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à Abstract

SuperLie  is  a  Mathematica−based package  designed  for  solutions  of  scientific  and  computa­
tional problems related to Lie algebras and Lie superalgebras, their q−deformations included. Using
SuperLie  one can construct objects habitual for the mathematician (vector spaces and superspaces,
algebras  and  modules  over  these  algebras)  in  a  way  (hopefully)  accessible  to  the  engineer.  It  can
solve  various  applied  problems  and  theoretical  problems  of  considerable  importance  to  the  physi­
cists.  In  particular,  SuperLie  allows  one  to  perform  calculations  and  symbolic  transformations  in
order to determine generators and relations, vacuum vectors (highest and lowest), compute homol­
ogy and cohomology; calculate the Shapovalov determinant, and so on. It is possible to output the
result in TeX format.

à Disclaimer

This software is provided "AS IS",  without a warranty of any kind. 

ALL EXPRESS OR IMPLIED CONDITIONS,  REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  FITNESS FOR A PAR­
TICULAR  PURPOSE  OR  NON−INFRINGEMENT,   ARE  HEREBY  EXCLUDED.  THE
AUTHOR SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY THE USER AS A
RESULT OF USING,  MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVA­
TIVES.  IN  NO  EVENT  WILL  THE  AUTHOR  BE  LIABLE  FOR  ANY  LOST  REVENUE,
PROFIT OR DATA,  OR FOR DIRECT,  INDIRECT,  SPECIAL,  CONSEQUENTIAL,  INCIDEN­
TAL  OR  PUNITIVE DAMAGES,   HOWEVER  CAUSED  AND  REGARDLESS OF  THE  THE­
ORY OF LIABILITY,  ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE,
EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

à Download address

The documentation and the package can be downloaded from

www.equaonline.com/math/SuperLie/

For a concise background necessary to start programming and a list  of problems both already
solved and to  be  solved with  the  help  of  SuperLie as  well  as  a  brief comparison with the existing
related packages known to us, see P.Grozman and D.Leites, SuperLie  and problems (to be) solved
with  it.  Preprint  MPI−2003−39  (www.mpim−bonn.mpg.de)  referred  to  in  what  follows  as  [GL].  An
updated version of [GL] will be regularly put on www.equaonline.com/math/SuperLie/
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SuperLie: a Fast Introduction

à Purpose

The SuperLie Package is a tool for calculation of various data for Lie algebras and superalge­
bras. Using SuperLie Package you can

· make the numeric and symbolic calculations with vectors;
· build vector (super)spaces, algebras and modules over algebras;
· convert the results to TeX format.

à Principles

à Vectors and vector expressions

á Vectors and scalars

Vectors in SuperLie are:
· Symbols declared as vectors; such symbols with indices, as vi  or v@i, jD;
· Linear combinations of vectors with scalar coefficients;
· Vector expressions, like v1 Ä v2 ;
· The results of vector−valued functions and operators.

Scalars in SuperLie are:
· Symbols declared as scalars; such symbols with indices, as ci  or c@i, jD;
· Numbers and in−built Mathematica constants;
· Scalar expressions, like c1 + c2 * Sin@ΑD;
· The results of scalar−valued functions and operators.

Declaring vectors and scalars

Vector Scalar VectorQ ScalarQ UnVector UnScalar

á Vector operations

The arithmetic operations + , - , * , �  and ^ can be used with vectors as well as with scalars.
The  multiplication  u * v * ...  of  vectors  is  usually  interpreted  as  operation  in  an  associative

algebra. It may be, e.g., (super)symmetric product, composition of differential operators, and so on.
There are also defined operations of tensor multiplications u Ä v Ä ...  and u ** v ** ...  , exterior

multiplication uï vï ... , tensor power  vÄn .
Other operators available in Mathematica may also be defined as vector operations.

Vector operations

CircleTimes Tp tPower VPlus VPower VTimes Wedge wedge



á Functions and evaluation rules for vector expressions

SuperLie defines a list of rules and functions used to evaluate or simplify vector expressions.
·  A  rule  may  be  applied  manually,  using  Mathematica  replacement  operator  expr  /.  rule  or

expr //. rule
· A rule may be declared as an operation property; then it will be applied automatically when­

ever possible.

Functions

dNormal EnvNormal ExpandOp SymmetricNormal TCollect VCollect VExpand VNormal 
VSort

Rules

AdditiveRule AntiSkewSymmetricRule AntiSymmetricRule dSortRule EnvSortRule Expand­
OpRule HomogenRule JacobiRule LeibnizRule LinearCollectRule LinearRule LogPower­
Rule SkewSymmetricRule SymmetricRule TestFirstRule ThreadGradedRule VExpandRule 
ZeroArgRule

Property declarations

Additive AntiSkewSymmetric AntiSymmetric DegTimes Graded Homogen Jacobi Leibniz 
Linear LogPower SkewSymmetric Symmetric TestFirst ThreadGraded ZeroArg

Testing properties

AntiSkewSymmetricQ AntiSymmetricQ GradedQ SkewSymmetricQ SymmetricQ

Cancelling properties

UnAdditive UnAntiSkewSymmetric UnAntiSymmetric UnDegTimes UnGraded UnHomogen 
UnJacobi UnLeibniz UnLinear UnLogPower UnSkewSymmetric UnSymmetric UnTestFirst 
UnThreadGraded UnZeroArg

Functions and evaluation rules for scalar coefficients

SimplifySign SimplifySignRule SVExpandRule SVFactorRule SVNormalRule SVSimplify­
Rule $SNormal

à Algebras and modules

á Space constructors

Space  constructors  are  commands  to  build  (or  declare)  vector  spaces,  algebras  and  modules.
There are constructors of  vector  and tensor spaces;  algebra constructors (of matrices, polynomials,
vector fields; free algebras; algebras with a Cartan matrix; subalgebras); module constructors (tensor
modules, free modules, submodules, comodules, and so on.). More constructors can be added.

General constructors

Algebra CommutativeLieAlgebra SpacePlus TensorSpace TrivialSpace VectorSpace

Matrix algebras

glAlgebra pslAlgebra psq2Algebra psqAlgebra q2Algebra qAlgebra slAlgebra 
sqAlgebra
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Algebra structures on the space of polynomials and related structures

ButtinAlgebra ContactAlgebra DiffAlgebra ExteriorAlgebra MoebiusAlgebra OKAlge­
bra PoissonAlgebra RamondAlgebra VectorLieAlgebra

Algebras and modules from generators

CartanMatrixAlgebra FreeLieAlgebra HWModule

Related modules

CoLeft CoRight DLeft DRight MRight NewRelative PiLeft PiRight

Sub− and quotientspaces

AlgebraDecomposition DefSubAlgebra QuotientModule GradedKerSpace Ideal KerSpace 
RestrictModule SubAlgebra SubModule SubSpace

Modifications of vector spaces

ReGrade

á Constructor options

Space constructors allow you to give additional arguments that specify options with rules of the
form name −> value.  Here are listed some common options used by different constructors.

Action

Algebra 

Dimension and grading options

Dim GList Grade GRange PList

Implementation details

CTimes Split 

Naming options

Bracket bracket Div Mapping

Format options

Output Standard TeX Traditional

Relation options

CoLeft CoRight DLeft DRight MRight PiLeft PiRight

á Space properties

A space property is a function whose argument is the name of the space. The properties reflect
the results of the space constructor.
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Properties that reflect the definition of the space

Basis BasisPattern Bracket bracket BracketMode CartanTriade CompList Components 
DecompositionList GRange InSpace NGen Rank Regular Tabular TheAlgebra TheModule 
TheSpace

Properties that represent the results of calculations

DecompositionRule Dim FDim GenBasis GenRel GList Image PDim PList

Modules−relatives

CoLeft CoRight DLeft DRight MLeft MRight PiLeft PiRight

á Functions and operators on vector spaces

The following functions are defined by the space constructor. Their arguments should be either
even or odd vectors. The result of application of these functions to non−vector arguments is unpre­
dictable.  A  linear  combination  of  vector−valued  functions  is  also  a  vector−valued  function  of  the
same arguments.  A given  polynomial  in  scalar−valued functions  is  also  treated as  a  scalar−valued
function of the same arguments, if all the involved functions are defined as having scalar values and
scalar or vector arguments (see Vectors and Scalars).

Bracket and action on modules

Act act Bb bb Kb kb Lb lb Mb mb Ob ob Pb pb Rb rb

Operators related to concrete algebras

ContactK D Der der Der0 Div EulerOp HamiltonianH Mapping RamondD RamondK ZRamondD

Scalar functions defined on vector spaces

Grade P Parity PolyGrade Weight

á Defining new operation on existing spaces

Sometimes, algebras are defined on already existing vector spaces. In this case no constructor
is required; it suffices just to define the algebra operation. 

Enveloping algebra

EnvelopingOperation EnvelopingSymbol $EnvLess

Algebra of differential operators

CleardSymbol dSymbol

à Tools

SuperLie  package  provides  a  number  of  functions  for  manipulation  with  vector  expressions,
including

· Evaluating and simplifying vector expressions;
· Solving vector equations (with either scalar or vector unknowns);
· Working with expressions with indefinite coefficients;
· Preparing output in TEX  format.
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á Working with vector expressions

Normalization

The  following  functions  and  rules  may  be  used  to  convert  vector  expressions  to  the  normal
form,  i.e.,  to  linear  combination  of  basis  elements.  These  functions  do  not  change  the  value  of
vector expressions.

dNormal dSortRule EnvNormal EnvSortRule ExpandOp ExpandOpRule LinearCollectRule 
SymmetricNormal TCollect VCollect VExpand VExpandRule VNormal VSort

Maps

These  functions  are  used  to  map vectors  to  a  different  vector  space  or  to  change  the  basis  in
vector expressions.

LinearChange Mapping MappingRule

Polynomials

These are functions for working with (super)symmetric polynomials.  

Deg DegreeBasis FilterBasis GradeBasis LDer UpToDegreeBasis

Symbolic operators

The  following  functions  return  linear  operators.  These  operators  may  be  used  in  symbolic
calculations, because any linear combination of vector−valued functions is also treated as a function:
Hf + Α gL@xD = f@xD + Α g@xD .

ZId ZLDer ZRDer

Conditions and iterations

A number of rules of symbolic evaluation works with unexpanded conditions and iterations.

VIf VSum

Linear expressions with indefinite coefficients

A linear expression with indefinite scalar coefficients represents a subspace in a vector space,
e.g., a solution of a linear system.

GeneralPreImage GeneralReduce GeneralSolve GeneralSum GeneralZero

Other functions

Delta MatchList VBasis VOrder VOrderQ VSameQ

Scalar functions

Plus2 SimplifySign SimplifySignRule SVExpandRule SVFactorRule SVNormalRule SVSim­
plifyRule Times2 WeightMark $SNormal $Solve
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á Solving vector equations

SuperLie  provides  functions  for  solving  vector  equations  with  either  vector  or  scalar
unknowns.

 GeneralSolve GeneralZero ScalarEquation SVSolve VSolve $Solve

á Splitting vector lists and expressions

Splitting  is  used  to  divide  large vector  expressions into  homogeneous parts  (e.g.,  of  the  same
weight or degree).

A splitted sum is the list 8key1 ® expr1, key2 ® expr2, ...< ,  where the keys are all
different and sorted in canonical order, and expri   are vector expressions.

A splitted list is an expression of the same form, where expri   are lists of vectors.

Splitting expressions

SkipVal SplitList SplitSum

Accessing members of splitted expressions

ForSplit PartSplit

Manipulations with splitted expressions

AddSplit ApplySplit JoinSplit MapSplit MergeSplit 

á Preparing output

Defining output format

Output Standard TeX Traditional UnOutput UnStandard UnTeX UnTraditional

Formatting functions 

ArgForm SeqForm

à Programming

SuperLie provides tools that facilitate writing new functions.

á Domain definition

CondOp PlusOp PowerOp SumOp

á Notations

CTimes NewBracket NewBrace NewOverscript NewPower NewSuperscript Operator OpSym­
bol RemoveOverscript RemovePower RemoveSuperscript StopUseAsSymbol UseAsSymbol 

á Iterations

UniqueCounters WithUnique
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á Debug

DateString DPrint TimeString $DPrint $DPrintLabel

á Preprocessor

GPlus GPower GTimes Plus$ Power$ PreSL Times$ WithoutPreSL

à Derived packages

The following subpackages are included in the delivery:

SuperLie‘Cohom is a package for calculating cohomology;

SuperLie‘Sing is a package for calculating singular vectors.
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SuperLie:  Reference Manual

à Introduction

The SuperLie Package is a tool for calculation of various data for Lie algebras and superalge­
bras.  Using  Super  Lie  Package  you  can  build  vector  (super)spaces,  algebras  and  modules  over
algebras;  make  the  numeric  and  symbolic  calculations  with  vectors  (e.g.,  find  homology  and
cohomology,  relations  between  generators  in  an  algebra,  vacuum  vectors,  and  so  on);  convert  the
results to TeX format.

�Packages used by SuperLie

SuperLie  uses  two  other  packages  that  are  designed  as  part  of  SuperLie  project,  but  can  be
used separately. These packages are: Domain.m introducing the object−oriented style in Mathemat­
ica, Enum.m defining the generalized For loop.

Each of these packages is described in a separate document.

�Vectors and scalars. Domains.

