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Chapter 1

Introduction

1.1 Motivation

Improving QFT. At the very beginning of the twentiest century, Max
Planck gave his tremendously often cited talk about black body radiation
which ushered in a new era of physics, namely that of quantum mechan-
ics. Physicists investigating this new formulation of ”short scale” physics,
like Bohr, Schrödinger, Heisenberg, and many more scheduled big success in
having elaborated a predictive theory concerning atomic structures. It was
just a matter of time when a symbiosis of special relativity and this new way
of contemplating structures and processes of nature was desired. Until this
quantum field theory was well established, it took quite a time, but the result
was astonishing. Celebrated scientists like Dirac, Pauli, Feynman, Tomon-
aga, Schwinger and Dyson (just to name a few) delivered new insights into
the world and made possible the most precise predictions for quantities like
the anomalous magnetic moment of the electron g for decades. Bit by bit,
the strong and weak nuclear forces could be included in what is now called
the standard model.
Despite the impressive success of quantum field theory, there are problems
that remain until today: even the best studied conceivable interaction the-
ories, like φ4 theory, the Yukawa model or even quantum electro dynamics
(=: QED) are not analytical solvable and produce both infra-red (IR; de-
scribing regions governed by small momenta) and ultra-violet (UV; regions
of large momenta) divergences perturbatively. These inconsistencies have to
be cleared out by the scheme of renormalization to obtain a theory which
is physical meaningful. It was Arthur Wightman who first formulated an
axiomatic approach for quantum field theory, which should restrict the term
”quantum field” to a few basic specifications. Nevertheless, up until now,
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there exists no nontrivial example of a theory satisfying all of these axioms
in 4 dimensions.
Furthermore, relevant theories that have shown to be renormalizable are still
lacking a proof of summability. This means the following: since these theo-
ries cannot be analytically solved, one has to treat them perturbatively and
to prove their renormalizability order by order. But in fact most of these per-
turbation series diverge or even cannot be proven of being Borel summable,
but are instead asymptotic series. Since there exist arbitrarily many differ-
ent functions having the same asymptotic expansion, one cannot speak of
predictability here. The phenomenon of the Landau ghost connected to this
problem is considered later in this text.

Space-time structure. There might be a number of people who regard
these problems of being mostly of mathematical interest, but there is another
success to be aimed at: the implementation of the last remaining fundamen-
tal interaction, gravity, into the standard model. A lot of physicists and
mathematicians have worked in this field of ”grand unification”, but with no
striking success so far.

”Now it seems that the empirical notions on which the metrical
determinations of space are founded, the notion of a solid body and of a ray
of light, cease to be valid for the infinitely small. We are therefore quite at
liberty to suppose that the metric relations of space in the infinitely small do
not conform to the hypotheses of geometry; and we ought in fact to suppose

it, if we can thereby obtain a simpler explanation of phenomena.

This astonishing piece of insight by Bernhard Riemann [5] was published a
little more than 150 years ago, and should prove to be unexpectedly accurate.
Moreover, there are many other examples of statements responding to the
case (for example Heisenberg‘s letter to Ehrenfest (1930), Schrödinger (34),
Heisenberg (1938), Peierls, Oppenheimer, . . .). Snyder [11] was actually the
first who wrote down a commutator relation for position operators:

[x̂µ, x̂ν ] = iLµν , [x̂µ, Lστ ] = i(δµσx̂τ − δµτ x̂σ)

The great success of QED seems to be responsible why the early ideas on
noncommutative space-time had been forgotten.

Localization Due to an argument by John Archibald Wheeler there is a
natural limit where measurements are made impossible by the space time
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structure. It goes as follows: to be able to resolve structures very close to
one another (distance D), one has to invest a big amount of energy E. This
value can become large enough that a signal (even a ray of light) is trapped
within the Schwartzschild radius Rss and therefore a measurement cannot
take place.

Rss = 2
G

c4
E ≥ G

c4
2π~c

D

Requiring D ≥ Rss gives the Planck length as a lower bound to a localization
length:

⇒ D ≥
√

~G

c3

So localization loses its operational meaning at very small distances.

Scales. From today’s point of view, the arena of physics is situated within
61 orders of magnitude: from 10−35m to 10−20 m is the terra incognito, i.e.
somewhere in between changes have to take place while the largest scale
structures are known to be of dimension 1026m.
To resolve these problems, a quantum theory of gravitation is required. Cur-
rently there are three established candidates for this matter:

• String Theory

• Loop Quantum Gravity

• Noncommutative Quantum Field Theory

Each of them has on the one side some particular nice features but on the
other side a set of painstaking problems. The approach of noncommutative
quantum field theory ( =: NCQFT) is to take a noncommutative manifold as
the quantum space or, in other words, endow the space-time coordinates with
a noncommutative structure: As will be seen later on, considering NCQFT
connects short with large distance scales. We will also use the ideas of the
renormalization group (RG), those are to integrate out degrees of freedom
with the purpose that nonrenormalizable interactions will die out.

