in the interior of the circuit c. Moreover, for all {i, j} ∈
BΛ we have

(τcξ)i(τcξ)j =

{
ξiξj , if {i, j}∗ /∈ c

−ξiξj , if {i, j}∗ ∈ c
,

resulting in B
∗
Λ(τcξ)�B

∗
Λ(ξ) = c (this was the motivation behind the defi-

nition of mappings), where � denotes the symmetric difference of sets. In
particular we get that τc is a bijection from A2 to A1, and we have

HΛ(ξ) −HΛ(τcξ) = 2|B∗
Λ(ξ)| − 2|B∗

Λ(τcξ)| = −2|c|.

Now we can estimate with the help of the set of events A1, A2

γΛ(c ⊂ B
∗
Λ(·)|ω) ≤

∑
ξ∈A1

exp(−βHΛ(ξ))∑
ξ∈A2

exp(−βHΛ(ξ))
=

∑
ξ∈A2

exp(−βHΛ(τcξ))∑
ξ∈A2

exp(−βHΛ(ξ))

= exp(−2β|c|).

�

Now we finish our proof of Theorem 6.11. For β > 0 define

r(β) = 1 ∧
∑
l≥1

l(3e−2β)l,

where ∧ denotes the minimum, and note that r(β) → 0 as β → ∞. The
preceding lemmas yield

γΛ(ωa|ω+) ≤
∑
c∈Ca

γΛ(c ⊂ B
∗
Λ(·)|ω+) ≤

∑
c∈Ca

e−2β|c| ≤
∑
l≥1

l3l−2βl,
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and thus γΛ(ωa|ω+) ≤ r(β) for all a ∈ Z
2, β > 0 and Λ ⊂ Z

2. Choose
ΛN = [−N,N ]2 ∩ Z

2 and define the approximating measures

ν+
N =

1

|ΛN |
∑
i∈ΛN

γΛN+i(·|ω+).

As P(Ω,F) is compact, the sequence (ν+
N)N∈N has a cluster point µβ+ and one

can even show that µβ+ ∈ GΘ(Φ, β) ([Geo88]). Our estimation above gives

then µβ+(ωa = −1) ≤ r(β), and in particular one can show that

lim
β→∞

µβ+ = δ+ and lim
β→∞

d(GΘ(βΦ), δ+) = 0.

Note µβ− = τ(µβ+). Hence,

µβ+(ω0 = −1|ω+) = µβ−(ω0 = +1|ω−).

If β is so large that µβ+(ω0 = −1) ≤ r(β) < 1
3
, then

µβ+(ω0 = −1) = µβ−(ω0 = +1) <
1

3
.

But {ω0 = −1} ∪ {ω0 = +1} = Ω, and hence

µβ+(ω0 = +1) = 1 − µβ+(ω0 = −1) ≥ 2

3
.

�

6.5 Extreme Gibbs measures

The set G(Φ, β) of Gibbs measures for some interaction potential Φ and
inverse temperature β > 0 is a convex set, i.e., if µ, ν ∈ G(Φ, β) and 0 < s < 1
then sµ + (1 − s)ν ∈ G(Φ, β). An extreme Gibbs measure (or in physics: a
pure state) is an extreme element µ of the convex set G(Φ, β). The set
of all extreme Gibbs measures is denoted by exG(Φ, β). Below we give a
characterisation of extreme Gibbs measures. But first we briefly discuss
microscopic and macroscopic quantities. A real function f : Ω → R is
said to describe a macroscopic observable if f is measurable with respect
to the tail-σ-algebra T . The T -measurability of a function f means that the
value of f is not affected by the behaviour of any finite set of spins. For
example, the event{

lim
n→∞

1

|Λn|
∑
i∈Λn

ωi exists and belongs to B
}

B ∈ BR,
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is a tail event in T for any cofinal sequence (Λn)n∈N with Λn ↑ Z
d as n→ ∞.

A function f describes a microscopic observable if it depends only on finitely
many spins. A function f : Ω → R is called cylinder function or local
function if it is FΛ-measurable for some Λ ∈ S. The function f is called
quasi-local if it can be approximated in supremum norm by local functions.
The following theorem gives a characterisation of extreme Gibbs measures.
It was invented by Lanford and Ruelle [LR69] and but was introduced earlier
in a weaker form by Dobrushin [Dob68a],[Dob68b].

Theorem 6.16 (Extreme Gibbs measures) A Gibbs measure µ ∈ G(Φ)
is extreme if and only if µ is trivial on the tail-σ-algebra T , i.e. if µ(A) = 0
or µ(A) = 1 for any A ∈ T .

Microscopic quantities are subject to rapid fluctuations in contrast to
macroscopic quantities. A probability measure µ ∈ P(Ω,F) describing the
equilibrium state of a given system is consistent with the observed empiri-
cal distributions of microscopic variables when it is a Gibbs measure. The
second requirement even gives that macroscopic quantities are constant with
probability one, and with Theorem 6.16 it follows that only extreme Gibbs
measures are an appropriate description of equilibrium states. For this rea-
son, an extreme Gibbs measure is often called a phase. However this term
should not be confused with the physical concept of a pure phase. Note
that the stable coexistence of distinct pure phases in separated regions of
space will also be represented by an extreme Gibbs measure (see Figure 4,
which was taken from [Aiz80]). This can be seen quite nicely in the three-
dimensional Ising model ([Dob73]), where a Gibbs measure is constructed via
Gibbs distributions whose boundary is on one half-space given by upward-
spins and on the other half-space given by downward-spins. It is a tempting
misunderstanding to believe that the coexistence of two pure phases was de-
scribed by a mixture like 1

2
(µ1 +µ2), µ1, µ2 ∈ G(Φ, β). Such a mixture rather

corresponds to an uncertainty about the true phase of the system. See the
Figure 4 for an illustration of this fact.

6.6 Uniqueness

In this subsection we give a short intermezzo about the question of unique-
ness of Gibbs measures, i.e., the situation when there is a most one Gibbs
measure possible for the given interaction potential. One might guess that
this question has something to due with the dependence structure introduced
from the interaction potential. One is therefore led to check the dependence
structure of the conditional Gibbs distributions at one given lattice site. For
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Figure 4: An extreme µ(coexistence) and mixture 1
2
(µ(water) + µ(ice))

that, fix any i ∈ Z
d and consider the ωj-dependence of the Gibbs distribu-

tion γΦ
{i}(·|ω) for each j ∈ Z

d and ω ∈ Ω for a given interaction potential Φ.
Introduce the matrix elements

Ci,j(Φ) = sup
ξ,η∈Ω,

ξ
Zd\{j}=η

Zd\{j}

||γΦ
{i}(·|ξ) − γΦ

{i}(·|η)||,

where ||·|| denotes the uniform distance of probability measures onE, which is
one half of the total variation distance. Note that γΦ

{i}(·|ξ) ∈ P(E, E) for any

ξ ∈ Ω. The matrix (Ci,j)i,j∈Zd is called Dobrushin’s interdependence matrix.
A first guess describing the dependence structure would be to consider the
sum ∑

j∈Zd

Ci,j(Φ),

however this tells us nothing about the behaviour of the configuration ω ∈ Ω
at infinity.