á Vectors in Mathematica and in mathematics

In Mathematica,  a vector  is a list of coordinates 8x1 , x2 , ... , xn < .  This represents an element
of the standard n−dimensional vector space over an arbitrary numerical field. The dimension n given
as an non−negative integer. The vector space as a whole is never used and has no name.

In  mathematics,  the  vectors  are  elements  of  any  vector  space,  not  necessarily  represented  as
lists  of  coodrinates.  There  are  also  the  spaces  of  polynomials,  spaces  of  vector  fields,  spaces  of
differential  operators  and  many  other  spaces.  Every  space  is  used  with  some  personal  name,  e.g.,
V = Rn , a = Wè HRn L , g = glHnL . The vectors are denoted so that it is possible to determine the space

containing each vector: v1 + 2 v2 Î V ,  gi
j

Î glHnL ,  f HxL dx1 ïdx2 Î Wè HRn L .

á Vectors in SuperLie

The vectors in SuperLie  are represented in a symbolic form using the basis of the space. All
vectors are represented as linear combinations of the elements of the basis with scalar coefficients.
Each element of the basis of the vector space has a symbolic name. These names can be symbols (x ,
Θ ,  dt),  indexed  symbols  (x1 ,  gi, j ),  expressions  involving  vector  operations  (d@x2 D ,  p2 * q2 ,
dx1 ïdx2 )  or  more  sophisticated  expressions.  The  only  requirement  is  that  the  vectors  must  be
declared as  vectors  and  there  must  exist  a  unique "normal" form of  such expressions (two expres­
sions  represent  the  same vector  if  and  only  if  the  operation of  "normalization" transforms them to
the identical expressions).



á Vectors and Scalars

All symbols representing vectors must be declared as members of Vector domain. All symbols
representing  scalar  coefficients  and  indices  must  be  declared  as  members  of  Scalar  domain.  All
undeclared symbols are members of Common domain.

The declaration of domain of the symbol is not necessary if a value was assigned to the symbol,
e.g., if  x = c * v1 , the symbol v  must be Vector, c  must be Scalar and x  can be undeclared.

á Vectors and polynomials. The multiplication

The vectors in SuperLie look like the polynomials in Mathematica. There is only a difference
in the meaning of the multiplication. For vectors, multiplication is a generic name for several differ­
ent  associative operations:  the  tensor  product,  the  [skew−]symmetric product,  the  multiplication in
the  enveloping  algebra,  the  composition  of  the  differential  operators.  Most  of  the  multiplications
have  the  same  traditional  notation  as  ordinary  multiplication  (except  tensor  and  skew−symmetric
product). The multiplication of vectors is, in general, noncommutative. 

SuperLie allows one to use the traditional multiplication in the front end input. In the internal
format it uses three different operations: Times for multiplications of scalars, VTimes for vectors
and SVTimes to multiply vectors by scalars.

The operation VTimes is not commutative. This means that the factors are not ordered automat­
ically. Instead, special operations are provided to order the factors, for each type of multiplication.

The  tensor  product  is  denoted  by  **  or  Ä  (CircleTimes).  The  skew−symmetric  product  is
denoted by ï  (Wedge). 

�Vector operations.

The arithmetic operations + , - , * , �  and ^  can be used with vectors as well as with scalars.
The  multiplication  u * v * ...  and  power  vn  of  vectors  are  usually  interpreted  as  an  associative
product  and  power,  respectively.  There  are  also  defined  operations  of  tensor  multiplication
u Ä v Ä ...  , exterior multiplication uï vï ...  and the tensor power  vÄn .

The  term "operation"  in  Mathematica  means  the  same  as  "function".  We  will  use  the  term
"operation" for a certain function if

(a)  the  commonly  used  format  of  the  function  is  symbolic,  as  a + b + c  instead  of
Plus@a, b, cD . 

(b) when one cannot calculate the result of the function, the unevaluated expression is treated
as  the  result.  The  expression can  be  simplified or  modified according to  the rules prescribed for
this operation.

Every operation in Mathematica has a full name, as Plus, and (optionally) a symbolic name,
as + .

�Linearity and other properties.

The  linear  functions  and  operators  must  first  be  defined  on  a  basis  and  then  expanded  via
linearity. This expansion will be made automatically if you declare that the function is linear. In the
same  way  some  other  properties  can  be  declared,  e.g.,  homogeneity,  additivity,  (super)symmetry,
Leibniz rule. You can declare and cancel the properties of functions as you need.

Properties are defined using Domain package (see the corresponding document).
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�Space constructors

Space  constructors  are  commands  to  build  (or  declare)  vector  spaces,  algebras  and  modules.
There are constructors of  vector  and tensor spaces;  algebra constructors (of matrices, polynomials,
vector fields; free algebras; algebras with Cartan matrix; subalgebras); module constructors (tensor
modules, free modules, submodules, comodules, and so on). More constructors can be added.

�Tools

SuperLie  package provides a  number of  tools for manipulation with vector expressions, such
as computing "normal" form of expressions, solving vector equations, etc.

à Vectors and scalars

�Vector, Scalar and Common domains.

Symbolic names can represent the vectors in two ways: either the symbol stands for a value or
it is the value itself. For example, if we assign   x = c * v1 ,  the symbol x   stands for the value c * v1 ,
while v1  does not stand for any value, it is a value itself.

All  symbols  representing  vector  values  must  be  declared  as  members  of  Vector  domain.  All
symbols representing scalar values (coefficients and indices) must be declared as members of Sca­
lar domain. All numbers and constants are scalars by definition. All undeclared symbols are mem­
bers of Common domain.

The declaration of domain is not necessary (and useless) for the symbols standing for any value
(as x   in the example above).

If a symbol v  is  defined to be a vector or scalar, any expression v@ ...D  with header v  and  v...

with any indices will also be a vector (resp. scalar).

á Vector, UnVector, VectorQ

Vector@obj, ...D  defines  objects  (they  must  be  symbols)  as  vectors.  Another  way  to  define  a
vector  (together  with  other  properties  of  the  objects)  is  Define@obj, 8Vector, property ...<D  or
SetProperties@obj, 8Vector, property ...<D , see Domain Package.

Vector−valued operations must also be declared as Vectors, e.g., Vector[Times].
SetProperties@op, Vector ® iD  tells  that  the  i−th  argument  of  the  operation  op  must  be  a

vector. Here i  can be an integer, First, Last or All.

UnVector@obj, ...D  or ClearProperties@obj, 8Vector, ...<D  clear the vector definition.

VectorQ@xD  returns  True  if  x  is  a  vector  (an  object  of  Vector  domain)  and  False  otherwise.
This definition shadows the system function with the same name, VectorQ.
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á Scalar, UnScalar, ScalarQ

Scalar@obj, ...D  defines  objects  (they  must  be  symbols)  as  scalars.  Another  way  to  define  a
scalar  (together  with  other  properties  of  an  object)  is  Define@obj, 8Scalar, property ...<D  or
SetProperties@obj, 8Scalar, property ...<D , see Domain Package.

Scalar−valued operations must also be declared as Scalars, e.g., Scalar[Times].
SetProperties@op, Scalar ® iD  tells  that  the  i−th  argument  of  the  operation  op  must  be  a

scalar. Here i  can be an integer, First, Last or All.

UnScalar@obj, ...D  or ClearProperties@obj, 8Scalar, ...<D  clear the scalar definition. 

ScalarQ@xD  returns True if x is a scalar (an object of Scalar domain) and False otherwise.

�Generic and specific operations

The front end preprocessor examines every input line obtained from the front end or terminal
and replaces the operations + ,  - ,  * ,  �  and ^  in this line by the "generic" operations GPlus,  GTimes
and GPower.   Further on, these operations will be replaced with the operations in specific domains,
Vector  and  Scalar.  The  operations  in  Scalar  domain  are  built−in  Plus,  Times  and  Power,  the
operations in Vector domain are named VPlus, VTimes and VPower, the product  s * v   of a scalar s
by a vector v  is named SVTimes.

The generic operation will not be replaced by the specific operation, if
− the domains of the operands are not defined; 
− the expression containing the operation is not evaluated (due to the Hold attribute).

The  following  functions  are  used  internally  by  the  Super  Lie  package  (they  can  be  used  to
define new domains).

á STimesOp

STimesOp@domainD  gives  the  name  of  multiplication  operation  in  the  expression  "scalar  *  (an
element of the domain)". 

á PlusOp

PlusOp@domainD  gives the name of Plus operation (+) in the domain.

á PowerOp

PowerOp@opD  gives the name of "power" operation associated with the "times" operation op  or
None if the "power" operation is not defined.

PowerOp@op ® nameD  defines this operation.
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The pw = PowerOp@opD  operation is defined with the properties similar to the properties of the
scalar Power:

pw@x, 0D = op@D ,
pw@x, 1D = x ,
pw@pw@x, pD, qD := pw@x, p * qD ,
op@ ... , pw@x, pD, pw@x, qD, ...D = op@ ... , pw@x, p + qD, ...D .

The last property also embraces the case of the implicit first power:
op@ ... , x, pw@x, qD, ...D = op@ ... , pw@x, 1 + qD, ...D .

If  you want to define the power operation associated with the (skew)symmetric operation op ,
you must first cancel the symmetry, then define the power operation and restore the symmetry:

UnSymmetric@opD;
PowerOp@op ® prD; 
Symmetric@opD .

The reason is that the definition of the (skew)symmetry is different for operations with power
and for those without power. The same is valid for Jacobi and Leibniz properties.

á SumOp

SumOp@opD  gives the name of "Sum" function associated with the "plus" operation op or None if
the "Sum" operation is not defined.

SumOp@op ® nameD  defines this function.

The sum function in the Scalar domain is the system Sum function, the Vector sum function is
named VSum.  For both Sum  and VSum  the alternative iterator  8i, from ® to<  is  defined. If the differ­
ence diff = to - from is a number, this iterator is replaced with

(a) 8i, from, to - 1<  if diff > 0;
(b) 8i, to, from - 1<  and the whole sum is multiplied by -1 if diff < 0.
(c) the whole sum is replaced with 0 if diff = 0;

á CondOp

CondOp@domainD  gives the name of "If" operation with values in the domain  or None if the "If"
operation is not defined.

CondOp@domain ® nameD  defines this operation.

�Vector operations

The following vector operation are formally defined for any vector arguments, regardless of the
mathematical  meaning.  For  example,  we can  write  x + v  even if  x  and  v  are  elements of  different
vector spaces. The meaning of the vector expressions in the user’s problem, not programer’s.

The result of applying of vector operation to non−vector operands in unpredictable.

á VPlus, VTimes, VPower

VPlus@u, v, ...D  or u + v + ...  is  the sum of vectors. VPlus  replaces the generic "+" if  the oper­
ands are vectors. The operation is assotiative, i.e., the nested VPlus will be flattened. Other rules for
VPlus  are:  operands  equal  to  zero  are  replaced;  VPlus@xD = x;  VPlus@D = 0.  For  the  efficiency
reasons,  the  sorting  and  collection  of  similar  terms  are  not  made  automatically;  use  VNormal  or
VCollect to this purpose.

VTimes@u, v, ...D  or  u * v * ...  or  u v ...  or  u ´ v ´ ...  is  the  multiplication  of  vectors.  VTimes
replaces the generic "*" if the operands are vectors. The operation is assotiative, but not commuta­
tive.  The  corresponding "power"  operation is  named VPower.  Other  rules  are  defined as  properties
(and therefore can be cancelled): ZeroArg, IdArg, Homogen.

The  operation VTimes  may be  used for   multiplication in  the  associative algebras in  the  three
cases: in the (super)commutative case, in the enveloping algebra, in the algebra of differential opera­
tors. (Though so far we never used this option, VTimes can also be used for multiplication in the free
tensor algebra.) The difference only manifests itself when we have to sort the factors; this sorting is
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VTimes@u, v, ...D  or  u * v * ...  or  u v ...  or  u ´ v ´ ...  is  the  multiplication  of  vectors.  VTimes
replaces the generic "*" if the operands are vectors. The operation is assotiative, but not commuta­
tive.  The  corresponding "power"  operation is  named VPower.  Other  rules  are  defined as  properties
(and therefore can be cancelled): ZeroArg, IdArg, Homogen.

The  operation VTimes  may be  used for   multiplication in  the  associative algebras in  the  three
cases: in the (super)commutative case, in the enveloping algebra, in the algebra of differential opera­
tors. (Though so far we never used this option, VTimes can also be used for multiplication in the free
tensor algebra.) The difference only manifests itself when we have to sort the factors; this sorting is
performed  by  different  functions  SymmetricNormal  in  the  (super)commutative  case,  EnvNormal  in
the enveloping algebra, and dNormal in the algebra of differential operators.

VPower@v, nD  or  v ^n  or  vn   is  the  (super)symmetric  power  of  a  vector.  VPower  replaces  the
generic "^" if the first operand is a vector.

Operations  −  and  /  are  also  available  for  vectors.  The  expression  u - v  is  equivalent  to
VPlus@u, SVTimes@-1, vDD  and u � v  is equivalent to VTimes@u, VPower@v, -1DD .

The operation u � v  is always defined, though does not always have a mathematical sense.

á SVTimes

SVTimes@s, vD  or s * v  or s v  or s ´ v  is the product of a scalar s  by a vector v . SVTimes replaces
the generic "*" if the first operand is a scalar and the second one is a vector. In case of several oper­
ands the expression GTimes@s1 , ..., v1 , ...D  is replaced with  SVTimes@Times@s1 , ...D, VTimes@v1 , ...DD .
The rules for evaluation of SVTimes are: 1 * v = v , 0 * v = 0, c * 0 = 0, a * Hb * vL = Ha bL * v .