The following table collects some mile stones of recent NCQFT history:
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commutative noncommutative

measure theory von Neumann algebras (C⋆-algebras)
manifolds: use algebra deformed algebra

of functions over M
differential calculus keep differential structure
fields projective modules
integral trace

86 Alain Connes (mathematical concept)
+ Mark Rieffel: nc tori

90 application to classical Standard Model
H.G. et al.: Schwingerterm, cyclic cohomology

92 H.G. J. Madore: Fuzzy S2; regularize QFT
94 Doplicher, Fredenhagen, Roberts: Uncertainty relations,

formulations of nc Minkowski free fields, [6]
95 T. Filk: Feynman rules [12]
99 Schomerus: Obtained nc models from string field theory limit [8]
2000 Grosse, Schweda, Wulkenhaar,..nc gauge models, expanded in Θ,

QED turns out to be nonrenormalizable
2002 Sibold et al, Denk, Schweda,...Feynman rules [9]
2004 Grosse, Wulkenhaar, proof of a ren. nc scalar field theory
2006 Rivasseau et al., vanishing of the β function of this model to all orders

. . .

1.2 Formulation

In this section, the different approaches for gaining a physical theory are
outlined in note form with emphasis on the relations between the observables
and space-time.

Dynamical systems. Start from a manifold, go over to phase space -
Define an algebra of observables - States are probability measures - Choose
a Hamiltonian which gives the time evolution, TIME is a parameter, SPACE
is part of phase space.

Quantum mechanics Start from a Hilbert space H, define an operator
algebra - Define observables - [x̂, p̂] = i~1 on a dense domain D, states are
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linear continuous functionals like

a 7→ ω(a) =
Tr(ρ a)

Tr(ρ)

The Hamiltonian determines the time evolution, TIME is still commutative!
”Space” → x̂ operators in Hilbert space

QFT: Axioms The Wightman axioms for short demand the following from
the quantum fields: they are described in terms of smeared field operators
acting in a Hilbert space. The spectrum of the energy momentum operator is
contained within the closed forward light cone, there exists a cyclic vacuum
state and they obey to the principles of covariance and causality. Vacuum
expectation values of product of fields like these are called Wightman func-
tions.
Schwinger and Symanzik analytically continued these and ensured the prop-
erties: covariance, Osterwalder-Schrader positivity, symmetry and the cluster
property. The analytically continued Wighman functions are called Schwinger
functions.

Models: The case of D = 1 is quantum mechanics, for D = 2, 3 models
have been constructed, some models in D = 2 are solvable and lead to inte-
grable structures. For 4 dimensions only renormalized perturbation theory
is available.

1.3 Ideas NCG → NCQFT

”Space” Works by Gelfand, Naimark (1947) and J. von Neumann showed
that it is possible to encode the structure of manifolds into algebras of func-
tions over the manifold. More precisely we have the

Theorem 1.1. Gelfand-Naimark
Any commutative C⋆-algebra A is isometrically ⋆-isomorphic to the commu-
tative C⋆-algebra of continuous complex functions C(X) on the spectrum of
A. Moreover, this spectrum is a compact, topological Hausdorff space.(For
the proof see for example: [1])

Given such a space X one takes (C(X), ‖ ‖∞) as a C∗ algebra; given the
algebra, one takes the set of characters and uses Gelfands transform.
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Deformed algebra (deformation quantization due to Fedosov - Kontse-
vich, ...) Starting with a formal power series A[[~]] ∋ f0 + ~f1 + . . . we are
able to define an associative star product:

f ⋆ g = f · g +
∞∑

j=1

~
jΠj(f, g) (1.1)

where Π1(f, g)−Π1(g, f) equals the Poisson bracket of f and g. The example
we will use all the time in this lecture is the Moyal-Weyl product

f ⋆θ g (x) = e
i
2
θµν ∂

∂xµ
∂

∂yν f(x)g(y)

∣
∣
∣
∣
x=y

(1.2)

which is related to the Weyl algebra

W (f) =

∫

dp eipx̂f̃(p), (1.3)