Definition 6.17 An interaction potential Φ is said to satisfy Dobrushin’s
uniqueness condition if

C(Φ) = sup
i∈Zd

∑
j∈Zd

Ci,j(Φ) < 1. (6.37)

To provide a sufficient condition for Dobrushin’s condition to hold, define
the oscillation of any function f : Ω → R as

δ(f) = sup
ξ,η∈Ω

|f(ξ) − f(η)|.

Theorem 6.18 Let Φ be an interaction potential and d ≥ 1.

(i) If Dobrushin’s uniqueness condition (6.37) is satisfied, then |G(Φ)| ≤ 1.
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(ii) If

sup
i∈Zd

∑
A�i

(|A| − 1)δ(φA) < 2,

then Dobrushin’s uniqueness condition (6.37) is satisfied.

Proof. See [Geo88] and references therein. �

Example 6.19 (Lattice gas) Let E = {0, 1} and let the reference measure
be the counting measure. Let K : S → R be any function on the set of all
finite subsets of Z

d and define for ω ∈ Ω the interaction potential Φ by

φA(ω) =

{
K(A) , if ωA =

∏
i∈A ωi = 1

0 , otherwise

for any A ∈ S. Note that δ(φA) = |K(A)|. Thus uniqueness is given when-
ever

sup
i∈Zd

∑
A�i

(|A| − 1)|K(A)| < 4.

Example 6.20 (One-dimensional systems) Let Φ be a shift-invariant in-
teraction potential and d = 1. Then there is at most one Gibbs measure
whenever ∑

A∈S,
minA=0

diam (A)δ(φA) <∞.

6.7 Ergodicity

We look at the convex set PΘ(Ω,F) of all shift-invariant random fields on
Z
d. PΘ(Ω,F) is always non-empty. We also consider the σ-algebra

I = {A ∈ F : θiA = A for all i ∈ Z
d} (6.38)

of all shift-invariant events. A F -measurable function f : Ω → R is I-
measurable if and only if f is invariant, in that f ◦ θi = f for all i ∈ Z

d. A
standard result in ergodic theory is the following theorem.

Theorem 6.21 (i) A probability measure µ ∈ PΘ(Ω,F) is extreme in
PΘ(Ω,F) if and only if µ is trivial on the invariant σ-algebra.

(ii) Each µ ∈ PΘ(Ω,F) is uniquely determined (within PΘ(Ω,F)) by its
restriction to I.
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(iii) Distinct probability measures µ, ν ∈ exPΘ(Ω,F) are mutually singular
on I in that there exists an A ∈ I such that µ(A) = 1 and ν(A) = 0.

Proof. Standard textbooks of ergodic theory or [Geo88]. �

Definition 6.22 (Ergodic measure) A probability measure µ ∈ PΘ(Ω,F)
is said to be ergodic (with respect to the shift-transformation group Θ) if
µ is trivial on the σ-algebra I of all shift-invariant events. In mathematical
physics such a µ is often called a pure state.

Proposition 6.23 (Characterisation of ergodic measures)
Let µ be a probability measure µ ∈ PΘ(Ω,F) and (ΛN)N∈N any sequence of
cubes with ΛN ↑ Z

d as N → ∞. Then the following statements are equivalent.

(i) µ is ergodic.

(ii) For all events A ∈ F ,

lim
N→∞

sup
B∈F

∣∣∣ 1

|ΛN |
∑
i∈ΛN

µ(A ∩ θiB) − µ(A)µ(B)
∣∣∣ = 0.

(iii) For arbitrary cylinder events A and B,

lim
N→∞

1

|ΛN |
∑
i∈ΛN

µ(A ∩ θiB) = µ(A)µ(B).

One can show that each extreme measure is a limit of finite volume Gibbs
distributions with suitable boundary conditions. Now, what about ergodic
Gibbs measures? The ergodic Theorem 6.24 below gives an answer: If µ ∈
exPΘ(Ω,F) and (ΛN)N∈N a sequence of cubes with ΛN ↑ Z

d as N → ∞ one
gets

µ(f) = lim
N→∞

1

|ΛN |
∑
i∈ΛN

f(θiω)

for µ-almost all ω ∈ Ω and bounded measurable function f : Ω → R. Thus

µ = lim
N→∞

1

|ΛN |
∑
i∈ΛN

δθiω for µ− a.a. ω ∈ Ω

in any topology which is generated by countably many evaluation mappings
ν �→ ν(f). For E finite, the weak topology (of probability measures) has this
property.
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For any given measurable function f : Ω → R define

RNf =
1

|ΛN |
∑
i∈ΛN

f ◦ θi N ∈ N. (6.39)

The multidimensional ergodic theorem says something about the limiting be-
haviour of RNf as N → ∞. Let (ΛN)N∈N be a cofinal sequence of boxes with
ΛN ↑ Z

d as N → ∞.

Theorem 6.24 (Multidimensional Ergodic Theorem) Let a probabil-
ity measure µ ∈ PΘ(Ω,F) be given. For any measurable f : Ω → R with
µ(|f |) <∞,

lim
N→∞

RNf = µ(f |I) µ− a.s.

7 A variational characterisation of Gibbs mea-

sures

In this section we give a variational characterisation for translation invariant
Gibbs measures. This characterisation will prove useful in the study of Gibbs
measures and it has a close connection to the physical intuition, namely
that an equilibrium state minimises the free energy. This will be proved
rigorously in this section. Let us start with some heuristics and assume
for this purpose only that the set Ω of configurations is finite. Denote by
ν(ω) = Z−1 exp(−H(ω)) a Gibbs measure with suitable normalisation Z and
Hamiltonian H . The mean energy for any probability measure µ ∈ P(Ω) is

Eµ(H) = µ(H) =
∑
ω∈Ω

µ(ω)H(ω),

and its entropy is given by

H(µ) = −
∑
ω∈Ω

µ(ω) logµ(ω).

Now µ(H)−H(µ) = F (µ) is called the free energy of µ, and for any µ ∈ P(Ω)
we have

F (µ) ≥ − logZ and F (µ) = − logZ if and only if µ = ν.