á CircleTimes (tp), tPower

CircleTimes@u, v, ...D  or tp@u, v, ...D  or u Ä v Ä ...   is the tensor multiplication (the opera­
tion  in  the  tensor  algebra).  The  operation  is  associative.  The  corresponding  "power"  operation  is
named tPower. The evaluation rules of CircleTimes are Linear and IdArg. 

tPower@v, nD  or v ^Ä n  of vÄn   is the n−th tensor power of the vector v .

á Wedge, wedge

Wedge@u, v, ...D  or   uï vï ...   is  the  exterior  multiplication  (the  operation  in  the  exterior
algebra). The operation is assotiative. The "power" operation for Wedge  is not defined. The evalua­
tion rules of Wedge are Linear, Symmetric and IdArg. After sorting the operands, Wedge is replaced
with wedge.

wedge@e1 , ..., en D  is  the  internal  representation  of  the  basis  of  exterior  algebras.  The  external
representation is also e1 ï ...ï en .

á NonCommutativeMultiply (Tp)

NonCommutativeMultiply@u, v, ...D  or  Tp@u, v, ...D  or  u ** v ** ...   denote  the  tensor  product
not  regarded  as  multiplication  in  the  tensor  algebra,  e.g.,  the  vector−valued  differential  form
f @x, yD ** Hd@xDïd@yDL  is such a product. The single evaluation rule of NonCommutativeMultiply  is
ZeroArg. We have not declared the automatic linear expansion (property Linear) because we prefer
to  see as  an answer to  a  problem something like H4 x + yL ** Hd@xDïd@yDL  rather than the expanded
formula  4 x ** Hd@xDïd@yDL + y ** Hd@xDïd@yDL .  You  can  declare  the  property  Linear  (or  Linear®
First, Linear®Last) if your task requires it.
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�Active and passive forms of operators

Some operators used in SuperLie have two names: the active one and the passive one.
The active name is  used when the operator should be evaluated. The passive name is  used to

write expression without evaluating.
For example, Der[Ω] evaluates and returns the exterior derivative of Ω, while the passive form

der[Ω] only denotes the derivative without evaluating.
Though  the  passive  forms  of  operators  are  not  evaluated,  some  reduction  is  still  made.  For

example,  the  expression  der@2 Ω1 - Ω2 D  is  usually  expanded  via  linearity  to  2 der@Ω1 D- der@Ω2 D .
The reduction rules are defined as operator properties and may be changed by the user.

á OpSymbol

If  s  denotes  the  active  form  of  some  operator,  OpSymbol[s]  returns  the  name  of  the  passive
form of the same operator.

á Operator

If s denotes the passive form of some operator, Operator[s] returns the name of the active form
of the same operator.

�Properties of vector functions

In  this  section we describe the  properties that  any vector  object  or  any function of  the  vector
arguments can possess. All these properties are defined using the Domain package. Every property
prop  can manifest itself as

(a)  Value: the function prop@objD  gives the value of the property on the object;
(b)   transformation  Rule:  to  be  applied  to  the  expressions  containing  the  object  whenever

possible;
(c)   an  output  Format:  the  property controls  the  appearance of  the  object  in  the  text  and TeX

output;
(d)  Domain: Vector and Scalar are such properties;
(e)  Flag: the function propQ@objD  gives True  if the object possesses the property and False

otherwise.

The same property can manifest itself in several ways, but actually we have only properties of
either of some of the types (a) − (e), or Flag + one of (a) − (d). 

Certain  properties  can  be  parametrized  to  more  precisely  describe  the  action  of  the  property.
For  example,  Leibniz@ f ® opD  tells  that  the  function  f  acts  via  Leibniz  rule  on  the  expression
op@x, ...D . Here op  is a parameter of the property.

A Rule property can occur in several copies for the same object (with different parameters). For
example,  the  same  function  f  may  possess  Leibniz  property  with  respect  to  several  operation:
VTimes, Tp, tp, wedge.

With every property prop  several functions are associated:

prop@obj, ...D
If  prop  is  a  Value  type  property,  prop@objD  gives  the  value  of  the  property.  Otherwise

prop@obj, ...D   declares the property of one or more objects.
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  prop@obj ® parm, ...D
declares the property of the objects  (for properties depending on a parameter);

  Unprop@obj, ...D
  Unprop@obj ® parm, ...D

clears  the  property  of  one  or  more  objects.  The  Rule  type  properties  must  be  cleared
exactly with the same parameter as they were declared. For other types of properties, the parameter
can be omitted;

  propQ@obj, ...D
for properties of type Flag, it returns True (or the value of parameter) when the object

possesses the property.

  propRule@objD  
  propRule@obj, parmD

gives the replacement rule, equivalent to the Rule  type property. The rule can be used
with  the  object  which  does  not  have  this  property.  For  example,  the  result  of  the  transformation
f @arg, ...D �. ZeroArgRule@ f D  is  zero if  one of  the  arguments of  f  is  equal  to  0.  If  f  possesses the
property  ZeroArg, this rule is useless, because f @arg, ...D  is already equal to zero. To save the time
of computation, such useless rules are suppressed.

In  the  following  list,  only  the  name,  type  and  meaning  of  the  properties  are  indicated;  the
associated functions are omitted.

á ZeroArg  (Rule)

ZeroArg@ f D  defines that  f @ ...D = 0 if the argument (or one of arguments) of f  is equal to 0.

á IdArg  (Rule)

IdArg@ f D  tells  that  if  an  expression  like  f @ ...D  have  arguments  equal  to  VTimes[]  (the  vector
unit), they must be removed: f @ ..., x, VTimes@D, y, ...D = f @ ..., x, y, ...D .

á Homogen  (Rule)

Homogen@ f ® degD  tells that the scalar coefficients must be extracted from the arguments of f :

f @c * vD® cdeg * f @vD . 
Homogen@ f D  is equivalent to Homogen@ f ® 1D .
Homogen@ f ® FirstD  and  Homogen@ f ® LastD  sets  that  the  function f  is  only  homogeneous in

the first (last) argument (with degree 1).
The  function  f  must  be  declared  as  vector−  or  scalar−valued  and  having  All  (resp.  First,

Last) vector arguments.

á Symmetric, SkewSymmetric, AntiSymmetric, AntiSkewSymmetric  (Rule and 
Flag)

The (skew) symmetry implies two rules of evaluations. The first rule tells that the arguments of
(skew)symmetric functions of vector arguments must be sorted in the standard order:

Symmetric@opD: op@ ..., x, y, ...D = H-1LP@xD P@yD op@ ..., y, x, ...D

AntiSymmetric@opD: op@ ..., x, y, ...D = -H-1LP@xD P@yD op@ ... , y, x, ...D

SkewSymmetric@opD op@ ..., x, y, ...D = H-1LHP@xD+1L HP@yD+1L op@ ..., y, x, ...D

AntiSkewSymmetric@opD op@ ... , x, y, ...D = -H-1LHP@xD+1L HP@yD+1L op@ ... , y, x, ...D
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Symmetric@opD op@ ..., x, y, ...D = H-1LP@xD P@yD op@ ..., y, x, ...D

AntiSymmetric@opD op@ ..., x, y, ...D = -H-1LP@xD P@yD op@ ... , y, x, ...D

SkewSymmetric@opD: op@ ..., x, y, ...D = H-1LHP@xD+1L HP@yD+1L op@ ..., y, x, ...D

AntiSkewSymmetric@opD: op@ ... , x, y, ...D = -H-1LHP@xD+1L HP@yD+1L op@ ... , y, x, ...D

The second rule tells  that  the  value of  a  (skew)symmetric function is  equal  to  0 if  it  contains
two neighboring odd (even, in case of a skew−symmetric function) equal arguments.

If the "power" operation pw = PowerOp@opD  is defined, both rules are modified. In the first rule
the  arguments  are  sorted  in  the  same  order  as  the  bases  of  pw .  The  second  rule  tells  that
pw@x, nD = 0  if x  is odd (even, in case of a skew−symmetric function) and È n È > 1.

The function op  must be declared as vector− or scalar−valued.
These rules may be used only when all operands are homogeneous with respect to the parity.

á Leibniz, Jacobi  (Rule)

Leibniz@ f ® gD  tells that the function f  acts on g@ ...D  as a derivation with parity P@ f D:

f @g@x1 , x2 , ...DD = g@ f @x1 D, x2 , ...D± g@x1 , f @x2 D, ...D± ...  

Leibniz@ f ® 8g1 , ...<D  tells that f  acts on all g1 , ... .

Jacobi@ f ® gD  tells that f @x, g@ ...DD  acts as the bracket in the Lie superalgebra g:

f @x, g@y1 , y2 , ...DD = g@ f @x, y1 D, y2 , ...D± g@y1 , f @x, y2 D, ...D± ...  

Jacobi@ f ® 8g1 , ...<D  tells that f  acts on all g1 , ... .

The functions f   and g  must be vector−valued functions of vector  arguments. All arguments
must be homogeneous with respect to the parity.

á Graded  (Flag)

If the vector operation op  is graded,  Grade@a~op~bD = Grade@aD+ Grade@bD

á ThreadGraded (Rule)

The function with property ThreadGraded acts as Grade on the graded operation:

ThreadGraded@ f D:  f @a~op~bD = f @aD+ f @bD  for  any  graded  operation
op;

ThreadGraded@ f ® smD: f @a~op~bD = f @aD~sm~ f @bD .

á TestFirst (Rule)

The  property  TestFirst@ f D  tells  that  the  value  of  f @x1 + ...D  is  equal  to  the  value  of  f @x1 D
(here "+" is a vector operation VPlus).

á LogPower (Rule)

LogPower@ f D  tells that f @xp D = p * f @xD  (here "*" denotes SVTimes) 
LogPower@ f ® opD  tells that f @xp D = op@p, f @xDD .
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á Additive (Rule)

Additive@ f D: f @ ..., x + y, ...D = f @ ..., x, ...D+ f @ ..., y, ...D
Additive@ f ® FirstD  and Additive@ f ® LastD  sets that the function f  is  only additive in the

first (last) argument.
This  property  can  be  assigned  to  functions  that  are  declared  having  All  (resp.  First,  Last)

scalar or vector arguments and scalar or vector values.

á Linear (Flag and Rule)

Linear@ f D  is  the (multi)linearity of  f  .  This property is  equivalent to  the union of  properties
Additive@ f D , ZeroArg@ f D  and Homogen@ f ® 1D .

Linear@ f ® FirstD  and  Linear@ f ® LastD  sets  that  the  function  f  is  only  linear  in  the  first
(last) argument. 

The  function  f  must  be  declared  as  vector−  or  scalar−valued  and  having  All  (resp.  First,
Last) vector arguments.

á Output, TeX, Standard, Traditional (Format)

Output@op ® formD  defines  the  output  format  of  the  object  as
Format@op@argsDD := form@op@argsDD .

TeX@op ® formD  defines  the  output  TeX  format  of  the  objects  as
Format@op@argsD, TeXD := form@op@argsDD .

Standard@op ® formD  defines  the  output  format  of  the  object  in  the  Standard  form  as
Format@op@argsD, StandardD := form@op@argsDD .

Traditional@op ® formD  defines  the  output  format  of  the  object  in  the  Traditional  form  as
Format@op@argsD, TraditionalD := form@op@argsDD .

The value of form must be a function of one argument. This function is applied to every expres­
sion with header op when it is formatted for the output. For example, the function Subscripted
will  print  the arguments of the expression as subscripts. In Domain  and SuperLie  packages, three
formatting functions are defined: InfixFormat, ArgForm and SeqForm.
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à Vector spaces, Algebras and Modules

� Introduction

To declare  (or  define,  or  build)  a  vector  space,  an  algebra  or  a  module  means  to  declare  the
name of the space, to set the properties  of  the space and to define the functions (operators) on the
space (or with values in the space).

The properties of the space are functions whose argument is the name of the space, e.g., Dim@vD
is the dimension of the space v ,  TheAlgebra@mD  is the name of the algebra that acts on the module
m .  Some  properties  can  have  the  second  argument,  e.g.,  Dim@g, nD  is  the  dimension  of  the  n−th
component of the algebra g .

The arguments of the functions defined on the space are vectors -  the elements of the space.
The examples of such functions are the parity, the grading, the weight, the bracket in an algebra, the
action of an algebra on a module, the scalar product, the homomorphisms, and so on.

You can easily build many vector spaces using the commands named space constructors. They
define  the  properties  of  the  space  and  the  functions  on  the  space;  your  task  is  only  to  choose  the
name of the space and to specify some parameters (e.g., dimension). Notice, however, that  there is
no space constructor for every kind of space, in some cases you must make all definitions manually
(or to write a new space constructor).

�The properties of vector spaces

The  properties  of  the  space  are  the  functions  whose  argument  is  the  name  of  the  space.  The
complete list of properties of vector spaces defined in the package consists of:

á Dimension

Dim@VD  returns the dimension of the space V . 
PDim@VD  returns the list containing the dimensions of the even and odd components.
FDim@VD  returns the  (super)dimension of v  formatted for output.
Dim@V , dD , PDim@V , dD  and FDim@V , dD  return the (super)dimension of the component of degree

d .