W (f)W (g) = W (f ⋆ g) , (1.4)

f̃ denoting the Fourier transform of f . There exist further examples of possi-
ble deformations like Lie algebra or quantum group deformations, which are
not going to be treated here.
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Chapter 2

Differential Calculus

2.1 Commutative

Getting started, the reader is reminded of some (more or less) popular man-
ifolds considered in differential geometry: R

n, Sn, CP n, T
n, moduli spaces,

Riemannian manifolds, Calabi-Yau spaces, ...
The ones of substantial interest are the compact, oriented and real manifolds.
These can obtain boundaries and often the task is to embed them into R

M .
Once a manifold is picked, one usually considers a corresponding algebra of
the form A = C∞(RM)/Rel, goes over to tangent- resp. cotangent-spaces
T (M) resp. T ⋆(M) and works out the differential calculus in terms of the
exterior derivative d.

Remarks. Tangent vectors are derivations on the algebra and therefore
the Leibniz rule holds:

X(fg) = X(f)g + fX(g). (2.1)

The set of vector fields over a manifold defines a left-module (since vector
fields in reference to a holonomic basis ∂i can be written as vi∂i , they cannot
form a right-module).

Differential forms are considered as p-linear maps with the defining prop-
erty

(df)(X) := X(f) (2.2)

and the space of all such differentials Ωp forms a bimodule over A.
Next we write down the action of the differential on 1-forms:

ω ∈ Ω1 : (dω)(X0, X1) =
1

2
(X0ω(X1) −X1ω(X0) + ω([X0, X1])) (2.3)
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while in general we have:

(dωp)(X0, . . . , Xp) =
1

p+ 1

(
p
∑

j=0

Xjωp(X0 . . . 6Xj . . . Xp) (2.4)

+
∑

0<j,i≤p

(−1)i+jωp([Xj, Xi]...6Xj...6Xi...Xp)

)

At the end of this subsection we remind the reader of some

Further concepts:

• Lie derivative
LX = d ◦ iX + iX ◦ d (2.5)

• Covariant derivative

∇ = d+ A, A ∈ Ω1(M), (2.6)

with gauge transformation

∇ → g†∇g, g†g = gg† = 1, (2.7)

A → g†dg + g†Ag

• Curvature
F = ∇2 → g†Fg (2.8)

• A gauge invariant action is given by

S[A] = −1

4
Tr

∫

F 2 (2.9)

2.2 Matrix geometry

This term refers to the differential calculus established (say) on the space of

N times N matrices with complex entries AN = Mat(N,C) = {1, λj

∣
∣
∣
∣

N2−1

j=1

}

with vector fields ei - defined as inner derivations on AN [3]:

ei(1) = 0, ei(λj) = [λi, λj] = fij
kλk (2.10)
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In contrast to the commutative case, they do not define a left module.
But exactly like in there (2.2), we define the differential forms by duality:

(dλj)(ek) := ek(λ
j) (2.11)

d1 = 0 (2.12)

d2 = 0 (2.13)

and the left modules containing these can be written as follows:

Ω0(AN) = AN , Ω1(AN) = {fdg|f, g ∈ AN} (2.14)

Again, these structures permit the differential complex (Ω⋆, d).
There is the possibility to choose a better basis for Ω1: that is
θi : θi(ej) = δi

j1.
d is a graded derivation and the main advantage of the new choice of basis
is that the θk commute with all the elements of AN [4].

As an example, we regard the differential calculus over 2 × 2 matrices:

A2 = {1, ~σ}4 = Ω0, Ω1 = {θk, σmθ
k}12, Ω2 = {θk ∧ θl, σmθ

k ∧ θl}12,

Ω3 = {σkθ
1 ∧ θ2 ∧ θ3, θ1 ∧ θ2 ∧ θ3}4, ..., ∆1 = 0, ∆σk = 8σk,∆θ

l4θl, ...

where the index numbers describe the number of linearly independent ele-
ments. Using the latter basis θk, we are now able to see the existence of an
exceptional one form on AN , Θ = −λkθ

k, the Maurer-Cartan form.

Proposition 2.1. Basic properties of the Maurer-Cartan form

α) dΘ + Θ2 = 0

β) LXΘ = 0

γ) df = [f,Θ], ∀f ∈ AN

Proof. • ad α)

d(λlθ
l) = (dλl)θ

l + λldθ
l = fnl

mλmθ
n − 1

2
f l

mnθ
m ∧ θn

Θ2 = λlθ
lλmθ

m =
1

2
flm

nλnθ
lθm
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• ad β)

LXΘ = iX ◦ dΘ + d ◦ iXθ = −(iXΘ)Θ + ΘiXθ − df = 0,

if iXΘ = −f and X = ad f .