To see this, apply Jensen’s inequality for the convex function ϕ(x) = x log x
and conclude by simple calculation

µ(H) −H(µ) + logZ =
∑
ω∈Ω

µ(ω) log
(µ(ω)

ν(ω)

)
=
∑
ω∈Ω

ν(ω)ϕ
(µ(ω)

ν(ω)

)
≥ ϕ
(∑
ω∈Ω

ν(ω)
µ(ω)

ν(ω)

)
= ϕ(1) = 0,
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and as ϕ is strictly convex there is equality if and only if µ(ω)
ν(ω)

is a constant.
As Ω is finite one gets that µ = ν. If Ω is not finite one has to employ quite
some mathematical theory which we present briefly in the rest of this section.

Definition 7.1 (Relative entropy) Let A ⊂ F be a sub-σ-algebra of F
and µ, ν ∈ P(Ω,F) be two probability measures. Then

HA(µ|ν) =

{
ν(fA log fA) =

∫
Ω
fA(ω) log fA(ω)ν(dω) , if µ � ν on A

∞ , otherwise
,

where fA is the Radon-Nikodym density of µ|A relative to ν|A (µ|A and ν|A
are the restrictions of the measures to the sub-σ-algebra A), is called the
relative entropy or Kullback-Leibler information or information di-
vergence of µ relative to ν on A.

If A = FΛ for some Λ ∈ S one writes

HΛ(µ|ν) =

{
ν(fΛ log fΛ) =

∫
ΩΛ
fΛ(ω) log fΛ(ω)ν(dω) , if µ � ν on Λ

∞ , otherwise
,

where fΛ =
(

dµΛ

dνΛ

)
is the Radon-Nikodym density and µΛ and νΛ are the

marginals of µ and ν on Λ for the projection map σΛ : Ω → ΩΛ.

We collect the most important properties of the relative entropy in the fol-
lowing proposition.

Proposition 7.2 Let A ⊂ F a sub-σ-algebra of F and µ, ν ∈ P(Ω,F) any
two probability measures. Then

(a) HA(µ|ν) ≥ 0,

(b) HA(µ|ν) = 0 if and only if µ = ν on A,

(c) HA is an increasing function of A,

(d) H(·|·) is convex.

We now connect the relative entropy to our previous definition of the entropy
functional in Section 3. For this let any finite signed a priori measure λ on
(E, E) be given. Note that the a priori or reference measure need not be
normalised to one (probability measure), and the following notion depends
on the choice of this reference measure. Recall that λΛ denotes the product
measure on ΩΛ = (EΛ, EΛ).
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Notation 7.3 Let µ ∈ P(Ω,F). The function

SΛ = −HΛ(µ|σ−1
Λ (λΛ))

is called the entropy of µ in Λ relative to the reference/a priori measure λ.

If the reference measure λ is the counting measure we get back Shannon’s
formula

HΛ(µ) = −
∑
ξ∈ΩΛ

µ(σΛ = ξ) logµ(σΛ = ξ) ≥ 0

for the entropy. We wish to show that the thermodynamic limit of the entropy
exists, i.e.wish to show that

h(µ) = lim
n→∞

1

|Λn|
HΛn(µ)

exists for any cofinal sequence (Λn)n∈N of finite volume boxes in S. Essential
device for the proof of the existence of this limit is the following sub-additivity
property.

Proposition 7.4 (Strong Sub-additivity) Let Λ,∆ ∈ S and µ ∈ P(Ω,F)
be given. Then

HΛ(µ) + H∆(µ) ≥ HΛ∩∆(µ) + HΛ∪∆(µ). (7.40)

Proof. A proof is given in [Rue69],[Isr79] and in [Geo88]. �

Equipped with this inequality we go further and assume Λ ∩ ∆ = ∅ (note
H∅(µ) = 0) and observe that for a translation invariant probability measure
µ ∈ PΘ(Ω,F) we get that

HΛ+i(µ) = HΛ(µ) for any Λ ∈ S and any i ∈ Z
d.

Denote by Sr.B. the set of all rectangular boxes in Z
d.

Lemma 7.5 Suppose that the function a : Sr.B. → [−∞,∞) satisfies

(i) a(Λ + i) = a(Λ) for all Λ ∈ Sr.B., i ∈ Z
d,

(ii) a(Λ) + a(∆) ≥ a(Λ ∪ ∆) for Λ,∆ ∈ Sr.B.,Λ ∩ ∆ = ∅,

(Λn)n∈N a cofinal sequence of cubes with Λn ↑ Z
d as n→ ∞. Then the limit

lim
n→∞

1

|Λn|
a(Λn) = inf

∆∈Sr.B.

1

|∆|a(∆) (7.41)

exists in [−∞,∞).
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Proof. Choose

c > α := inf
∆∈Sr.B.

1

|∆|a(∆)

and let ∆ ∈ Sr.B. be such that 1
|∆|a(∆) < c. Denote by Nn the number of

disjoint translates of ∆ contained in Λn. Then Λn is split into Nn translates
of ∆ and a remainder in the boundary layer. Choose Nn as large as possible.
Then limn→∞

|Λn|
Nn|∆| = 1. The sub-additivity gives

a(Λn) ≤ Nna(∆) + (|Λn| −Nn|∆|)a({0}).

Hence,

α ≤ lim sup
n→∞

1

|Λn|
a(Λn) = lim sup

n→∞
N−1
n |∆|−1a(Λn)

< |∆|−1a(∆) < c.

Letting c tend to α gives the proof of the lemma. �

Now, both Proposition 7.4 and Lemma 7.5 provide the main steps of the
proof of the following theorem.

Theorem 7.6 (Specific entropy) Fix a finite signed reference measure λ
on the measurable state space (E, E). Let µ ∈ PΘ(Ω,F) be a translation
invariant probability measure and (Λn)n∈N a cofinal sequence of boxes with
Λn ↑ Z

d as n→ ∞. Then,

(a)

h(µ) = lim
n→∞

1

|Λn|
HΛn(µ)

exists in [−∞, λ(E)].

(b) h : PΘ(Ω,F) → R, µ �→ h(µ), is affine and upper semi-continuous. The
level sets {h ≥ c}, c ∈ R, are compact with respect to the weak topology
of probability measures.

Notation 7.7 h(µ) is called the specific entropy per site of µ ∈ PΘ(Ω,F)
relative to the reference measure λ.

Proof of Theorem 7.6. The existence of the specific entropy was proved
first by Shannon ([Sha48]) for the case d = 1, |E| < ∞ and λ the counting
measure. Extensions are due to McMillan ([McM53]) and Breiman ([Bre57]).
The multidimensional version of Shannon’s result is due to Robinson and
Ruelle ([RR67]). The first two assertions of (b) can already be found in
[RR67], an explicit proof of this can be found in [Isr79]. �

65



Now the following question arises. What happens if we take instead of the
reference measure any Gibbs measure and evaluate the relative entropy? We
analyse this question in the following. To define the specific energy of a
translation invariant probability measure it proves useful to introduce the
following function. Let Φ = (φA)A∈S be a translation invariant interaction
potential. Define the function fΦ : Ω → R as

fΦ =
∑
A�0

|A|−1φA. (7.42)

In the following theorem we prove the existence of the specific energy. To
derive an expression which is independent of any chosen boundary condition,
we formulate the theorem for an arbitrary sequence of boundary conditions,
which applies also to the case of periodic and free boundary conditions.