á Basis

The description of the basis of the vector space may contain:
1. An algorithm that determines whether any given vector expression represents an element of

the basis of the space;
2. A method of enumerating all the elements of the basis (or all elements of the given degree);
3. An explicit description of the basis as expressions V@i, ..., kD  with given number and ranges

of subscripts;
4. Reference to one or several subspaces, each having the described basis.
The following functions correspond to the above four methods to describe the basis. The first

one is mandatory for every vector space. The remaining are optional.

BasisPattern@VD  returns  the  pattern  matching  all  elements  of  the  basis  of  the  space  v .  This
property is used to recognize the basis vectors in the expressions. You can read about patterns in the
section Patterns of Mathematica book.
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Enum@VD  ,  Enum@V , nD  and EnumRange@V , nD  defines the method of enumerating of the basis of
the  space  V  (see  the  description  of  the  package  Enum).  The  property  Enum  is  used  to  obtain  the
basis of the polynomials on the space and of the enveloping algebra.

Components@VD  gives  the  list  of  descriptions  of  the  regular  components  of  the  space  V .  The
regular component is a subspace in which all elements of the basis have the same format h@i, ..., kD
with  the  same  header  h  and  the  same  number  of  subscripts.  The  action  of  the  algebras  must  be
defined by a single formula on each pair of regular components (see subsection Action below).

The description of each component is a list of 4 entries: 
(1) the header h  of the element of the basis; 
(2) the number n  of subscripts in the elements of the basis; 
(3) the function of n  arguments which being applied to the set of counters i, ..., k  returns the

list of iterators 88i, i0 , i1 <, ... 8k, k0 , k1 <<  for the loop embracing the whole basis of the component,
and 

(4)  the  test  function of n  arguments that  being applied to the set  of  subscripts i, ..., k   which
belong to the above loop, returns True if v@i, ..., kD  is an element of the basis of the component, and
False  otherwise.  For  example,  the  set  g@i, jD ,  1 £ i < j £ n ,  is  described  as
8g, 2, Function@8i, j<, 88i, 1, n - 1<, 8 j, i + 1, n<<D, True &< .

The function Components is used in the constructors of spaces−relatives. 

DecompositionList@g, nameD  returns the list of subspaces 8h1 , h2 , ...<  in the named decomposi­
tion of g  in  the direct sum g = Åhi .  The decomposition g = g+ Å g0 Å g-  named CartanTriade  is
defined by the constructor CartanMatrixAlgebra. An arbitrary decomposition may be defined using
the function−constructor AlgebraDecomposition.  The decomposition is  used in  the  constructors of
irreducible modules.

v �. DecompositionRule@g, nameD  decomposes the vector v Î g  in the sum of elements of hi .

á Parity, grading and weight

The  following  properties  can  be  defined  only  if  the  basis  of  the  space  has  the  form
8x@1D, ... , x@dimD< . They are used in the definition of the functions P (parity), Grade and Weight.

PList@VD  returns the list of parities of the elements of the fixed basis.
GList@VD  returns the list of degrees of the elements of the fixed basis.
WList@VD  returns the list of weight of the elements of the fixed basis.

á Parent relations

Image@VD  returns the list of the images of the elements of the basis of V  when V  is a subspace
of  any other space.

InSpace@VD  returns the name of the space that hosts the subspace V .
TheAlgebra@VD  returns the name of the algebra that acts on the module V .
TheSpace@VD  returns the name of the space from which V  is derived.

á Tensor properties

Rank@VD  returns the tensor rank of V ;
CompList@VD  returns the list of tensor components of V .

á Generators and relations

The following properties can be defined if the algebra or the module is built from generators.

GRange@VD  returns  deg < Infinity  if the algebra or the module V  is evaluated from the genera­
tors  only  up  to  elements  of  degree  deg  (the  degrees  of  the  generators  are  given  explicitly  or  by
default;  if  the  relations  are  not  homogeneous,  the  algebra  or  module  obtained  is  actually  filtered
rather  than  graded  and  deg  determines  the  filtration).  In  this  case  the  functions  Dim,  PDim,  FDim
return the dimension of the evaluated part of the space V .

GenBasis@VD  returns the basis of V  in terms of generators.
GenRel@VD  returns  the list of relations between the generators.
@ D
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GRange@VD  returns  deg < Infinity  if the algebra or the module V  is evaluated from the genera­
tors  only  up  to  elements  of  degree  deg  (the  degrees  of  the  generators  are  given  explicitly  or  by
default;  if  the  relations  are  not  homogeneous,  the  algebra  or  module  obtained  is  actually  filtered
rather  than  graded  and  deg  determines  the  filtration).  In  this  case  the  functions  Dim,  PDim,  FDim
return the dimension of the evaluated part of the space V .

GenBasis@VD  returns the basis of V  in terms of generators.
GenRel@VD  returns  the list of relations between the generators.
NGen@VD  returns the number of generators.

á Action

Bracket@gD  returns the name of the bracket operation in the Lie (super)algebra g  or the action
of the algebra on the module g .

bracket@gD  returns the name of the unevaluated form of the bracket or the action of the algebra
on  the module (it is used when no evaluation is required).

BracketMode@VD  may return Tabular if the basis of V  has the form 8x@1D, ... , x@dimD<  and the
bracket  is  defined  using  the  table  of  values.  It  may  return  Regular  if  the  regular  components  are
defined on V  (and on the algebra acting on V ) and the bracket is a regular expression on each pair of
regular components.

á Spaces−relatives

For any (super)space V , there are defined 8 spaces, the relatives of V . If V   is a module over a
(super)algebra,  the  relatives  are  also  modules.  The  list  of  relatives  is  (here  P  is  the  (0|1)−dimen­
sional space or the trivial odd module):

MLeft@VD is the space V  itself 
CoLeft@VD   is the space of left even linear forms on V
MRight@VD is the space P Ä V Ä P
CoRight@VD is the  space of right even linear forms on V
PiRight@VD is the  space V Ä P
DRight@VD is the  space of right odd linear forms on V
PiLeft@VD is the  space P Ä V
DLeft@VD is the  space of left odd linear forms on V  (differential forms on V ).

The order of relatives in the above list is not accidental. The functors of relation form a group
isomorphic to the group of motion of the square. This group is generated by the dualization functor
(CoLeft) and that of the right multiplication by P  (PiRight). The relatives are listed in accordance
with our choice of generators. 

Relatives@VD  returns the list of the names of 8 spaces (modules) -  the relatives of V  (or None
when the relative space in not built).

See also constructors PiLeft, PiRight, MRight, CoLeft, DLeft in the next section.

á Changing properties of vector spaces

Most  properties  may  be  changed  directly  by  assigning  new  values,  e.g.,
Bracket@gD ^= MyBracket. In this way one can construct algebraic structures similar to ones defined
in SuperLie. 

Note that any such change may invalidate the vector space (except, perhaps, the changes in the
output format), so the result should be carefully tested.
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For some properties, modification are implemented as separate functions.

á Regrading

ReGrade@V , gradingD changes the grading on the space V and all known relatives of V.
The parameter grading may be either a list of new degrees for the elements of the basis (or for

generators  only  if  an  algebra  or  a  module  is  built  using  generators),  or  the  name  (a  symbol  or  a
number) of a particular grading predefined by the space constructor of V.  

�The properties and optional arguments of the space constructors

When a vector space (algebra, module) is defined by the space constructors, some of the proper­
ties can be modified using optional arguments of a space constructor, e.g.,

VectorSpace@x, Dim ® 10, Output ® SubscriptedD .

The complete list of optional arguments defined in the package consists of:

á Dimension and parity

Dim ® d   sets  the  dimension  of  the  even  vector  space.  In  this  case  d  can  be  a  non−negative
integer, Infinity or a symbolic expression.

Dim ® Hd0 È d1 L  sets the dimension of the created superspace. Both d0  and d1  can be non−nega­
tive  integers,  Infinity,  or  symbolic  expressions.  The  parity  of  the  elements  of  the  basis  are  not
defined (except for the case when d0 = 0 or d1 = 0).

Dim ® 8d0 , d1 , d2 , ..., dm <  sets  that  the  first  d0  elements  of  the  basis  of  the  created space are
even, the next d1  elements odd, the further d2  elements even, etc. All the di   must be non−negative
integers, except that the d0  and dm   (and also d1  if d0 = 0) can be Infinity. The last index may be
also a symbolic expression.

PList ® 8p1 , p2 , ...< ,  where the pi ’s are 0  or 1,  sets explicitly the parity of all element of the
basis (or all generators) of the created space.

If,  for some space V, no dimension is specified, the expression Dim@VD  is  used everywhere as
the dimension of V .

á Grading

GList ® 8g1 , g2 , ...<  sets  the  values of  degree for  the elements of  the basis (or for generators
only if an algebra or a module is built using generators). The default degree of generators is 1 for an
algebra and 0 for a module.

á Weight

WList ® 8w1 , w2 , ...<  sets the values of weight for the elements of the basis (or for the genera­
tors only if an algebra or a module is built from generators). The default weights are defined in some
space constructors.

á Parent relations

TheSpace ® V  declares  that  the  created  space  (algebra,  module)  is  derived  from  the  original
space V . Most space constructors assign the default value of this property.
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á Generators

GRange ® deg   restricts the evaluation to vectors of degree (or filtration) up to  deg  (see Genera­
tors and relations in the previous section).

á Action

Bracket ® op  declares  the  name  of  the  bracket  operation  in  the  Lie  (super)algebra g   or  the
action of the algebra on the module V . The default name of Bracket  is Act. Some constructors use
other  defaults  names,  such  as  Lb  for  vector  fields,  Pb  for  the  Poisson  algebra,  Kb  for  the  Contact
algebra, Mb for the superalgebra with the odd contact bracket.

bracket ® op  declares  the   name of  the  unevaluated  form of  the  bracket  or  the  action of  the
algebra on the module (it is used when no evaluation is required). The default value is the value of
Bracket’s  argument with the lower−case first letter.

á Output format

Output ® f  assigns the  function that  must  be  applied  to  an  element  of  the  basis  to  obtain  its
output  format  (or  None  if  the  output  format  is  not  defined  or  is  defined  separately).  The  default
function is Subscripted. In the constructors of relatives, the default value is Auto, which means "the
same format as for the original space".

TeX ® f  assignes the function that must be applied to an element of the basis to obtain its TEX
format (or None if TEX  format is not defined or is defined separately). The default value is None. In
the  constructors  of  relatives,  the  default  value  is  Auto  which  means  "the  same  format  as  for  the
original space".

Standard ® f  and  Traditional ® f  define  in  the  same  way  the  standard  and  the  traditional
output format.

á Relative spaces

relation ® name  where relation is the name of the relation, see the list in the beginning of the
section  (except  MLeft),  tells  that  the  corresponding  relative  space  must  be  generated  and  sets  its
name. 

á Other options

Enum ® False  suppresses the enumeration of the basis.

Clear ® False  allows to save the old definitions of the space that is redefining by the construc­
tor.  Only the properties not assigned by the constructor can be saved. This option may be used to
define the action of several algebras on the same module.

Algebra ® g  tells that the submodule or a module−relative of the module m  must be defined as
modules  over  the  algebra  g  rather  than  the  algebra  TheAlgebra@mD .  This  option  is  useful  when
several algebras act on the module m .
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�List of space constructors

The  space  constructors  are  commands  to  build  (or  declare)  vector  spaces,  algebras  and  mod­
ules. Every constructor fixes a basis of the space, defines the properties of the space and functions
on it. The following list embraces all constructors defined in the Super Lie package. More construc­
tors can be added.

á VectorSpace

VectorSpace@V , options ...D   defines a new vector space V  with the basis V@iD ,   where i  is an
integer  and  1 £ i £ Dim@VD .  The  exception  is  the  case  where  the  list  in  the  optional  argument
Dim ® 8d0 , d1 , ...<  starts with ¥  or with 0, ¥ . In this case, the lower limit of i  is  -¥ .

The optional arguments are the following ones:
Dim or PList specifies the dimension of and the parity function on the space V ;
Output, TeX, Standard, Traditional specifies the output format of the elements of the basis;
GList sets the degrees of the elements of the basis;
TheSpace tells that the created space is not the original space and sets the name of the original

space.
CoLeft, ..., DLeft (the relatives) define the names of the spaces−relatives.
Enum ® False  suppresses the enumeration of the basis of V .
Clear ® False  preserves old definitions of V .

á SubSpace

SubSpace@U, V , basis, options ...D  defines a subspace U Ì V  with the given basis. The optional
arguments are the same as for VectorSpace, except that Dim or PList are not supported. The basis of
the space U  will be named U@iD .

á TensorSpace

TensorSpace@T, V , 8comp, ...<, options ...D  defines  the  space  T   as  the  tensor  product  of  the
components  listed.  The  repeated  components  may  be  written  as  compn .  All  components  must  be
relatives of the space V . Only format options are supported. The basis of T  is T@i1 , i2 , ...D .

Example:
VectorSpace@V, Dim ® 5, CoLeft ® LV, DRight ® DVD;
TensorSpace@Tn, V, 8V, LV2, DV, V<D

á CommutativeLieAlgebra

CommutativeLieAlgebra@V , options ...D  defines  the  Lie  bracket  @x@ ...D, x@ ...DD = 0  on  V .
Options: Bracket and format options.

á MatrixLieAlgebra

MatrixLieAlgebra@g, V , options ...D  defines g  as  the  matrix  Lie   (super)algebra on  the  space
V  and  the  action  of  g  on  the  space  V  and  its  relatives.  Options:  Bracket,  bracket  and  format
options. The basis elements of the matrix algebra are g@i, jD .