• ad γ) Let f = αiλ
i, αi ∈ C, then

df = αidλ
i = αi(ejλ

i)θj = αi[λj, λ
i]θj = [f,Θ]

2.3 Gauge model on AN

We can now go a step further and use the differential calculus on matrices
to construct a gauge model. In order to do so, we will need a matrix acting
as the

Gauge potential: A ∈ Ω1(AN) with A† = −A. Similarly to (2.6) & (2.8),
we define the

• covariant derivative ∇ = d+ A
and the

• curvature

F = ∇2 = (d+ A)(d+ A) = d2 + dA+ Ad+ A2 =

= (dA) − Ad+ Ad+ A2 = (dA) + A2

We impose the following

Gauge transformation: g ∈ UN , i.e. gg† = g†g = 1 on A:

∇ → g†∇g,
Ag = g†Ag + g†dg.

Now another remarkable property of the Maurer Cartan form becomes evi-
dent: gauge invariance

Θg = g†Θg + gdg =
︸︷︷︸

γ)

g†Θg + g†(gΘ − Θg) = Θ (2.15)

12



To gain something nontrivial1 we choose Θ as origin and add a small pertur-
bation

A = Θ + Φ, (2.16)

with Φ = φlθ
l.

⇒ F = dA+ A2 =
1

2
Fijθ

i ∧ θj, (2.17)

where Fij = [φi, φj] − fij
kφk. Then the action

S[φ] = −1

4
TrFijF

ij

gives the Mexican hat potential for the Higgs field. Two remarks on this
point should not be left out; firstly, if we think of the graph of a φ4 potential,
we see two zeros: one occurs when φ = 0 and the other when φ fulfils the
Lie-algebra property. Secondly, this Mexican hat potential appears without
putting anything in but the natural evolving exceptional 1-form. This allows
us to put new light to the Higgs effect.

Concluding this chapter, we just tell that on a more general level, one can
use the schemes explained here, too. This universal differential calculus
starts with an associative unital algebra A and uses p-chains composed of
tensor products of copies of A as a bimodule over A. The differential forms
are built by ”words” out of a and δa, a ∈ A and δ being the differential
which acts as a juxtaposition on these words, satisfying δ(1) = 0. The term
”universal” comes from the universal property of the graded differential cal-
culus defined by (Ω(A), δ) which guarantees the existence of a homomorphism
towards another differential calculus on A.

1In the sense of Maurer-Cartan property α)
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Chapter 3

Fuzzy Physics

As we have already remarked in the introduction, in the conventional for-
mulation of quantum field theory, UV divergences arise when one attemps
to measure the amplitude of field oscillations at a precise given point in
spacetime. One way of circumventing this problem would be to modify the
microscopic structure of space-time such that the concept of a space time
point loses its meaning. This effect is achieved when from a sufficiently small
length scale on, smooth functions are substituted by noncommuting opera-
tors which cannot be diagonalized simultaneously.
Consequently, as we saw that it is possible to have a differential calculus on
finite dimensional algebras (matrix algebras) and that the differential geome-
try of a manifold can be described in terms of an algebra of functions defined
on it, we proceed by deforming the algebra to obtain what are called fuzzy
spaces. They can be seen as manifolds which intrinsically have got a lattice
structure avoiding all possible UV divergences.
The process of taking the algebra of smooth functions defined on a manifold
and deforming it in this way is called truncation for obvious reasons.

3.1 Fuzzy S2 →֒ R
3

The algebra of functions on the sphere S2 can be described by the smooth
functions modulo the constraint that they should live on the sphere, i.e.:

A∞ =
{f(xi)}

{f(xi) = 0 for ~x2 = R2} (3.1)

This requirement in the scalar product is expressed in terms of a delta func-
tion:

〈f |g〉 =

∫

d3x δ(~x2 −R2) f ⋆g ; (3.2)
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while the generators of rotation are Li = ǫijkx
j ∂

i∂xk

We can decompose the algebra of smooth functions A∞ into irreducible spin
representations:

A∞ = [0] ⊕ [1] ⊕ · · · ⊕ [j]
︸ ︷︷ ︸

⊕ . . . (3.3)

Aj

Now the truncation comes about. If we discontinue the decomposition we
obtain an algebra j which has a direct interpretation in terms of matrices:
the representation of two spin states j

2
can be represented in terms of

(j + 1) × (j + 1) matrices, i.e.