Theorem 7.8 (Specific energy) Let µ ∈ PΘ(Ω,F), Φ be a translation
invariant interaction potential, (Λn)n∈N be a cofinal sequence of boxes with
Λn ↑ Z

d as n → ∞ and (ωn)n∈N be a sequence of configurations ωn ∈ Ω.
Then the specific energy

Eµ(fΦ) = µ(fΦ) = lim
n→∞

1

|Λn|
µ(Hωn

Λn
) (7.43)

exists.

Notation 7.9 (Specific free energy) Eµ(fΦ) or µ(fΦ) is called the spe-
cific (internal) energy per site of µ relative to Φ. The quantity f(µ) =
µ(fΦ) − h(µ) is called the specific free energy of µ for Φ.

Proof of Theorem 7.8. For the proof see any of the books [Geo88],[Rue69]
or [Isr79]. The proof goes back to Dobrushin [Dob68b] and Ruelle [Rue69].
�

We continue our investigations with the previously occurred question of the
relative entropy with respect to a given Gibbs measure.

Theorem 7.10 (Pressure) Let µ ∈ PΘ(Ω,F) and γ ∈ GΘ(Φ, β), β > 0, Φ
be a translation invariant interaction potential, (Λn)n∈N be a cofinal sequence
of boxes with Λn ↑ Z

d as n→ ∞ and (ωn)n∈N be a sequence of configurations
ωn ∈ Ω. Then,

(a) P (Φ) = limn→∞
1

|Λn| logZΛn(ωn) exists.
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(b) The limit limn→∞
1

|Λn|HΛn(µ|γ) exists and equals

h(µ|Φ) = P (Φ) + µ(fΦ) − h(µ) = P (Φ) + f(µ). (7.44)

Notation 7.11 P = P (Φ) is called the pressure and specific Gibbs free
energy.

Proof of Theorem 7.10. We just give the main idea of the proof. Details
can be found in [Isr79],[Geo88] and go back to [GM67]. Let Λ ∈ S and
ω ∈ Ω fixed. Recall that the marginal of µ on Λ is a probability measure on
(ΩΛ,FΛ) as well as the conditional Gibbs distribution γΛ(·|ω) for any given
configuration ω ∈ Ω. Then compute

HΛ(µ|γΛ(·|ω)) =

∫
ΩΛ

µΛ(dξ) log
dµΛ

dγΛ
(ξ) =

∫
ΩΛ

µΛ(dξ) log
dµΛ

dλΛ
(ξ)

−
∫

ΩΛ

µΛ(dξ) log
dλΛ

dγΛ
(ξ)

= −HΛ(µ) +

∫
ΩΛ

µΛ(dξ)HΛ(ξωZd\Λ) + logZΛ(ω).

We can draw an easy corollary, which is the first part of the variational
principle for Gibbs measures.

Corollary 7.12 (First part variational principle) For a translation in-
variant interaction potential Φ and µ ∈ PΘ(Ω,F) we have h(µ|φ) ≥ 0. If
moreover µ ∈ GΘ(Φ, β) then h(µ|Φ) = 0.

Proof. The assertions are due to Dobrushin ([Dob68a]) and Lanford and
Ruelle ([LR69]). �

The next theorem gives the reversed direction and a summary of the whole
variational principle.

Theorem 7.13 (Variational principle) Let Φ be a translation invariant
interaction potential, (Λn)n∈N a cofinal sequence of boxes with Λn ↑ Z

d as
n→ ∞ and µ ∈ PΘ(Ω,F). Then,

(a) Let µ ∈ PΘ(Ω,F) be such that lim infn→∞
1

|Λn|HΛn(µ|ν) = 0. Then

µ ∈ GΘ(Φ, β).

(b) h(µ|Φ) ≥ 0 and h(µ|Φ) = 0 if and only if µ ∈ GΘ(Φ, β).
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(c) h(·|Φ): PΘ(Ω,F) → [0,∞] is an affine lower semi continuous func-
tional which attains its minimum 0 on the set GΘ(Φ, β). Equivalently,
GΘ(Φ) is the set on which the specific free energy functional

f : PΘ(Ω,F) → [0,∞]

attains its minimum −P (Φ).

Proof. This variational principle is due to Lanford and Ruelle ([LR69]).
A transparent proof which reveals the significance of the relative entropy is
due to Föllmer ([Föl73]). �

8 Large deviations theory

In this section we give a short view on large deviations theory. We motivate
this by the simple coin tossing model. We finish with some recent large
deviations results for Gibbs measures, which we can only discuss briefly.

8.1 Motivation

Consider the coin tossing experiment. The microstates are elements of the
configuration space Ω = {0, 1}N equipped with the product measure Pν ,
where ν ∈ P({0, 1}) is given as ν = ρ0δ0+ρ1δ1 with ρ0+ρ1 = 1. If ρ0 = ρ1 = 1

2

we have a ”fair” coin. Recall the projections σj : Ω → {0, 1}, j ∈ N, and
consider the mean

SN(ω) =
1

N

N∑
j=1

σj(ω) for ω ∈ Ω.

If mν denotes the mean (mν = 1
2

for a fair coin), the weak law of large
numbers (WLLN) tells us that for ε > 0

Pν(SN ∈ (mν − ε,mν + ε)) → 1 as N → ∞,

and for ε > small enough and z �= mν

Pν(SN ∈ (z − ε, z + ε)) → 0 as N → ∞.

In particular one can even prove exponential decay of the latter probability,
which we sketch briefly. The problem of decay of probabilities of rare events

68



is the main task of large deviations theory. For simplicity we assume now
that mν = 1

2
. Then

F (z, ε) = − lim
N→∞

1

N
log Pν(SN ∈ (z − ε, z + ε))

= inf
x∈(z−ε,z+ε)

I(x),

where the function I is defined as

I(x) =

{
x log 2x+ (1 − x) log 2(1 − x) , x ∈ [0, 1]

∞ , x /∈ [0, 1]
,

where as usual 0 log 0 = 0. Since F (z, ε) → I(z) as ε→ 0, we may (heuristi-
cally) write

Pν(SN ∈ (z − ε, z + ε)) ≈ exp(−NI(z))
for N large and ε small. The term I(z) measures the randomness of z and
z = 1

2
= mν is the macrostate which is compatible with the most microstates

(I(1
2
) = 0). The mean SN gives only very limited information. If we want

to know more about the whole random process we might go over to the
empirical measure

LN(ω) =
1

N

N∑
j=1

δσj(ω) ∈ P({0, 1}) for any ω ∈ Ω;

or even to the empirical field

RN(ω) =
1

N

N−1∑
k=0

δT kω(N) ∈ P(Ω),

where T 0 = id and (Tω)j = ωj+1 is the shift and ω(N) is the periodic contin-
uation of the restriction of ω to ΛN .