MatrixLieAlgebra@g, options ...D  defines  g  as  the  Lie  (super)algebra  of  matrices  (the  dimen­
sion is an optional argument).
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á SubAlgebra

SubAlgebra@h, g, 8gen ...<, options ...D  defines the subalgebra h Í g  generated by the elements
gen ...  . The basis elements of the subalgebra are denoted h@iD , 1 £ i £ Dim@hD .

á AlgebraDecomposition

AlgebraDecomposition@D, g, 8h1 , h2 , ...<, options ...D  defines  a  decomposition  D  of  the
algebra  g = h1 Å h2 Å ... .  Each  component  hi  is  either  a  subalgebra  in  g  (defined  using
SubAlgebra) or a list 8namei , 8gi1 , ...<, options ...<  of arguments that generate the subalgebra hi .

á HWModule

HWModule@m, g, wtD  builds  the  irreducible  module  m  over  the  algebra  g  with  highest  weight
wt . A decomposition g = g+ Å g0 Å g-  with name CartanTriade should be defined on g .

Optional arguments:
P ® p  is the parity of the highest vector (default is 0)
Grade ® r :  all  calculations are restricted to the elements of degree ³ - È r È  (the degree of the

highest weight vector is 0).
Order ® 8y1 , ..., ym <   is the order in which the elements of g-  should appear in the expressions

of the basis of v  in terms of generators of UHg- L . The default order is given by Basis@g- D .
See also VectorSpace for general options.

á LWModule

LWModule@m, g, wtD  builds the irreducible module m  over the algebra g  with lowest weight wt .
A decomposition g = g+ Å g0 Å g-  with  name CartanTriade  should  be  defined on  g .  The  options
are the same as for HWModule.

á SubModule

SubModule@n, m, 8gen ...<, options ...D  defines  the  g−submodule  n  of  the  g−module  m
generated by the elements gen ...  ,  where g  is either the algebra indicated by the optional argument
Algebra ® g  or (as default) TheAlgebra@mD . For other options see SubSpace.

The basis elements of the submodule are denoted n@iD , 1 £ i £ Dim@nD .

á RestrictModule

RestrictModule@m, gD ,  where m  is  a  subspace of any G−module M  and g  is  a  subalgebra of
G , tests if the space m  is g−invariant and, if it is, defines a g−module structure on m .

á Ideal

 Ideal@h, g, 8gen ...<, options ...D  defines the ideal h  of the algebra g   generated by the elements
gen ...  . For options, see SubSpace.

The basis elements of the ideal are denoted h@iD , 1 £ i £ Dim@hD .
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á PiLeft, PiRight, MRight

PiLeft@m ® Πm, options ...D  builds the module Πm  as P Ä m , where P  is the (0|1)−dimensional
trivial module.

PiRight@m ® mΠ, options ...D  builds the module mΠ  as m Ä P .
MRight@m ® m’, options ...D  builds the module m’ as P Ä m Ä P .

á CoLeft

CoLeft@m ® m’, options ...D  builds the module m’  on the space of left even linear forms on m .
The function is implemented only for finite dimensional modules with one−index bases. The option
Algebra ® g  tells that m’  must be defined as a g−module. The option Clear ® False  allows us to
define the action of several algebras on m’.

á DLeft

DLeft@m ® dm, options ...D  builds  the  module  dm  on  the  space  of  left  odd  (i.e.,  exterior  or
differential)  linear  forms  on  m .  The  function  is  implemented  only  for  finite  dimensional  modules
with one−index bases. If m  is an algebra, then DLeft defines the coaction CoAct : dm � dmïdm .
This allows one to use the derivative Der  on the exterior forms on m,  both with trivial coefficients
and with coefficients in any m−module.

The option Algebra ® g  tells that the dm  must be defined as g−module.
The option Clear ® False  allows one to define the action of several algebras on dm .

á VectorLieAlgebra

VectorLieAlgebra@g, xD  defines  the  Lie  (super)algebra  g  as  the  Lie  (super)algebra  of  vector
fields on the space x  together with its action on the (super)space of polynomials in x . The basis of g
is 8pi @xD ** v@ jD< , where 8pi @xD<  is the basis of polynomials in x  and 8v@ jD<  is the basis of CoLeft@xD
(the  space  of  left  even  linear  forms  on  x).  The  name  of  the  Lie  bracket  and  the  action  is  Lb,  the
unevaluated form is lb.

Unless  the  space  x  is  already  graded,  the  standard  grading  is  defined  on  x  by  assuming
Deg@xi D = 1. The grading is extended to g. 

The  algebra  g  may  be  regraded by  calling  ReGrade@g, gradingD .  The  predefined gradings  are
numbered from -k  to  k  there k  is odd dimension of x. In the i−th grading, the first i odd elements
of the basis of x have degree 0, all the other x j  have degree 1. In the H-iL−th grading, the last i odd
elements of the basis of x have degree 0, all the other x j  have degree 1.
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á PoissonAlgebra

PoissonAlgebra@g, xD  defines the Lie (super)algebra g  as the Poisson algebra of the polynomi­
als in x1 , ..., x2 n  (the vector space x  should be already defined) with the Poisson bracket 
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PoissonAlgebra@g, 8p, q<D  defines  the  Lie  (super)algebra  g  as  the  Poisson  algebra  of  the
polynomials in p1 , ..., pn , q1 , ..., qn  (the vector spaces p  and q  should be already defined and have
the same superdimension) with the Poisson bracket 
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PoissonAlgebra@g, 8Θ<D  defines the Lie (super)algebra g  as the Poisson algebra of the polynomi­
als in odd indeterminates Θ1 , ..., Θn  (the vector space Θ  should be already defined) with the Poisson
bracket 
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PoissonAlgebra@g, 8p1 , ... pn , qn , ... q1 <D  and  PoissonAlgebra@g, 8p1 , ... pn , Θ, qn , ... q1 <D ,
where all pi ,  qi  and Θ  are (super)spaces, define the Lie (super)algebra g  as the Poisson algebra of
the  polynomials  on  the  direct  sum  of  vector  spaces  with  Poisson  bracket  equal  to  the  sum  of  the
Poisson brackets on the pairs  pi , qi  and on Θ .

PoissonAlgebra@g, x, 88c1 , i1 , j1 <, ..., 8cm , im , jm <<D  defines  the  Poisson  algebra  g  of  the
polynomials in x1 , ..., xm  (the vector space x  should be already defined) with the Poisson bracket 
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á ContactAlgebra

ContactAlgebra@g, x, tD  and  ContactAlgebra@g, x, t, 88c1 , i1 , j1 <, ..., 8cm , im , jm <<D  define  the
Lie (super)algebra g  as the contact algebra of the polynomials in t  and the space x  (or the direct sum
of spaces if  x  is  a  list).  The Poisson bracket on x  is  also defined. Here x  should be either a  space
name or a list of space names (as for PoissonAlgebra).

á FreeLieAlgebra

FreeLieAlgebra@g, 8gen ...<, 8rel ...<, range, options ...D  defines  the  (super)algebra  g   gener­
ated  (as  a  free  algebra)  by  elements  gen, ...  with  relations  rel, ...  .  Options  Grade ® 8d1 , ...<  and
PList ® 8p1 , ...<  define  the  degrees  and  parities  of  generators.  All  computations  are  made  for
elements with degree £ range . The basis of the new algebra will be g@iD, where 1 £ i £ Dim@gD .

á CartanMatrixAlgebra

CartanMatrixAlgebra@g, 8x, h, y<, matr, range, options ...D  defines the  Lie  (super)algebra with
a given Cartan matrix matr .  Its elements are named h@iD  (Cartan subalgebra), x@iD  (positive weight
vectors),  y@iD  (negative  weight  vectors).  Computations  go  up  to  terms  of  degree  range .  Options
Grade ® 8d1 , ...<  and PList ® 8p1 , ...<  define the degrees and parities of generators.
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á Classical Lie superalgebras

glAlgebra, see MatrixLieAlgebra.
slAlgebra builds the subalgebra of traceless matrices. For arguments see MatrixLieAlgebra.
pslAlgebra builds the quotient of slAlgebra modulo the algebra of scalar matrices. The pslAl­

gebra  is  defined  if  the  dimension  of  the  even  and  odd  components  of  the  original  space  are  the
same. For arguments see MatrixLieAlgebra.

For more examples, see the chapter Classical Lie Superalgebras.

�Functions on vector spaces

The following functions are defined separately on each vector space (by the space constructor
or  manually).  There  are,  however,  some  predefined,  common  for  all  spaces,  properties  of  these
functions. Notice that the result of application of these functions to non−vector arguments is unpre­
dictable.

The  functions  P,  Grade,  PolyGrade,  Weight  are  defined  only  for  homogeneous  vectors.  This
means that they are defined on a basis and the linear combination of the basis elements of the same
parity (resp. degree,  weight).  The application of these functions to non−homogeneous vectors may
produce an error in the calculations.

á P

P@xD  is  the  parity  of  x .  The  function  P  is  defined  on  the  homogeneous  (odd  or  even)  vectors
only. The properties of P are Scalar (i.e., the value of P is scalar), Homogen−>0, TestFirst, Thread­
Graded−>(PolynomialMod[Plus[##],2]&) and LogPower−>(SVTimes[PolynomialMod[#1,2],#2]&).

á Act

Act@g1 , g2 D  for elements g1 , g2  of a Lie (super)algebra is the bracket operation in this algebra. 
Act@g, mD  for an element g  of the algebra and an element m  of a module over the algebra is the

action of g  on m . The name of the operation can be different, Act is only the default name.
The  properties  of  Act  are  Vector,  Linear,  Graded,  Jacobi−>  {tp,VTimes},  Output−>Arg­

Form["[‘1‘,‘2‘]"], TeX−>ArgForm["[‘1‘,\\,‘2‘]"].  The properties Jacobi, Output, TeX  of other
brackets can be different.

á act

act@g1 , g2 D  and act@g, mD  represent the unevaluated operation Act.  The properties of Act  are
Vector, Linear, Graded, Output−>ArgForm["[‘1‘,‘2‘]"], TeX−>ArgForm["[‘1‘,\\,‘2‘]"].

á Grade

Grade@vD  is the degree (grading) of the vector v . The function is only defined for graded spaces
and homogeneous vectors. The properties of Grade are Scalar, Homogen−>0, ThreadGraded, LogPow­
er−>Times, TestFirst.
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á PolyGrade

PolyGrade@vD  returns Zn − or  Rn −grading of  the  vector  v  (as  a  list  of  numbers).  Some space
constructor  defines  PolyGrade  to  express  grading  in  terms  of  generators.  The  properties  of  Poly­
Grade are Scalar, Homogen®0, ThreadGraded, LogPower®Times, TestFirst.

á Weight

Weight@vD  it the weight of the vector v . There is no generic definition of weight in SuperLie
package,  the weights are defined in some space constructors or by the user (using WList  or manu­
ally). The properties of Weight are Scalar, Homogen®0, ThreadGraded, LogPower®Times, TestFirst.

á Der, Der0

Der@ΩD , Der@ f ** ΩD  is the exterior derivative on the space of forms (with trivial (scalar) coeffi­
cients  as  well  as  with  coefficients  in  a  module).  The  argument  Ω  may  be  an  odd  left  form on  an
algebra  (i.e.,  an  element  of  DLeft  space−relative  of  the  algebra)  or  an  exterior  product  of  such
forms;  f   must  be  an  element  of  a  module  over  the  same  algebra.  The  derivative  of  0−forms  is
written as  Der@ f ** Wedge@DD  or Der0@ f D .

Der0@ f D  is the exterior derivative of the 0−form f ** Wedge@D . It is introduced in order to distin­
guish between Der@dxD  , the derivative of a 1−form with trivial coefficients and Der@dxD ,  the deriva­
tive of a 0−form with coefficient dx .

Der0@ f , gD  is the exterior derivative of the 0−form f ,  where f  is regarded as an element on a
g−module. This form of Der0 should be used when the algebra cannot be determined from f .

The properties of Der and Der0 are Vector, Vector−>First, Linear−>First.

á der

der@ΩD  represents the unevaluated exterior derivative Der.

à Tools

�Manipulation with vector expressions

VExpand@eD  expands out all VTimes and SVTimes products in expression e .

VCollect@eD  collects  together  the  terms  with  the  same  elements  of  the  basis,  e.g.,
VCollect@a v1 - 2 Hv1 - v2 LD = Ha - 2L v1 + 2 v2 .

VNormal@eD  returns the normal form of the vector expression e . The normal form of a vector is
c1  g1 + c2  g2 + ... ,  where  g1 , g2 , ...  are  different  elements  of  the  basis  and  c1 , c2 , ...  are  scalar
coefficients reduced or simplified to ensure that two equal scalars are always reduced to the identical
form.  This  evaluation  of  scalars  is  processed  by  the  user−defined  function  $SNormal.  The  default
setting of  $SNormal  is  Expand,  but  in  some cases it  must  be  redefined to  ensure that  equal  expres­
sions will always give the same normal form. For example, if the coefficients are rational functions
you must set $SNormal = Cancel .  By default,  the function VNormal  does not  sort  the factors of the
vector multiplication VTimes. 

The following three functions (SymmetricNormal, EnvNormal, dNormal) do this differently.
The  function  VNormal  is  used  by  some  constructors.  It  is  possible  to  redefine  the  function

 (for example, set VNormal = SymmetricNormal) in order to ensure the correct normal form
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SymmetricNormal EnvNormal, dNormal

VNormal  (for example, set VNormal = SymmetricNormal) in order to ensure the correct normal form
of vector expressions.