L(

[
j

2

]

,

[
j

2

]

) = [0] ⊕ · · · ⊕ [j] ∈ Mat(j + 1) (3.4)

since for [j] there are 2j + 1 possibilities and
N∑

j=0

(2j + 1) = (N + 1)2.

The truncated spaces are to be embedded into the next respectively

Aj →֒ Aj+1 →֒ Aj+2 . . . →֒ A∞ (3.5)

and the fuzzy analogon to the ”Schrödinger” equation reads as follows:

[xN
l , [x

N
l , ψ

N
lm]] = l(l + 1)ψN

lm, (3.6)

ψN
lmψ

N
l′m′ =

∑

L,M

C l l′ L
mm′M

{
l l′ L
N N N

}

ψN
LM (3.7)

In the first line, the commutator with the generator xN
l acts like a derivative

(which basic properties can be easily comprehended) and in the second one,
inside the { } brackets we have the 6j-symbol, while the C denotes the
Clebsch-Gordan coefficients. Moreover, as we have mentioned, the trace over
the matrix indices replaces an integral here.
With these methods, the treatment of a field theory on the fuzzy sphere is
provided and, in the case of scalar fields, takes the form:
φ ∈ AN , Liφ = [xN

i , φ]

Sj[φ] =
1

j + 1
Trj+1(LiφL

iφ+ Pol(φ)) (3.8)

〈F〉j =
1

Zj

∫

[dφ]j e
−Sj [φ]F(φ) (3.9)
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3.2 Topological configurations: Projective mod-

ules

A module P over a nonzero unit ring is called projective ⇋ there exists a
module Q such that the direct sum P ⊕Q is a free module.
This is the formal definition thus far. Actually, there is an elaborated math-
ematical theory behind the considerations of fuzzy structures in physics, but
as we want to head for field theory in managable time, it can only be sketched
here.
Our first example, the Hopf fibration, named after Heinz Hopf who studied it
in a 1931 paper, was a landmark discovery in topology and is of fundamental
importance in the theory of Lie groups. So let us start with the

Classical Hopf fibration It is defined by the following relations:

(
χ1

χ2

)

∈ C
2; |χ1|2 + |χ2|2 = R2, xi = χ†σiχ (3.10)

It can be easily seen by the explicit figure of the xi that there exist transfor-
mations

χ → e−
i
2
ϕχ

which leave them invariant:

xi → xi

This intelligibly shows that the underlying bundle is nothing else than a U(1)
bundle over S2.
Considering the functions on R = χ†χ one has the
Definition:

Ak = {f(χ†χ)|
∑

m,n

cm,n(ξ∗1)
m1(χ∗

2)
m2χn1

1 χ
n2

2

∣
∣
∣
∣
2k=m1+m2−n1−n2

} (3.11)

f → eikϕf , generators of rotations: Li = iχ∗σi∂χ + h.c. . . .

Quantized: To get to a quantized version of the fibration, we contemplate
the Jordan-Schwinger representation of su(2), which is defined like this: the
functions χ, χ† are displaced by creation and annihilation operators,

χα, χ
∗
β → Aα, A

†
β (3.12)
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which naturally leads to equations of the form:

FN = {(A†
1)

n1(A†
2)

n2|0 >
∣
∣
∣
∣
n1+n2=N

} (3.13)

x̂i = A†σkA (3.14)

Differently than in the classical case, we define maps:

AMN : FN → FM

[
M

2

]

⊗
[
N

2

]

=

[ |M −N |
2

]

⊕ · · · ⊕
[
M +N

2

]

(3.15)

Indeed what we sustain are projective modules:

〈ψk| = (χ̄k
0, . . . ,

√
(
k
j

)

χ̄k−j
0 χj

1, . . . χ
k
1) (3.16)

∃Pk = |ψk〉〈ψk|

3.3 Nc T
2

Another example that quickened big interest is the noncommutative torus.
As a quite simple compactification it reveals many useful applications in field
theory considerations. The periodicity is of capital importance:

S1 = R/2πZ ⇐⇒ x ≃ x+ 2πR (3.17)

Quantization For the purpose of quantization, we take the space
H = L2(S1, dϕ) together with the unitary operators

(Ûφ)(ϕ) = eiϕφ(ϕ) , (3.18)

which lead to the equivalence relation:

UX̂U † = X̂ + 2πR1, UU † = U †U = 1, (3.19)

and to the representation in terms of φ

X̂ = 2πiR
∂

∂ϕ
+ A(ϕ) (3.20)
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Compactification on T
2: Since (3.19) holds, the willing reader is invited

to retrace that an invariant on the torus is U1U2U
†
1U

†
2 , satisfying

[U1U2U
†
1U

†
2 , Xj] = 0, (3.21)