The latter example can be connected to our experience with Gibbs measures
and distributions as follows. Let ΛN = [−N,N ]d ∩Z

d, N ∈ N, and define the
periodic empirical field as

R(per)

N (ω) =
1

|ΛN |
∑
k∈ΛN

δθkω(N) ∈ PΘ(Ω,F) for all ω ∈ Ω,

where ω(N) ∈ Ω is the periodic continuation of the restriction of ω onto ΛN

to the whole lattice Z
d. Here, the periodic continuation ensures that the
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periodic empirical field is translation invariant. The LLN is not available
in general, it is then replaced by some ergodic theorem. For example if
µ ∈ PΘ(Ω,F) is an ergodic measure, then R(per)

N ⇒ µ µ-a.s. as N → ∞.
Going back to the coin tossing example the distributions of SN , LN and RN

under the product measure Pν are the following probability measures

Pν ◦ S−1
N ∈ P([0, 1])

Pν ◦ L−1
N ∈ P(P([0, 1]))

Pν ◦R−1
N ∈ P(P(Ω)).

The WLLN implies for all of these probabilities exponential decay of the rare
events given by a function I as the rate in N . This will be generalised in the
next subsection, where such functions I are called rate functions.

8.2 Definition

In the following we consider the general setup, i.e. we let X denote a Polish
space and equip it with the corresponding Borel-σ-algebra BX .

Definition 8.1 (Rate function) A function I : X → [0,∞] is called a
rate function if

(1) I �= ∞,

(2) I is lower semi continuous,

(3) I has compact level sets.

Definition 8.2 (Large deviations principle) A sequence (PN)N∈N of prob-
ability measures PN ∈ P(X,BX) on X is said to satisfy the large deviations
principle with rate (speed) N and rate function I if the following upper and
lower bound hold,

lim sup
N→∞

1

N
logPN (C) ≤ − inf

x∈C
I(x) for C ⊂ X closed,

lim inf
N→∞

1

N
logPN(O) ≥ − inf

x∈O
I(x) for O ⊂ X open.

(8.45)

Let us consider the following situation. Let (Xi)i∈N be i.i.d. real-valued
random variables, i.e., there is a probability space (Ω,F ,P) such that each
random variable has the distribution µ = P ◦ X−1

1 ∈ P(R,BR). Denote
the distribution of the mean SN by µN = P

N ◦ S−1
N ∈ P(R,BR). For this

situation there is the following theorem about a large deviations principle
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for the sequence (µN)N∈N. Before we formulate that theorem we need some
further definitions. For µ ∈ P(R,BR) let

Λµ(λ) = log
(∫

R

exp(λx)µ(dx)
)

λ ∈ R,

be the logarithmic moment generating function. It is known that Λµ is lower
semi continuous and Λµ(λ) ∈ (−∞,∞], λ ∈ R. The Legendre-Fenchel trans-
form Λ∗

µ of Λµ is given by

Λ∗
µ(x) = sup

λ∈R

{λx− Λµ(λ)} x ∈ R.

Theorem 8.3 (Cramér’s Theorem) Let (Xi)i∈N be i.i.d. real-valued ran-
dom variables with distribution µ ∈ P(R,BR) and let µN denote the distribu-
tion of the mean SN . Assume further that Λµ(λ) < ∞ for all λ ∈ R. Then
the sequence (µN)N∈N satisfies a large deviations principle with rate function
given by the limit of the Legendre-Fenchel transform Λ∗

µ of the logarithmic
moment generating function ΛµN , i.e., for any measurable Γ ∈ BR

lim sup
N→∞

1

N
logµN(Γ) ≤ − inf

x∈Γ
Λ∗
µ(x)

lim inf
N→∞

1

N
logµN(Γ) ≥ − inf

x∈Γ◦ Λ∗
µ(x).

(8.46)

Proof. See [DZ98] or [Dor99]. �

An important tool in proving large deviations principle is the following al-
ternative version of the well-known Varadhan Lemma ([DZ98]).

Theorem 8.4 (Tilted LDP) Let the sequence (PN)N∈N of probability mea-
sures PN ∈ P(X,BX) satisfy a large deviations principle with rate (speed) N
and rate function I. Let F : X → R be a continuous function that is bounded
from above. Define

JN(S) =

∫
S

eNF (x)PN (dx) , S ∈ BX .

Then the sequence (P F
N )N∈N of probability measures P F

N ∈ P(X,BX) defined
by

P F
N (S) =

JN(S)

JN(X)
, S ∈ BX

satisfies a large deviations principle on X with rate N and rate function

IF (x) = sup
y∈X

{F (y) − I(y)} − (F (x) − I(x)).
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Proof. See [dH00] or [DZ98] for the original version of Varadhan’s Lemma
and [Ell85] or [Dor99] for a version as in the theorem.

�

8.3 Some results for Gibbs measures

We present some results on large deviations principles for Gibbs measures.
We assume the set-up of Section 6 and Section 7. Let Φ an interaction
potential and note that the expectation of the interaction potential with the
periodic empirical field is given by

〈R(per)

N (ω),Φ〉 = |ΛN |−1H (per)

ΛN
(ω) , ω ∈ Ω, (8.47)

where H (per)

ΛN
is the Hamiltonian in ΛN with interaction potential Φ and peri-

odic boundary conditions. Recall that γΦ,ω
ΛN

denotes the Gibbs distribution in

ΛN with configurational boundary condition ω ∈ Ω and γΦ,per
ΛN

the Gibbs dis-
tribution in ΛN with periodic boundary condition. Further, if µ ∈ GΘ(Φ, β)
is a Gibbs measure, h(·|µ) = h(·|Φ) denotes the specific relative entropy with
respect to the Gibbs measure µ with respect to the given interaction poten-
tial Φ. Denote by e(Ω) the evaluation σ-algebra for the probability measures
on Ω. Note that the mean energy 〈·,Φ〉 can be identified as a linear form on
a vector space of finite range interaction potentials. In particular we define

τΨ
ΛN

(ω) = 〈R(per)

N (ω),Ψ〉 ω ∈ Ω

for any interaction potential Ψ with finite range. In the limit N → ∞ one
gets a linear functional τ on the vector space V of all interaction potentials
with finite range (see [Isr79] and[Geo88] for details on this vector space).