SymmetricNormal@eD  returns  the  normal  form of  the  vector  expression  with  the  factors  of  the
vector multiplication VTimes sorted, under the assumption that VTimes is (super)symmetric.

EnvNormal@eD  returns  the  normal  form of  the  vector  expression  with  the  factors  of  the  vector
multiplication VTimes sorted, under the assumption that VTimes is the multiplication in the envelop­
ing algebra.

dNormal@eD  returns  the  normal  form  of  the  vector  expression  with  the  factors  of  the  vector
multiplication VTimes  sorted,  under  the assumption that  VTimes  is  the  multiplication in the algebra
of differential operators.

LeibnizExpand@d@parms ..., f @argDD, pD  expands d@ f @argDD  as  a  derivation of  parity  p   (in  the
case where parms  is a vector and p  is its parity, this is the expansion as the bracket in a Lie superal­
gebra). This function realizes the Leibniz and Jacobi rules.

VBasis@eD  returns the list of the basis vectors encountered in the expression e .

VSort@eD   sorts  the  terms  of  the  vector  sum e  in  a  canonical  order  of  the  vector  components
(without  expanding  it).  Observe  that  unlike  this  sorting,  the  usual  Sort@eD  orders  with  respect  to
scalar coefficients, since they come first from the left.

VOrder@u, vD  and VSameQ@u, vD  compares the vector components of the monomials u  and v . The
results are 0, ±1 for VOrder and True or False for VSameQ (cf. functions Order and SameQ).

á Replacement rules

e �. VExpandRule expands out all VTimes and SVTimes products in expression e .

e �. SVExpandRule expands out all scalar coefficients in SVTimes.

e �. SVFactorRule factorize all scalar coefficients in SVTimes.

e �. SVSymplifyRule simplifies all scalar coefficients in SVTimes.

e �. SVNormalRule  converts  all  scalar  coefficients  in  SVTimes  to  the  normal  form  using  the
function $SNormal.

e ��. LinearCollectRule@opD  tries to break out the factors in the sum op@ ...D + ...

SimplifySignRule is the rule for simplifying the expressions H-1Lpolinomial .

�Solving vector equations

VSolve@eqns, varsD  attempts to solve a linear equation or a set of linear equations for the vector
variables vars. VSolve@eqnsD  treats all vector variables encountered as vars above. For other parame­
ters and options see Solve. In the simplest case of equation with one variable the function Solve can
also be used (with InverseFunctions®True option to avoid the warning message).

SVSolve@eqns, varsD  attempts  to  solve  a  vector  equation  or  a  set  of  equations  for  the  scalar
variables vars.  SVSolve@eqnsD  treats  all  variables encountered in  the  scalar  coefficients of  SVTimes
as vars above. For other parameters and options see Solve.

Tools 29



ScalarEquation@eqnsD  converts the vector equation or the system (list) of equations with scalar
unknowns to the system of scalar equations.

�Lists of vectors

MatchList@expr, patternD  returns the  sorted list  of  maximal  subexpressions of  expr,  matching
the pattern (that is, subexpressions which are not parts of larger subexpressions of expr matching the
same pattern).

MatchList@expr, pattern, funcD  returns  the  list  of  values  of  func[term]  rather  then  the  list  of
terms.

�Splitted expressions

A  splitted  sum  is  the  list  8key
1

® expr
1
, key

2
® expr

2
, ...< ,  where  the  keys  are  sorted  and

expri  are  vector  sums.  Splitted  list  is  the  expression  of  the  same  form,  where  expri   are  lists  of
vectors. Keys can be any expressions.

A  splitted  sums  and  lists  are  used  to  divide  large  vector  expressions  into  homogeneous  parts
(e.g., of the same weight or degree).

á SplitSum, SplitList

SplitSum@expr, patternD  transforms the vector sum expr = c1 * v1 + c2 * v2 + ...  with vi  match­
ing  the  pattern  gathering  terms  with  equal  v .  The  result  is  the  splitted  sum
8vi1 ® sc1 , vi2 ® sc2 , ...< , where 8vi1 , vi2 , ...<  is the sorted list of subexpressions  of expr   matching
the pattern (see function MatchList)   and sc1 , sc2 , ...  are  the  sums of  coefficients of  vi1 , vi2 , ...  .
The  argument  expr  can  be  not  only  sum but  also  a  list  or  a  single  term matching  the  pattern   (or
c * pattern). 

SplitSum@expr, pattern, funcD  transforms  the  same  expression  into  a  splitted  list
8 f1 ® se1 , f2 ® se2 , ...< ,  where 8 f1 , f2 , ...<  is  a  sorted list  of  different  values  of  the  func@vi D  and
se1 , se2 , ...  are  the  sums of  the  members of  expr  giving values f1 , f2 , ...  of  the  func   (excluding
members with func@vi D� SkipVal).

SplitList@expr, patternD and SplitList@expr, pattern, funcD work in  the same way
as  SplitSum,  only  the  result  is  the  splitted  list  8vi1 ® lc1 , vi2 ® lc2 , ...<  or,  respectively,
8 f1 ® le1 , f2 ® le2 , ...< ,  where lc1 , lc2 , ...  are  the  lists  of  coefficients and le1 , le2 , ...  are  the lists
of members of expr .

á ForSplit

ForSplit@8expr, sel ® memb, cnt<, bodyD  and ForSplit@8expr, memb, cnt<, bodyD  evaluates
the body  in the loop for each member of the splitted sum or list expr .  The symbols sel  and memb
are assigned to the current values of the selector and member of the splitted expression. The optional
cnt  is  the  loop  counter.  The  functions  Continue@D ,  Break@D  and  Return@valueD  can  be  used  in  the
body . 

á AddSplit

AddSplit@expr
1
, expr

2
, ...D adds terms with the same keys of splitted sums expr

1
, expr

2
, ... .

Example: AddSplit@8a ® x, b ® y<, 8a ® u, c ® v<D = 8a ® x + u, b ® y, c ® v< .

30 Reference Manual



á JoinSplit

JoinSplit@expr
1
, expr

2
, ...D joins terms with the same keys of splitted lists expr

1
, expr

2
, ... .

Example: JoinSplit@8a ® 8x<, b ® 8y, z<<, 8a ® 8u<, c ® 8v<<D = 8a ® 8x, u<, b ® 8y, z<, c ® 8v<< .

á ApplySplit

ApplySplit@ func, exprD  applies  the  function  func  to  terms  of  the  splitted  sum  or  list  expr .
Example: ApplySplit@ f , 8a ® x, b ® y<D = 8a ® f @xD, b ® f @yD< .

á MapSplit

MapSplit@ func, exprD  applies  the  function  func  to  the  members  of  the  lists,  terms  of  the
splitted list expr . Example: MapSplit@ f , 8a ® 8x<, b ® 8y, z<<D = 8a ® 8 f @xD<, b ® 8 f @yD, f @zD<< .

á PartSplit

PartSplit@expr, keyD  returns  the  part  of  the  splitted  expression  expr  with  the  given  key  or
zero if expr  has no part with the given key .

PartSplit@expr, key, valD returns val   if expr  has no part with the given key .
Examples: PartSplit@8a ® x, b ® y<, bD = y; PartSplit@8a ® 8x<, b ® 8y, z<<, c, 8<D = 8< .

�Vector Sum

VSum@elt, 8iter< ...D  evaluates the sum of vectors. Arguments are the same as in Sum function.

�Expressions with Indefinite Coefficients

GeneralSum  is  a  vector  sum  c1 * v1 + c2 * v2 + ...  with  undetermined  scalar  coefficients
c1 , c2 , ... . It is a general form of a given vector in the space with basis v1 , v2 , ...  . 

GeneralSum@c, listD  declares  c  as  scalars  and  returns  the  vector  sum
c@1D* listP1T + c@2D* listP2T + ...  .

GeneralSolve@equ, v, cD  solves  the  vector  equation  equ  for  the  scalar  unknowns  c@1D, ...  ,
substitutes  the  coefficients  found  in  the  vector  v  (it  is  a  general  sum  with  coefficients  c@1D, ...),
renumbers the remaining coefficients and returns the resulting vector.

GeneralZero@g, v, cD  solves  the  equation  Act@g, vD� 0  or  the  system  of  equations
8Act@gPiT, vD� 0<  when g  is a list. The result is the same as for GeneralSolve. The parameter v  can
be also list of vectors (basis); in this case  the general sum with coefficients c@1D, ...  is used.

GeneralReduce@v, cD  eliminates  the  insignificant coefficients from the  general  sum v ,  renum­
bers the remaining coefficients and returns the result. This function must be used if the dimension of
the space of vectors of form v  is less than the number of coefficients c .

�Polynomials

Deg@prod, xD  returns the degree of x   in the symmetric product (or power).
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LDer@expr, xD  returns  the  left  derivative  of  the  expression  from  a  supercommutative
superalgebra.

Delta@x, yD = 9
1, if x = y

0, if x ¹ y
 . 

Delta@xD = Delta@x, 0D .

�Notations

NewBracket[brk,  options...]  defines brk  as a bracket in a Lie superalgebra. This definition sets
the properties Vector, Linear, Graded. The options are:

Unevaluated®name  tells  the  name  of  operation  which  represent  the  unevaluated  bracket;  the
default value is Auto, in this case the first letter of brk is changed to the upper−case for the bracket
operation and to the lower−case for the unevaluated form.

Output®func sets the format for the output of the expression brk@g, hD . The default function is
ArgForm@" @‘1‘, ‘2‘D "D;

TeX®func  sets  the  format for  TEX  output  of  the  expression  brk@g, hD .  The default  function is
ArgForm@" \ left@‘1‘ \, ‘2‘ \r ightD "D;

Jacobi®op sets the operation or the list of operations to be expanded automatically in expres­
sions brk@g, op@u, v, ...DD .
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Introduction to SuperLie

à 0. Introduction. Peculiarities of Mathematica important for SuperLie 

à 0.1. Symbolic representation. Input format, output format, and complete format

Mathematica enables one to perform computations in a symbolic form. This is achieved due to
the possibility to work with a description of the object. One should always bear in mind that there
are at least three formats of description: the input format, the screen output format and the complete
format; besides, there is usually the output format of the final result into a file, for example, the TeX
format. 

The most  important format is  the  complete one,  since the transformations are performed with
the description in the complete format. Such a description is cumbersome and is usually concealed
from our eyes, but the standard command FullForm will reveal it.

Two objects  are considered identical  if  their  descriptions in the complete format coincide.  To
make  mathematically  equal  expressions  to  remain  equal  in  Mathematica,  they  should  first  be
reduced to a standard form. In SuperLie, the functions VNormal and VExpand see to that.

In SuperLie, almost all objects are represented in a symbolic form and almost all computations
are performed in a symbolic form. At all times there is  available a list of transformation rules and
the description is transformed according to these rules. Transformations are performed in the order
of decrease of preference, returned is the description to which none of the rules is applicable. There­
fore, you should not be astonished if the program returns you your input; this means that no appropri­
ate rule is available.

à 0.2. Small and capital letters. Patterns

Mathematica distinguishes small and capital letters; e.g., it considers b and B as totally differ­
ent objects.

There are occasions when one has to have the answer in undercomputed form, e.g., the expres­
sion @x, yD = 2 h  demonstrates a relation, whereas if we compute the left hand side we get a useless
identity  2 h = 2 h .  To  distinguish  such  cases,  the  operations  that  have  to  be  computed  are  named
with  a  capital  letter,  while  the  names  of  their  not−to−be−computed twins  start  with  a  small  letter.
For example, the bracket in the Lie algebra is called Act and act, respectively, and the relation above
is expressed as act@x, yD = Act@x, yD .

One more reason why it is essential to distinguish smalls and capitals: quite a few functions in
Mathematica  are only applicable to the expressions satisfying a pattern. In SuperLie,  for example,
the  basis  of  the  vector  space  is  given  by  means  of  a  pattern;  e.g.,  all  the  expressions  of  the  form
v@ ...D  are by default considered as the basis elements of the space v .



à 0.3. Lists

The  ordered  lists  are  expressed  in  Mathematica  in  curly  brackets,  separated  by  a  comma.  In
particular,  vectors  are  represented  as  lists  with  coordinates,  for  example,  a  basis  of  the  3−dimen­
sional space consists of 81, 0, 0< , 80, 1, 0<  and 80, 0, 1< . SuperLie  freely uses lists, e.g., the lists of
basis elements. Coordinate vectors can be used as weights, as well, in which case ~ important! ~
SuperLie treats them as scalars!

à 0.4. Solving equations

Mathematica  possesses powerful functions ~  Solve, Eliminate and Reduce  ~  which
allow one to solve and simplify the systems of equations, in particular, with parametric coefficients
expressed  by  letters.  Many  computations  in  Lie  algebras  and  Lie  superalgebras can  be  reduced  to
this type of problems. For example, "to determine the kernel of an operator" is to solve a system of
linear equations, while "to determine the image of an operator" is to simplify a linear system.

SuperLie  has  functions  GeneralSum,  GeneralSolve,  GeneralZero,  as  well  as
GeneralReduce, VSolve  and SVSolve;  these  functions allow one  to  express and solve the
equations in a vector (invariant) form.