What follows is the famous torus equation together with a representation
similar to (3.20)

⇒ U1U2 = e2iπθU2U1 , (3.22)

Xj = 2πRj
∂

∂ϕj

+ Aj(ϕ1, ϕ2) (3.23)

T
2
θ =

{∑

cn(U1)
n1(U2)

n2

}

/(3.22),
∑

n

|cn|2 <∞ (3.24)

A nice (i.e. practical) representation goes back to Julian Schwinger
(1960); he used the so-called clock and shift operators with θ = 1

N
. In

the quantum group language, a space endowed with the structure xy = qyx
is known as Manin plane and there these operators look as follows

U1 =








a
a2

. . .

aN







, U2 =








0 1
. . . . . .

. . . 1
1 0








(3.25)

with UN
1 = UN

2 = 1 and a = q−1.
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Chapter 4

QFT on R
4

θ

4.1 Euclidean formulation - Moyal Space

The central relation in noncommutative quantum field theory is

[x̂µ, x̂ν ] = iθµν

with θµν = −θνµ , saying that coordinates of the considered space-time are
replaced by operators, which obey the stated commutator-relation. Clearly,
this is reminiscent of the famous commutator between position and momen-
tum operator in standard quantum mechanics. The one studied here is the
simplest thinkable deformation that satises the anti-symmetry of the com-
mutator and the hermiticity of the operators x̂µ . As a further simplication,
the components θµν are real numbers of dimension length squared: allow-
ing space-dependent components would gather some more general effects,
which are not treated in these notes. As in standard quantum mechanics,
this commutator implies a Heisenberg uncertainty relation, here containing
of position uncertainties. As a result, space-time points no longer exist, but
are replaced by cells of a dimension of at least |θµν |.

Operators Hermann Weyl generalized the usual quantization method in
the year 1931, associating a quantum operator to a usual phase space func-
tion. Because his procedure works for more general commutator relations
than the ones that came up in quantum mechanics, it also can be applied for
noncommutative geometry. Given the premise of using just functions of the
Schwartz class, i.e. the functions of which all derivatives vanish at infinity,
one can define the Weyl symbol :

W [φ] =

∫

dp eipµx̂µ

φ̃(p) =

∫

dp upφ̃(p), (4.1)
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where φ̃(p) ∈ S(R4) denoting the Fourier transform of φ(x), the x̂ s are the
operators and up are the so-called Weyl operators satisfying

upuq = eipθququp (4.2)

Then the differential calculus takes the following form:

∂µup = ipµup = −i[x̃µ, up] (4.3)

with x̃µ = θ−1
µν x

ν .
Furthermore, they generate an ∞-dimensional Lie algebra

[up, uq] = 2i sin(pθq)up+q (4.4)

Star product Instead of the non-commutative operators it is possible, and
in many cases more convenient, to use a product of smooth functions in S(R4)
providing the noncommutatvity. The simplest case of such a product is the
associative, noncommutative Groenewold-Moyal Star Product :

(f ⋆ g)(x) = e
i
2
θµν ∂

∂xµ
∂

∂yν f(x)g(y)

∣
∣
∣
∣
∣
x=y

, (4.5)

= const

∫

dy

∫

dz f(x+ y)g(x+ z)eiyθ−1z

= const

∫

dp

∫

dz f(x+ θp)g(x+ z)eipz

With this tool it becomes possible to obtain a noncommutative theory from
a commutative one in writing the ordinary commutative functions, but im-
plementing this non-local product instead of the usual point-wise one.

Rules:
f ⋆θ g = g ⋆−θ f

A short calculation shows that
∫

dx(f ⋆θ g)(x) =

∫

dx(g ⋆θ f)(x)

This can be seen when using the Fourier representation of the star product.
Moreover we have

∫

dxf1 ⋆ · · · ⋆ fN (x) =

∫ N∏

j=1

(dpj f̃j(pj))δ(
N∑

i

pi)e
i

P

l<k plθpm (4.6)
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Another important property allows leaving out one star in any product in an
integral:
∫

dx (f ⋆ g)(x) =

∫

dx e
i
2
θij∂x

i ∂y
j f(x)g(y) |x=y

=

∫

dx

∫

dy

∫

dp

∫

dk e−
i
2
θijpikj eipxf̃(p) eikyg̃(k − p)

= (2π)2

∫

dp

∫

dk e−
i
2
θijpikjδ(p+ k)f̃(p) g̃(k − p)