Theorem 8.5 (LDP for Gibbs measures) Let ΛN = [−N,N ]d∩Z
d, β >

0 and Φ be an interaction potential with finite range. Then the following
assertions hold.

(a) Let µ ∈ GΘ(Φ, β) be given. Then the sequence (µ ◦ (R(per)

N )−1)N∈N of
probability measures µ ◦ (R(per)

N )−1 ∈ P(P(Ω,F), e(Ω)) satisfies a large
deviations principle with rate (speed) |ΛN | and rate function h(·|µ).

(b) Let γΦ,ω
ΛN

be the Gibbs distribution in ΛN with boundary condition ω ∈ Ω.
Then for any closed set F ⊂ P(Ω,F) and any open set G ⊂ P(Ω,F),

lim sup
N→∞

1

|ΛN |
log sup

ω∈Ω
γΦ,ω

ΛN
(R(per)

N ∈ F ) ≤ − inf
ν∈F

{h(ν) + 〈ν,Φ〉 + P (Φ)},

lim inf
N→∞

1

|ΛN |
log sup

ω∈Ω
γΦ,ω

ΛN
(R(per)

N ∈ G) ≥ − inf
ν∈G

{h(ν) + 〈ν,Φ〉 + P (Φ)}.
(8.48)
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(c) Let K ⊂ in V ∗ be a measurable subset. Then

lim sup
N→∞

1

|ΛN |
log sup

ω∈Ω
γΦ,ω

ΛN
(τΛN ∈ K) ≤ − inf

τ∈K
{JΦ

V (τ)}

lim inf
N→∞

1

|ΛN |
log sup

ω∈Ω
γΦ,ω

ΛN
(τΛN ∈ K) ≥ − inf

τ∈K◦{J
Φ
V (τ)},

(8.49)

with JΦ
V (τ) = P (Φ) + infΨ∈V {τ(Ψ) + P (Ψ + Φ)}.

Proof. The part (a) can be found in [Geo88] and in [FO88] or alternatively
in [Oll88], all for the case that the state space E is finite. If E is an arbitrary
measurable space, see [Geo93]. Part (b) is in [Geo93] and [Oll88], and part
(c) in [Geo93]. Note that the restrictions on the interaction potential can
even be relaxed, see [Geo93]. The corresponding theorems for continuous
systems can be found in [Geo95]. �

A last remark to part (c) of the Theorem 8.5.

Theorem 8.6 (Equivalence of ensembles) Let ΛN = [−N,N ]d ∩Z
d and

Φ be an interaction potential with finite range. Let K ⊂ R be a measurable
set of energy densities. Then there is an interaction potential Ψ ∈ V such
that Ψ + Φ ∈ V and it holds.

accN→∞
{
γΦ,per

ΛN
(·|τΦ

ΛN
∈ K)

}
⊂ GΘ(Φ + Ψ). (8.50)

Proof. See [Geo93] and [Geo95] and [LPS95]. Observe that the periodic
boundary conditions are crucial for this result (they ensure the translation
invariance). Translation invariance provides, as we know from Section 7, a
variational characterisation for Gibbs measures. There exists no proof for
configurational boundary conditions for dimension d ≥ 2. For the case d = 1
see [Ada01]. �

9 Models

We present here some important models in statistical mechanics. For more
models for lattice systems see [BL99a] and [BL99b]. The last example in this
section is the continuous Ising model which is an effective model for interfaces
and plays an important role for many investigations.
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9.1 Lattice Gases

We consider here a system of particles occupying a set Λ ⊂ Z
d with |Λ| = V .

Here |Λ| denotes the number of sites in Λ. At each point of Λ there is at
most one particle. For i ∈ Λ we set ωi = 1 if there is a particle at the site i
and set ωi = 0 otherwise. Any ω ∈ Ω := {0, 1}Λ is called a configuration. For
a configuration ω we have the Hamiltonian HΛ(ω). The canonical partition
function is

ZΛ(β,N) =
∑
ω∈Ω,P
i∈Λ ωi=N

e−βHΛ(ω).

Note that there is no need here forN ! since the particles are indistinguishable.
The thermal wavelength λ is put equal to 1. The grandcanonical partition
function is then

ZΛ(β, µ) =

V∑
N=0

eβNµ
∑
ω∈Ω,P
i∈Λ ωi=N

e−βHΛ(ω) =

V∑
N=0

∑
ω∈Ω,P

i∈Λ ωi=N

e−β(HΛ(ω)−µ
P
i∈Λ ωi)

=
∑
ω∈Ω

e−β(HΛ(ω)−µ
P
i∈Λ ωi).

The thermodynamic functions are defined in the usual way. The probability
for a configuration ω ∈ {0, 1}Λ is

e−β(HΛ(ω)−µ
P
i∈Λ ωi)

ZΛ(β, µ)
.

The Hamiltonian is of the form

HΛ(ω) =
∑

i,j∈Λ, i
=j
ωiωjφ(qi − qj),

where qi is the position vector of the site i ∈ Λ. However this is too difficult
to solve in general. We consider two simplifications of the potential energy:

Mean-field Models: φ is taken to be a constant. Therefore

HΛ(ω) = −λ
∑

i,j∈Λ, i
=j
ωiωj.

Take λ > 0, otherwise the interaction potential is not tempered. When
ωi = 1 for all i ∈ Λ, HΛ(ω) = −λV (V−1)

2
and therefore HΛ is not stable. For

HΛ to be stable we must take λ = γ
V

with γ > 0. Thus

HΛ(ω) = − γ

V

∑
i,j∈Λ, i
=j

ωiωj.
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Note that for Mean-field models the lattice structure is not important since
the interaction does not depend on the location of the lattice sites and there-
fore we can take Λ = {1, 2, . . . , V }.

Nearest-neighbour Models: In these models we take

φ(qi − qj) =

{
−J , if |qi − qj | = 1

0 , if |qi − qj | > 1
,

that is the interaction is only between nearest neighbours and is then equal
to −J, J ∈ R. If we denote a pair of neighbouring sites i and j by 〈i, j〉 we
have

HΛ(ω) = −J
∑
〈i,j〉

ωiωj.

Note that J can be negative or positive.

9.2 Magnetic Models

In magnetic models at each site of Λ there is a dipole or spin. This spin could
be pointing upwards or downwards, that is, along the direction of the external
magnetic field or in the opposite direction. For i ∈ Λ we set σi = 1 if the spin
at the site i is pointing upwards and σi = −1 if it is pointing downwards.
The term σ ∈ {−1, 1}Λ is called a configuration. For a configuration σ we
have an energy E(σ) and an interaction with an external magnetic field of
strength h, −h

∑
i∈Λ σi. The partition function is then

ZΛ(β, h) =
∑

σ∈{−1,1}Λ

e−β(E(σ)−h
P
i∈Λ σi).