à 1. General notions of SuperLie

à 1.1. Objects and properties

SuperLie is an object−oriented package. This means that, as a rule, the object with which you
wish to work has to be declared first and endowed with properties. For example, a given algebra has
to be endowed with an operation; every homogeneous element of a superalgebra has a parity; every
derivation is extended from the space which generates the algebra to the whole algebra via Leibniz
rule, and so on.

There  are  powerful  commands  that  endow  an  object  with  several  properties  at  a  time.  For
example,  the  constructor  CartanMatrixAlgebra  constructs  the  Lie  algebra  from  its  Cartan
matrix  by  declaring  the  algebra  itself,  and  its  elements,  as  vector  objects,  finds  its  basis  (as  of  a
vector space) expressed in terms of the generators (as of an algebra), determines a bilinear skew−sym­
metric bracket that satisfies the Jacobi identity, computes the relations, and so on. 

More often, however, one has to add properties one at a time. 
An extra property pertaining to an object in mathematics may do a harm during computations

by the package: first, to slow down the computations, second, bring about the answer in a user−un­
friendly form. For example, the distributivity property will lead to simplification and getting rid of

the parentheses, while the answer in the form Ha + bL10  is usually more preferable than the binomial
expansion. For this reason, the majority of properties can be "switched on/off" when needed, or one
can as well apply them manually to a concrete expression.

à 1.2. Vectors and scalars

SuperLie  divides  all  the  objects  into  three  Domains:  Vector,  Scalar  and  Common  or,  better
say,  undecided  ones.  This  division  essentially  differs  from  the  conventional  one.  The  meaning  of
this  division  is  that  for  vectors  we  introduce  new  transformation  rules  for  expressions,  while  for
scalars the  usual  rules of  Mathematica  are  applicable.  The rules  for  common objects  are such that
the principal questions are put aside until the attribution is determined.

Thus, to avoid confusion, it is necessary to declare in time what are the symbols used: vectors
or scalars. In particular, all  the spaces, algebras, modules and their elements should be declared as
vectors.  Sometimes, attribution of  the  result  of  a  vector  operation automatically makes an object  a
vector, but at the beginning it is better not to hurry.
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Thus, to avoid confusion, it is necessary to declare in time what are the symbols used: vectors
or scalars. In particular, all  the spaces, algebras, modules and their elements should be declared as
vectors.  Sometimes, attribution of  the  result  of  a  vector  operation automatically makes an object  a
vector, but at the beginning it is better not to hurry.

Suppose  we had  declared vv  a  vector  space  by  means  of  the  command VectorSpace@vvD  (or,
say, a Lie superalgebra by invoking an appropriate constructor). Then all the objects with name vv
and  indices,  as  well  as  their  linear  combinations  with  scalar  coefficients  (e.g.,  vv@iD ,  vv@2, jD ,
vv@k + 2D+ 2 * vv@1, 1D)  are  considered  as  vectors  and  elements  from  the  vector  space  (or  the  Lie
superalgebra)  vv.  Such  a  declaration  will  not,  however,  affect  expressions  of  the  form  Vv@iD  (a
capital V is used) or vv2@ jD  (the name vv2 is distinct from vv).

à 1.3. Spaces and bases

To determine a  space,  we  have  to  indicate  what  vectors  belong  to  it.  To  this  end,  one  has  to
determine a  basis  of  the  space.  After  that,  all  the  linear  combinations of  the  elements  of  the  basis
(with scalar coefficients) will be considered as belonging to the space.

The most often used way to construct a space is by means of one or several standard functions
called constructors. These constructors can be divided into two groups: the ones that declare and the
ones  that  construct.  The  constructors  that  declare  determine  definitions  and  getting  along  without
calculations.  The  constructors  that  construct  do  calculate  (and  the  volume  of  calculations  usually
grows depressingly fast with dimension) and generate the space in question by means of the genera­
tors given (or checking if the space given is invariant) and recalculating the multiplication (action)
table in the new basis.

Each constructor has mandatory and optional parameters. The mandatory parameters determine
the  name  and  the  basis  of  the  space  as  well  as  a  minimal  mandatory  collection  of  properties  and
operations  that  determines  a  structure  (of  a  superspace,  algebra,  module,  and  so  on.)  on  it.  The
properties  and  operations  of  the  space  can  be  added,  altered  or  switched  off  later  by  appropriate
separate commands.

The declaring constructors can determine a concrete object, for example, the Lie superalgebra
vectHm È nL ,  or  work as functors, e.g.,  declare the dual  space.  Certain constructors, however, can do
both,  depending  on  the  way  the  parameters  are  given.  For  example,  glAlgebra@g, Dim -> Hm È nLD
constructs g  as a concrete Lie superalgebra, glHm È nL ,  whereas glAlgebra@g, xD  acts as a functor on
the superspace x: it declares g  the Lie superalgebra of linear operators on x  and, for free, makes x
into a g−module!

Observe in passing that  the parameters m  and n ,  or  the (super)dimension of the (super)space,
can  be  infinite  or  symbolic.  If  it  is  symbolic,  certain  additional  structures  on  g  can  not  be  con­
structed,  e.g.,  the  coaction  Der.  The  same  remark  applies  to  the  other  constructors  of  Lie
superalgebras.

Let us list the declaring constructors.

VectorSpace  declares  the  space.  With  the  help  of  VectorSpace  one  usually  stocks  the
spaces for the constructors of other type.

glAlgebra,  slAlgebra,  pslAlgebra  construct  the  matrix  algebras  glHm È nL  and
slHm È nL ,  and  the  projectivisation  pslHn È nL ,  respectively.  If,  as  a  parameter,  a  superspace  is  given,
these constructors endow it  with the structure of a module over this Lie superalgebra.

VectorAlgebra, ContactAlgebra, PoissonAlgebra construct the Lie superalge­
bras of  vector  fields with polynomial coefficients: vectHm È nL ,  kH2 n + 1 ÈmL  and poH2 n ÈmL ,  respec­
tively. If, as a parameter, a superspace v  is given, these constructors endow the superspace of super­
symmetric polynomials on the given superspace v  with the structure of a module over the Lie superal­
gebra constructed.
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VectorAlgebra, ContactAlgebra, PoissonAlgebra construct the Lie superalge­
bras of  vector  fields with polynomial coefficients: vectHm È nL ,  kH2 n + 1 ÈmL  and poH2 n ÈmL ,  respec­
tively. If, as a parameter, a superspace v  is given, these constructors endow the superspace of super­
symmetric polynomials on the given superspace v  with the structure of a module over the Lie superal­
gebra constructed.

Constructors−functors:

CommutativeLieAlgebra, FreeLieAlgebra −−− their names speak for themselves.

Constructors of   spaces−relatives: the  dual  space,  the  superspace with  shifted parity  and their
compositions:  MLeft, CoLeft, MRight, CoRight, PiRight, DRight, PiLeft,
DLeft.  The order of relatives in this list is important, it is used in the function Relatives. The
first on the list is MLeft, i.e., the space itself, the result of application of the identity functor.

TensorSpace builds the tensor product of several spaces−relatives.

Constructing constructors:
... <Not constructed yet>

The simplest way to determine a space is to declare it with the help of the constructor Vector­
Space. Let, for example, you executed the command

VectorSpace@vD

In  this  way  you  have  determined a  space  named  v .  Having  given  the  name of  the  space  (for
example, v , as in this example) we will by default consider all the expressions of the form v@ ...D  as
its  (basis)  elements  (e.g.,  v@2D ,  v@1, j + 2D ,  v@a + b@3DD ,  etc.)  even  if  v  is  declared  to  be  1−dimen­
sional.  If for some reason such a definition of a collection of its elements does not suit us, we can
define the space v  differently, e.g., list its elements explicitly or determine the algorithm of recogni­
tion of the vectors that belong to v . Actually, the name of the space is the simplest pattern for basis
recognition; this algorithm is, certainly, very approximative, but, usually, it  suffices. 

Generally  speaking,  element  recognition  is  needed  for  solutions  of  vector  equations;  that  is
what SuperLie  is based upon. The mistakes in the element recognition are the main sources of the
mistakes in the computations.

Observe,  however,  that  the  noticeable  part  of  the  properties  and  functions  automatically
appears only on finite dimensional spaces with a one−index basis of the form 8x@1D, x@2D, ..., x@nD< ,
where x  is  the name and n  the dimension of the space.  This concerns the lists of  parities, weights
and  gradings  of  the  basis  elements  (PList,  GList,  WList).  On  the  spaces  with  bases  of  a  more
involved form, these functions are to be determined manually.

A simplest basis will automatically appear if we give the dimension of the space. The best way
to do it, is to do it simultaneously with the declaration, e.g., 

VectorSpace@sl2, Dim -> 3D

declares a 3−dimensional space sl2 with basis 8sl2@1D, sl2@2D, sl2@3D< .

Basis  is  one  of  the  properties  of  a  space.  One  can  endow  a  space  with  other  properties  as
well, e.g., determine its (super) dimension; construct and declare the spaces−relatives.
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Further on, one usually determines functions acting on the elements of the space. For example,
no meaningful job in infinite dimensional space is usually possible unless we divide the space into
finite dimensional pieces. This is usually achieved by means of imposing gradings and weights. 

On top of that, one has to define a parity of the superspace, a bracket on the Lie (super)algebra
and an action of the algebra on the module.

à 1.4. Vector operations

While working with scalars we use the usual signs of mathematical operations: + ,  - ,  * ,  � ,  ^,
and  Mathematica  itself  knows  how to  transform them into  complete  format.  In  SuperLie,  we  can
use  the  same  symbols  to  express  the  operations  between  vectors,  as  well  as  between  scalars  and
vectors. If n  is a scalar and u , v  are vectors, we can write: n * u * v , u �n , u^n � v , n � v  (this is not a
misprint, we do divide by a vector).

The  multiplication  of  vectors  and  raising  to  a  power  are  understood  as  a  (super)symmetric
product  and  power,  respectively;  the  expression � v  is  treated  as  a  shorthand for  * v^ H-1L  (this  is
convenient, e.g., when we deal with Laurent polynomials).

All these habitual operation signs are used in the input and (some of them) output format, but in
the  complete  format  all  of  them  are  replaced  with  the  complete  names  of  the  operations.  These
names can be different, they depend on the operands’ domains. For example, multiplying scalars we
replace *  with a Times, multiplying a scalar by a vector we replace  *  with a SVTimes, multiply­
ing a vector by a vectors we replace  *  with a VTimes, and if a domain of some of the factors is not
defined we replace *  with a GTimes  subsequently substituting a correct name after the domain is
determined.

Thus,  the  vectors  can  by  multiplied  symmetrically  (u * v * ...),  tensorially  (u Ä v Ä ...),  exteri­
orly  (uï vï ...),  and  formally  tensorially  (u ** v ** ...).  One  can  as  well  raise  to  the  tensor  power
(u^Än  or uÄn ).

Be careful with the powers! First, the replacement of the product of equal terms with a power
can be banned or allowed, second, if we prescribed the derivation to act on the product via Leibniz
rule, this will not automatically ensue the subsequent transformation rule of the powers; this, how­
ever, can be determined separately.

à 1.5. Syntax preprocessor

The input format makes it  possible to write down the expressions with vectors in the conven­
tional form, with the operation sign between the terms, e.g.,  u + v * w .  Further on, however, all  the
expressions  are  transformed  into  the  complete  format,  where  all  the  operations  are  expressed  as
functions, i.e., in front of the operands. For example, u + v * w  turns into VPlus@u, VTimes@v, wDD .
Usually, Mathematica makes all this itself, whereas dealing with vectors inside SuperLie one has to
boot first a special preprocessor. Without preprocessor Mathematica  will replace the same signs of
operations with scalar operations (e.g., u + v * w  will turn into Plus@u, Times@v, wDD) and it will be
impossible to apply the specific transformation rules for vectors.

Luckily, there is no problem to peruse the final result in the conventional form, since one does
not need preprocessor to transform the complete format to the output one.
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à 1.6. Objects of SuperLie

SuperLie treats vector spaces, elements (vectors and scalars), operations (also known as func­
tions) and properties. Elements−vectors belong to spaces, only elements can be arguments of opera­
tions  and  functions.  Only  operations  and  functions  can   have  properties,  formally  the  latter  are
realized  as  functions  with  spaces  as  arguments.  Properties  of  operations  are,  mainly,  computation
rules.

Among spaces we encounter superspaces, algebras and modules. Examples of elements: num­
bers, elements of a basis, linear combinations of the basis elements. Examples of operations: addi­
tion, parity, grading, the bracket in a Lie algebra, the exterior differential. 

Examples of properties of spaces. Each space has at least three properties: dimension, basis, the
list of declared relatives (e.g., the dual space). A property of a module is the algebra that acts on it.

Examples  of  properties  of  operations:  linearity,  (skew−)symmetry,  Jacobi  identity,  the  input
format.

The current properties of an object (say, G) can be found out by typing  ?? G (this is Mathemati­
ca’s command that reveals too many details) or About@GD , a command from SuperLie.

à 2. First steps

To work with SuperLie, you  have to either copy the directory SuperLie to one of the subcata­
logs  (wherefrom your  Mathematica  can  take  other  packages)  or  additionally  tune  Mathematica  to
the catalog containing these files.

Load the packages with commands

Needs@"SuperLie‘"D

The loading of the package will take a while. Success should be announced by the massage

SuperLie package installed

The command does nothing if the package is already loaded.