=

∫

dx eipxf(x) e−ipyg(y) |x=y =

∫

dx f(x) g(x)

φ4 on R
4: As stated before, the noncommutative φ4 theory now simply

evolves when inserting star instead of usual products:

S[φ] =

∫

d4x

{
1

2
(∂µφ ⋆ ∂

µφ)(x) +
m2

2
(φ ⋆ φ)(x) +

λ

4
(φ ⋆ φ ⋆ φ ⋆ φ)(x)

}

(4.7)
If we now analyse perturbation theory, a new kind of graphs appear: the
ribbon graphs. Think of the first order Wick contractions of the two point
function

〈0|φ(z1)φ(z2)
λ

4

∫

d4x φ ⋆ φ ⋆ φ ⋆ φ |0〉

Due to the noncommutativity of the vertex (4.7), as can be seen in (4.6), the
contractions on the one hand produce graphs equivalent to those of commu-
tative field theory (planar graphs) and, additionally, these nonplanar graphs
that inhabit different asymptotical behaviour.

4.2 IR/UV mixing

Let us quantify these first order corrections on an easy graph like the tadpole.
There, two third of the contributions are equal to those coming out when
considering the commutative theory. Thus, these planar graphs suffer from
the same UV divergences as can bee seen by implementing a UV cutoff Λ:

Γpl =
g2

3

Λ∫
d4k

k2 +m2
∼ Λ2, (4.8)

One of the most puzzling effects of the last years of noncommutative pertur-
bative quantum field theories shows up when one regards the divergences of
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the nonplanar graphs. The nonplanar tadpole is given by

Γnpl =
g2

6

∫ Λ d4k

k2 +m2
eikθp (4.9)

=

∫

d4k

∫ ∞

0

dα e−α(k2+m2)eikθp = lim
Λ→∞

∫ ∞

0

dα e−αm2− θpθp
4α

− 1

Λ2α

Γpl ≃ g2

48π2
(Λ2 −m2 ln

Λ2

m2
+ O(1)), (4.10)

Γnpl ≃ g2

96π2
(Λ2

eff −m2 ln
Λ2

eff

m2
+ O(1)) (4.11)

with

Λ2
eff =

1

1/Λ2 + (θp)2

and (θp)2 := −pi(θ
2)ijpj ≥ 0.

We will show now that the noncommutativity destroys the commutation
between UV and IR limits. Obviously, first performing the limit p → 0 and
then Λ → ∞ restores the ”old” divergences that are renormalizable due to
known schemes. Now taking the limit Λ → ∞ lets Γnpl be UV finite if
(θp)2 6= 0. Minwalla, van Raamsdonk and Seiberg were the first to mention
that in their famous paper of 1999 [7].
On the other hand, if one considers the limit p → 0 afterwards, the UV
divergence is recovered, but in the small-p, i.e. IR region. Such a connec-
tion between short and long scales is up until now only known from String
Theory, which has demonstrable connections with noncommutative quantum
field theory (Seiberg-Witten [10], Schomerus [8]). What makes things even
worse is that in iterating these contributions one can realize arbitrary high di-
vergences; this was also remarked in the paper by Minwalla, van Raamsdonk
and Seiberg.

4.3 Renormalization of nc scalar QFT on R
4
θ

The relation stated between long and short distances results in the non-
renormalizability of the theory (4.7). Hence, there was added a term into
that action modifying long distances and led to the

22



Theorem: Grosse, Wulkenhaar [2]
The quantum field theory governed by the action

SGW =

∫

d4x

(
1

2
∂µφ ⋆ ∂

µφ+
Ω2

2
x̃µφ ⋆ x̃

µφ+
m2

2
φ ⋆ φ+

λ

4
φ ⋆ φ ⋆ φ ⋆ φ

)

(4.12)
is perturbatively renormalizable to all orders in λ.

Remark: this Lagrangian obeys to the so-called Langmann-Szabo duality,
what can be comprehended by applying (4.3):

FT : φ(x) → φ̃(p) ⇒ S[φ;µ, λ,Ω] → Ω2S[φ;
µ

Ω
,
λ

Ω2
,
1

Ω
] (4.13)

(FT ... cyclic labelled Fourier transform)
Model is selfdual at Ω = 1!
The proof inhabits the

Reformulation as dynamical matrix model: For simplicity, D = 2:
[x1, x2] = iθ → a = x1 + ix2, a

†; take basis (the matrix basis)

fmn = (a†)⋆me−a†aa⋆n.