The free energy per lattice site is

fΛ(β, h) = − 1

βV
logZΛ(β, h).

The probability for a configuration σ ∈ {−1, 1}Λ is

e−β(E(σ)−h
P
i∈Λ σi)

ZΛ(β, h)
.

The total magnetic moment is the random variable

MΛ(σ) =
∑
i∈Λ

σi
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and therefore

E(MΛ) =

∑
σ∈{−1,1}Λ(

∑
i∈Λ σi)e

−β(E(σ)−h
P
i∈Λ σi)

ZΛ(β, h)
=

1

β

∂

∂h
logZΛ(β, h).

Then if mΛ(β, h) denotes the mean magnetisation per lattice site we have

mΛ(β, h) =
E(MΛ)

V
= − ∂

∂h
fΛ(β, h).

Note that
∂2

∂h2
fΛ(β, h) = − β

V
E(MΛ − E(MΛ))2 ≤ 0.

Therefore h �→ fΛ(β, h) is concave. If E(σ) = E(−σ), then

fΛ(β,−h) = fΛ(β, h).

If Λl is a sequence of regions tending to infinity and if

lim
l→∞

fΛl(β, h) = f(β, h),

then h �→ f(β, h) is also concave and if it is differentiable

m(β, h) := lim
l→∞

mΛl(β, h) = − ∂

∂h
f(β, h).

Relation between Lattice Gas and Magnetic Models

We can relate the Lattice Gas to a Magnetic Model and vice versa by the
transformation

ωi = (σi + 1)/2

or
σi = 2ωi − 1.

This gives

HΛ(ω) − µ
∑
i∈Λ

σi = E(σ) − (a+
1

2
µ)
∑
i∈Λ

σi − (b+
1

2
µ)V,

where a and b are constants. Therefore

πΛ(β, µ) = (b+
1

2
µ) − fΛ(β, a+

1

2
µ)

and

ρΛ(β, µ) =
1

2
(1 +mΛ(β, a+

1

2
µ)).
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9.3 Curie-Weiss model

We study here the Curie-Weiss Model, which is a mean-field model given by
the interaction energy

E(σ) = −α

V

∑
i≤i<j≤V

σiσj = − α

2V

(
V∑
i=1

σi

)2

+
α

2
, σ ∈ {−1, 1}Λ,

where α > 0 and Λ is any finite set with |Λ| = V . We sketch here only
some explicit calculations, more on the model can be found in the books
[Ell85],[Dor99], [Rei98], and [TKS92]. The partition function is given by

ZΛ(β, h) =
∑

σ∈{−1,1}V
e−β(E(σ)−h

PV
i=1 σi).

For ν = βα this becomes

ZΛ(β, h) = e−
ν
2

∑
σ∈{−1,1}V

exp

⎡⎣ ν

2V

(
V∑
i=1

σi

)2

+ βh

V∑
i=1

σi

⎤⎦ .
Note that ZΛ(β,−h) = ZΛ(β, h). In the identity∫ ∞

−∞
e−

1
2
y2dy =

√
2π,

put y = x− a. This gives∫ ∞

−∞
e(− 1

2
x2+ax)dx =

√
2πe

1
2
a2

or

e
1
2
a2 =

1√
2π

∫ ∞

−∞
e(− 1

2
x2+ax)dx.

Using this identity with a =
√

ν
V

(∑V
i=1 σi

)
we get

ZΛ(β, h) = e−
ν
2

∑
σ∈{−1,1}V

1√
2π

∫ ∞

−∞
exp

[
−1

2
x2 +

(
x

√
ν

V
+ βh

) V∑
i=1

σi

]
dx

= e−
ν
2

1√
2π

∫ ∞

−∞
e−

1
2
x2

∑
σ∈{−1,1}V

exp

[(
x

√
ν

V
+ βh

) V∑
i=1

σi

]
dx.

77



Now ∑
σ∈{−1,1}V

exp(κ
V∑
i=1

σi) = (2 coshκ)V .

Therefore

ZΛ(β, h) = e−
ν
2

1√
2π

∫ ∞

−∞
e−

1
2
x2

[
2 cosh

(
x

√
2

V
+ βh

)]V
dx.

Putting η = x√
νV

, we get

ZΛ(β, h) = e−
ν
2 2V
(
νV

2π

) 1
2
∫ ∞

−∞

[
exp(−νη

2

2
) cosh(νη + βh)

]V
dη

= e−
ν
2 2V
(
νV

2π

) 1
2
∫ ∞

−∞
eV G(h,η)dη,

where

G(h, η) = −1

2
νη2 + log cosh(νη + βh).

The free energy per lattice site is

fΛ(β, h) = − 1

βV
logZΛ(β, h) =

ν

2βV
− 1

β
log 2 − 1

2βV
log

(
νV

2π

)
− 1

βV
log

∫ ∞

−∞
eV G(h,η)dη.

Therefore by Laplace’s Theorem (see for example [Ell85] or [Dor99]), the free
energy per lattice site in the thermodynamic limit is

f(β, h) = − 1

β
log 2 − lim

V→∞

1

βV
log

∫ ∞

−∞
eV G(h,η)dη

= − 1

β
log 2 − 1

β
sup
η∈R

G(h, η).

Suppose that the supremum of G(h, η) is attained at η(h). Then

f(β, h) = − 1

β
log 2 − 1

β
G(h, η(h))

and
∂G

∂η
(h, η(h)) = −νη(h) + ν tanh(ν(h, η(h)) + βh) = 0,
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y

/

Figure 5: h > 0, ν > 1

or
η(h) = tanh(νη(h) + βh).

The mean magnetisation per site in thermodynamic limit is

m(β, h) = − ∂

∂h
f(β, h) =

1

β

∂

∂h
G(h, η(h))

= tanh(νη(h) + βh) +
∂G

∂η
(h, η(h))

∂η

∂h
(h)

= η(h),

since ∂G
∂η

(h, η(h)) = 0.

Since
f(β,−h) = f(β, h) and m(β,−h) = −m(β, h),

it is sufficient to consider the case h ≥ 0 (see Figure 7 and 8). The expression
m0 = limh↓0m(h) is called the spontaneous magnetisation, this is the
mean magnetisation as the magnetic field is decreased to zero,

m0 = lim
h↓0

m(h) = lim
h↓0

η(h).

We have from above

m0

{
= 0 , if ν ≤ 1
> 0 , if ν > 1

.
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Figure 6: h > 0, ν ≤ 1
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-f h( ,  )

h

1ln 2_

Figure 8: ν ≤ 1

Let Tc = α
k
; Tc is called the Curie Point. T ≥ Tc corresponds to ν ≤ 1 (see

figure 8) and T < Tc to ν > 1 (see Figure 7).

m0

{
> 0 , when T < Tc
= 0 , when T ≥ Tc

.