We have

fmn ⋆ fpq = δnpfmq,

∫

fmn = δm0δn0 (4.14)

Rewriting the action in terms of this basis means that there are no more
oscillations

S =
1

2

∑

m,n,p,q

(

φmn∆nm,pqφqp +
λ

4
φmnφnpφpqφqm

)

(4.15)

Properties:

• ∆mn,pq = 0, if m+ p 6= n+ q (SO(2) × SO(2) symmetry)

•

∆mn,pq = δnpδmp((m+ n+ 1)
1 + Ω2

θ
+ µ2) (4.16)

−1 − Ω2

θ
(δn+1,pδm+1,q

√
pq + δn−1,pδm−1,q

√
mn)
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• D = 4:

(∆−1)m
0

m
0 ,

m
0

m
0

≃ const
√

m+ 1 + Ω2(m+ 1)2
, (4.17)

(∆−1)m1
m2

m1
m2,

0

0
0

0
≃ const

m1 +m2 + 1

(
1 − Ω

1 + Ω

)m1+m2

(4.18)

The authors follow the renormalization group equation

ZΛ[J ] =

∫
∏

dφ e−SΛ[φ,J ], (4.19)

where

SΛ[φ, J ] =
∑ 1

2
φ∆Λφ+ LΛ[φ] + 〈φ, J〉Λ, (4.20)

L∞[φ] =
λ

4
φφφφ. (4.21)

and require
∂

∂Λ
ZΛ[J ] = 0 .

Inserting a useful ansatz into the Polchinski Equation reveals the correct
propagator.
The topology of ribbon graphs drawn on Riemann surfaces of genus g with
B holes is described by the following equation:

2 − 2g = L− I + V,

where V = # vertices, I = # double line propagators, L = # single line
loops (for closed external lines). This enforces us to derive a power counting
rule

|AΛ| ≤ (
√
θΛ)4−N+4(1−B−2g) Pol2V −N/2[ln

Λ0

ΛR

] (4.22)

In their conclusion, the authors state that the only relevant/marginal quan-
tities occur for B = 1 and g = 0, N = 2, 4.

There exist some further proofs for the renormalizability of the modified
(”vulcanized”) NC φ4 theory, most notably the one of V. Rivasseau, R. Gu-
rau, J. Magnen and F. Vignes-Tourneret, where they use multi-scale analysis
involving the Mehler kernel.
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Chapter 5

Taming the Landau Ghost

The proof of the renormalizability of the theory (4.12) was a motivation for
going a step further and concerning the summability of this theory.

In the original theory one starts with the decomposition of the covariance
of the Gauß process and the field into independent random variables: Let
Cp(x) be covariant for a field with momentum ∼Mp

Cp(x) =

∫ M−2p+2

M−2p

dα

αD/2
e−m2αe−

x2

4α (5.1)

There exists a bound |Cp(x)| ≤ kM (D−2)pe−Mp|x|. If we now sum up the first
ρ steps we obtain:

C≤ρ(x) =

ρ
∑

p=0

Cp(x),

writing Φρ =
∑ρ

p=0 φp(x) (field with frequencies ≤ ρ).
The renormalization group idea goes as follows: write Φp = φp +Φp−1, where
φp are the fluctuations - integrate out and iterate:

e−Sj−1[φj−1] = Zj−1[Φj−1] =

∫

dµj(φj)e
−S[φj+Φj−1] (5.2)

This procedure gives maps for the couplings:

λj−1
∼= λj − βλ2

j

λj
∼= λj−1 + βλ2

j−1

}

⇒ λj
∼= λ0

1 − λ0βj
(5.3)

from there one can immediately see the Landau singularity (or Landau ghost)

λren = λ0 fix ⇒ λbare → ∞, (5.4)

λ∞ = λbare fix ⇒ λren → 0 . (5.5)
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Calculating β-function for renormalizable nc φ4: Applying these meth-
ods to the renormalizable theory has been done by H.G. and R. Wulkenhaar
up to first order. We note that: Z = 1 −O(λ) ⇒

dλj

dj
= α(1 − Ωj)λ

2
j ,
dΩj

dj
= β(1 − Ωj)λj (5.6)

This has rich consequences: at Ω = 1 we reach a fixed point: βλ = βΩ = 0
The next breakthrough was done by the Rivasseau group: they managed to
show that the β-function vanishes up to all orders [13]! This means that
the theory, whether ”physical” enough due to the Euclidean instead of the
Minkowski approach or not, may at least exist and may also lead to a con-
structive noncommutative quantum field theory, which is nontrivial! The
Rivasseau group is working on the case right now and we are very anxious
to its results . . .
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