We have a phase transition at the Curie Point corresponding to the onset of
spontaneous magnetisation.

We can consider this model from the point of view of a lattice gas. Consider
a lattice gas with potential energy

HΛ(ω) = − γ

V

∑
i≤i<j≤V

ωiωj = − γ

2V

(
V∑
i=1

ti

)2

+
γ

2V

V∑
i=1

ωi

Let ti = (σi+1)
2

. Then
V∑
i=1

ωi =
1

2
(

V∑
i=1

σi + V ).
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Therefore

HΛ(ω) = − γ

8V

(
V∑
i=1

σi

)2

− γ

4

V∑
i=1

σi −
γV

8
+

γ

4V

V∑
i=1

σi +
γ

4
.

We can neglect the last two terms, because γ is small and the expectation of
a single spin is zero, and we take

HΛ(ω) = − γ

8V

(
V∑
i=1

σi

)2

− γ

4

V∑
i=1

σi −
γV

8
.

Then

HΛ(ω) − µ
V∑
i=1

ωi = − γ

8V

(
V∑
i=1

σi

)2

− (
γ

4
+
µ

2
)

V∑
i=1

σi − (
γ

8
+
µ

2
)V

= −E(σ) − (
γ

4
+
µ

2
)

V∑
i=1

σi − (
γ

8
+
µ

2
)V.

with α = γ
4

and

π(β, µ) = (
γ

8
+

1

2
µ) − f(β,

γ

4
+

1

2
µ)

and

ρ(β, µ) =
1

2
(1 +m(β,

γ

4
+

1

2
µ)).

Let µ0 = −γ
2
, then

π(β, µ) = (
γ

8
+

1

2
µ) − f(β,

1

2
(µ− µ0))

and

ρ(β, µ) =
1

2
(1 +m(β,

1

2
(µ− µ0))).

If β > 4
γ
, then π(β, µ) has a discontinuity in its derivative at µ0 and ρ(β, µ)

has a discontinuity at µ0 (see Figure 9).
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Figure 9: β > 4
γ
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9.4 Continuous Ising model

In the continuous Ising model the state space E = {−1,+1} is replaced by
the real numbers R. Let Ω = R

Z
d

denote the space of configurations. Due
to the non-compactness of the state space severe mathematical difficulties
arise. We note that the continuous Ising model can be seen as an effective
model describing the height of an interface, here the functions φ ∈ Ω give the
height of an interface for some reference height; and any collection (σx)x∈Zd or
probability measure P ∈ P(Ω,F) is called random field of heights. Details
about this model can be found in [Gia00] and [Fun05]. One first considers
the so-called massive model, where there is a mass m > 0 implying a self-
interaction. Let Λ ∈ S, ψ ∈ Ω and m > 0. We write synonymously φx = φ(x)
for φ ∈ Ω. Nearest neighbour heights do interact with an elastic interaction
potential V : R → R, which we assume to be strictly convex with quadratic
growth, and which depends only on the difference in the heights of the nearest
neighbours. In the simplest case V (r) = r2

2
one gets the Hamiltonian

Hψ
Λ(φ) =

∑
x∈Λ

m2

2
φ2
x +

1

4d

∑
x,y∈Λ

|x−y|=1

(φx − φy)
2,

with φx = ψx for x ∈ Λc. The interface here is said to be anchored at ψ
outside of Λ. A random interface anchored at ψ outside of Λ is given by the
Gibbs distribution

γψΛ(dφ) =
1

ZΛ(ψ)
e−βH

ψ
Λ (φ)λψΛ(dφ),

where
λψΛ(dφ) =

∏
x∈

dφx
∏
x/∈Λ

δψx(dφx)

is the product of the Lebesgue measure at each single site in Λ and the Dirac
measure at ψx for x ∈ Λc. The term λψΛ is called reference measure in Λ with
boundary ψ. The thermodynamic limit exists for the model with m > 0
in any dimension. However, for the most interesting case m = 0 this exists
only for d ≥ 3. These models are called massless models or harmonic
crystals. The interesting feature of these models is that there are infinitely
many Gibbs measures due to the continuous symmetry. Hence we are in
a regime of phase transitions (see [BD93] for some rigorous results for this
regime). The massless models have been studied intensively during the last
fifteen years (see [Gia00] for an overview). The main technique applied is
the random walk representation. This can be achieved when one employs
summation by parts to obtain a discrete elliptic problem.
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Figure 10: height-functions φ : Z
d → R

This gives also the hint that we need d ≥ 3 due to this random walk represen-
tation and the transience of the random walk. Luckily, if one goes over to the
random field of gradient, i.e. the field derived with the discrete gradient
mapping from the random field of heights, one has the existence of infinite
Gibbs measure for any dimension ([Gia00],[Fun05]). However, one looses the
product structure of the reference measure and one has to deal with the
curl free condition. The fundamental result concerning these gradient Gibbs
measures is given in [FS97]. For a recent review see [Fun05].
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[GHM00] H.O. Georgii, O. Häggström, and C. Maes. The random geometry
of equilibrium phases, volume 18 of Phase transitions and Critical
phenomena, pages 1–142. Academic Press, London, 2000.

[Gia00] G. Giacomin. Anharmonic Lattices, Random Walks and Random
Interfaces, volume I of Recent research developments in statisti-
cal physics, vol. I, Transworld research network, pages 97–118.
Transworld research network, 2000.

[Gib02] J.W. Gibbs. Elementary principles of statistical mechanics, devel-
oped with special reference to the rational foundations of thermo-
dynamics. Scribner, New York, 1902.

[GM67] G. Gallavotti and S. Miracle-Sole. Statistical mechanics of lattice
systems. Commun. Math. Phys., 5:317–324, 1967.

[Hua87] K. Huang. Statistical Mechanics. Wiley, 1987.

[Isi24] E. Ising. Beitrag zur theorie des ferro- und paramagnetismus. Dis-
sertation, Mathematisch-Naturwissenschaftliche Fakultät der Uni-
versität Hamburg, 1924.

[Isr79] R. B. Israel. Convexity in the Theory of Lattice Gases. Princeton
University Press, 1979.

88



[Jay89] E.T. Jaynes. Papers on probability, statistics and statistical
physics. Kluwer, Dordrect, 2nd edition, 1989.

[Khi49] A.I. Khinchin. Mathematical Foundations of Statistical Mechanics.
Dover Publications, 1949.

[Khi57] A.I. Khinchin. Mathematical Foundations of Information Theory.
Dover Publications, 1957.

[Kur60] R. Kurth. Axiomatics of Classical Statistical Mechanics. Pergamon
Press, 1960.

[KW41] H.A. Kramers and G.H. Wannier. Statistics of the two-dimensional
ferromagnet I-II. Phys. Rev., 60:252–276, 1941.
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