à 2.1.  How  to  construct  an  algebra  or  a  module  over  an  algebra  by  hand.  Lie
algebras gl(n) and sl(n) and the standard modules over them

This section is tougher than the neighboring ones. So you can skip it at the first reading. How­
ever,  having  skimmed  it,  you  will  get  a  better  understanding  of  certain  remarks  and  subtle  points
from other  sections,  even if  you  will  not  master  how to  construct  a  module  or  an algebra on your
own.  Let  us  explain  how  to  construct  an  algebra.  In  principle,  this  is  easy.  One  has  to  declare  a
space,  describe  it  basis,  describe  the  multiplication  operation  as  a  function  which  to  every  pair  of
basis elements assigns an element of the space and endow this function with bilinearity property.

For  several  standard  Lie  algebras  the  constructor−functions  are  written.  They  automatically
execute the required routine actions. For example, the command

glAlgebra@g, Dim -> 5D

g = glH5L
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determines the Lie algebra g = glH5L  with basis 8g@1, 1D, g@1, 2D, ..., g@5, 5D< .

Regrettably, the brackets @., .D  are already occupied in Mathematica,  so the bracket in the Lie
algebra will look familiar only in the output format. In the input format one has to type its full name.
Usually this is Act (or act ~ for the not−to−be−executed bracket). For example, if you type

Act@g@1, 1D, g@1, 2D + 2 g@3, 4DD

g1,2

you will get the computed result, whereas if you type

act@g@1, 1D, g@1, 2D + 2 g@3, 4DD

@g1,1,g1,2D + 2@g1,1,g3,4D

the action will not be calculated.

Having  differently  determined  parameters  of  the  constructor,  one  may,  in  addition  to  the  Lie
algebra, get its standard module. For example, 

VectorSpace@x, Dim -> 4D H* declares x as a 4-dimensional space *L
glAlgebra@g, xD
H* similarly declares g=gl H4L,endowing x with a gl H4L-module structure *L
x is a vector space

g = glH4L

The  bilinear  function  that  determines  the  action  of  the  algebra  on  the  module  is  also  called
Act. For example, Act@g@1, 3D, x@3D+ x@4DD  returns x@1D .

The constructor slAlgebra  works similarly: it  constructs slHnL .  Its  parameters are the same
as those of glAlgebra.  The only but important difference: a more complicated basis: off−diago­
nal elements are expressed with two indices, the diagonal ones with one index. Namely, if g = glHnL ,
then for a basis we can take all g@i, jD ,  whereas if g = slHnL ,  then for a basis we can take all g@i, jD
for  i ¹ j  and  g@iD  such  that  after  identification  of  slHnL  with  a  subalgebra  of  glHnL  we  have
g@iD = g@i, iD- g@i + 1, i + 1D .

à 2.2. Generators and relations

The constructors glAlgebra or slAlgebra do not to compute anything; they only declare.

More involved constructors generate algebras and modules over them by means of generators
and defining relations. These constructors explicitly construct the action table and in doing so it  is
impossible to  avoid  computations,  sometimes of  considerable volume.  In cases when the object  to
be generated may be infinite dimensional, the ability to shear calculations is a must. The parameter
range serves to this purpose. By default the generators given are considered to be of degree 1, their
brackets of degree 2; the brackets of the elements of degree 1 with the elements of degree 2 are of
degree  3,  and  so  on.  The  computations are  performed until  the  sum of  degrees  (exponents)  of  the
elements in the product or bracket surpasses range.

Given  explicitly  generators  gen...  and  relations  rel...  the  constructor
FreeLieAlgebra@g, 8gen ...<, 8rel ...<, rangeD  constructs  a  Lie  algebra  g.  In  other  constructors,
the  generators  and/or  relations  may  be  given  implicitly.  For  example,
CartanMatrixAlgebra@g, 8x, h, y<, matr, rangeD  constructs  a  Lie  algebra  g = gHmatrL  with
Cartan matrix matr. Its basis consists of vectors h@iD  (they span a Cartan subalgebra), x@iD  (they are

y@iD

GenRel@gD GenBasis@gD
g g
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FreeLieAlgebra@g, 8gen ...<, 8rel ...<, rangeD

CartanMatrixAlgebra@g, 8x, h, y<, matr, rangeD g = gHmatrL
Cartan matrix matr. Its basis consists of vectors h@iD  (they span a Cartan subalgebra), x@iD  (they are
positive  weight  vectors  corresponding  to  simple  roots)  and  y@iD  (they  are  negative  weight  vectors
corresponding  to  opposite  simple  roots).  The  relations  obtained  are  memorized.  The  relations  are
returned  by  the  command  GenRel@gD  while  GenBasis@gD  returns  the  expression  of  the  basis
elements of the space g  in terms of the generators of the algebra g .

à 2.3. Example: g2

Let as constructing the Lie algebra g2  from its Cartan matrix. To be on the safe side, we restrict
ourselves  to  elements  of  degree  up  to  50;  surely,  the  list  of  elements  will  terminate  earlier,  but
suppose we do not know when.

CartanMatrixAlgebraAg2, 8x, h, y<, J 2 -1

-3 2
N, 50E

14

In the answer stands the dimension of the Lie algebra constructed.

We can ask the computer to tell us what is now known about the Lie algebra constructed:

About@g2D

Domain: Vector

Flags: 8Vector<

Values: 8BasisPattern ® _x È _h È _y, Dim ® 14, PDim ® 814, 0<, Enum ® 3, Bracket ® Act, bracket ® act,

GenBasis ® 8x1, x2, @x1,x2D, @x2,@x1,x2DD, @x2,@x2,@x1,x2DDD, @@x1,x2D,@x2,@x1,x2DDD<,
GenRel ® 8@x1,@x1,x2DD ® 0, @x2,@x2,@x2,@x1,x2DDDD ® 0<, GRange ® 50<

à 2.4. Subalgebras and submodules

If there is no standard constructor of a Lie algebra or a module you need, the simplest way out
is to try to realize the structure needed as a substructure  of one of the standard structures or, which
is  more difficult,  as  a  quotient.  If  the  dimension is  not  too high,  the  basis  (or,  at  least,  generators)
can  be  listed  explicitly  and  then  you  can  apply  one  of  the  functions  SubAlgebra, SubMod­
ule, RestrictModule, Ideal.

These  functions,  as  well  as  CartanMatrixAlgebra,  may  be  called  computing  construc­
tors. By generating the corresponding subspace by generators given  (or testing its invariance) they
determine a new basis and recalculate the action table with respect to it  (in particular, SubAlge­
bra enables one to execute a practically important change of a complicated basis with a one−index
one); at the same time, as a by−product,  they compute and memorize the relations obtained.

á Example 2.4.1. Construct sl(2)Åsl(2).

Let us realize sl(2)Åsl(2) as a subalgebra of gl(4):

We are constructing g=gl(4). Its elements are g[i,j]:

VectorSpace@x, Dim ® 4D
glAlgebra@g, xD
x is a vector space

g = glH4L
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This is a list of 4 generators:

generators = 8s1 ® g@1, 2D, s2 ® g@2, 1D, s3 ® g@3, 4D, s4 ® g@4, 3D<

8s1 ® g1,2, s2 ® g2,1, s3 ® g3,4, s4 ® g4,3<

Compute the subalgebra

SubAlgebra@s, g, generatorsD

s is a sublagebra in g

This is the basis of s:

Basis@sD

8s1, s2, s3, s4, s5, s6<

This is the image of the basis of s  in g:

Image@sD

8g1,2, g2,1, g3,4, g4,3, g1,1 - g2,2, g3,3 - g4,4<

This is the basis of s in terms of generators:

GenBasis@sD

8s1, s2, s3, s4, @s1,s2D, @s3,s4D<

These are the relations between the generators:

GenRel@sD

8@s1,s3D == 0, @s1,s4D == 0, @s2,s3D == 0, @s2,s4D == 0, @s1,@s1,s2DD == -2s1,
@s2,@s1,s2DD == 2s2, @s3,@s3,s4DD == -2s3, @s4,@s3,s4DD == 2s4<

It is possible to bracket the elements of a subalgebra with the elements of the algebra (we get
an element of the algebra g):

Act@s@3D, g@1, 3DD

- g1,4

One may not, alas!, bracket the elements of the algebra with those of a subalgebra nor act with
a subalgebra on a module over the algebra. This action, however, is often needed and we will learn
how to do it in a roundabout way by setting:

Act[s[i_],m[j_]]^:=Act[Image[s][[i]], m[j]].

á Example 2.4.2. Construct the standard o(4)−module.

Let us realize the standard o(4)−module as the restriction of the standard gl(4)−module on the
subalgebra o(4) (consisting, depending on the initial problem, of skew−symmetric matrices or of the
matrices X such that  Xt B+BX=0, where B is  not  necessarily the identity matrix, just  an invertible
symmetric matrix).
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<not written yet>

(* now x is simultaneously gl(4) and o(4)−module *)

à 2.5. Vector equations

Consider gl(4) as a module over itself (with respect to the adjoint action).

glAlgebra@g, Dim ® 4D

g = glH4L

Suppose we wish to decompose it  into irreducible submodules. For this, it  suffices to find the
highest and the lowest weight vectors. In our case, it suffices to find either highest or lowest weight
vectors. Let us find the highest weight ones. 

Let v  be the expression of an arbitrary element of gl(4) with indefinite coefficients:

gsum = GeneralSum@c, Basis@gDD

c@1Dg1,1 + c@2Dg2,2 + c@3Dg3,3 + c@4Dg4,4 + c@5Dg1,2 + c@6Dg2,3 + c@7Dg3,4 + c@8Dg1,3 +

c@9Dg2,4 + c@10Dg1,4 + c@11Dg2,1 + c@12Dg3,2 + c@13Dg4,3 + c@14Dg3,1 + c@15Dg4,2 + c@16Dg4,1

The  highest  weight  vectors  are  the  vectors  annihilated  by  (commuting  with)  g[1,2],  g[2,3],
g[3,4]:

raise = 8g@1, 2D, g@2, 3D, g@3, 4D<
GeneralZero@raise, gsum, cD
8g1,2, g2,3, g3,4<

c@1Dg1,1 + c@1Dg2,2 + c@1Dg3,3 + c@1Dg4,4 + c@2Dg1,4

The latter expression means that there are two highest weight vectors: g1,4  (it  generates sl(4))
and E = g1,1 + g2,2 + g3,3 + g4,4  (it generates the one−dimensional center).

Let  us  describe  the  instruments  for  compilation  and  solution  of  equations  in  more
detail.

GeneralSum@c, 8v1 , ...<D  declares the c@iD  as scalars and returns the vector sum of v1 ,... with
indefinite coefficients c@1D ,...

Let now equ  be a vector equation Hvec1 � vec2L  containing unknown scalars of the form c@iD;
let s  be an indefinite sum from the previous paragraph. Then GeneralSolve@equ, s, cD  solves the
vector  equation  equ  for  unknowns  c@1D ,...  ,  substitutes  the  solutions  found  into  s ,  renumbers  the
remaining unknowns without gaps and returns the expression obtained. 

GeneralZero@g, s, cD  solves the equation Act@g, sD� 0  (or a  system of equations if  g  is  a
list). The result is the same as that of GeneralSolve. The parameter s  may be a list of vectors, in
which case an indeterminate sum with coefficients c@iD  is taken.

We could have spared the computation of, say gsum, in the previous example but write immedi­
ately GeneralZero@raise, Basis@gD, cD . The result would have been the same.

GeneralReduce@s, cD  eliminates the surplus coefficients in the indeterminate sum s , renum­
bers the remaining coefficients and returns the result. It is convenient to use this function when the
dimension of the space with elements of the form s  is smaller than the number of the coefficients.

adHg@1, 2DL
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@ D @ D

@ D

GeneralZero@raise, Basis@gD, cD

GeneralReduce@s, cD s

dimension of the space with elements of the form s  is smaller than the number of the coefficients.

For  example,  suppose  we  wish  to  find  out  the  dimension  of  the  image  of  the  operator
adHg@1, 2DL . Compose gsum as in the last example and execute the command

GeneralReduce@Act@g@1, 2D, gsumD, cD

-c@1Dg1,2 + c@2Dg1,3 + c@3Dg1,4 + c@4DHg1,1 - g2,2L - c@5Dg3,2 - c@6Dg4,2

We get an expression with 6 indeterminate coefficients, so, clearly, the dimension of the image
is equal to 6.
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à 3. Algebras and superalgebras: tougher problems 

à 3.1. Superspaces: superdimension and parity. Gradings and weights

A powerful  tool  for  computation of  Lie  algebra cohomology are various gradings of  both the
Lie algebra under the study and the module of coefficients, e.g., parity, degree, weight. In SuperLie
the gradings are realized as functions on the elements of the spaces. To determine these functions, it
suffices to give their values on the basis elements or on the generators (for an algebra or a module);
their value on the other elements is defined via linearity by means of the bracketing or via action.

It goes without saying that a grading thus defined may turn out to be self−contradictory. Super­
Lie does not trace the contradictions and will return a chance result, so watch out!

To be graded (homogeneous) is a property of the operation that can be appointed or cancelled.
If the operation Op is graded, the following rule applies: 

Deg@Op@a, bDD = Deg@aD+ Deg@bD  

for all types of gradings. To see if the operation Op  is graded, apply the function GradedQ .

Observe that  the  superstructuring or producing constructors endow the space produced with a
grading using the gradings of the initial spaces. Therefore to determine, for example, a grading on
the  Poisson  algebra  given  on  a  space  sp,  amounts  to  the  sequence  of  the  following operations:  to
define  the  weights  on  this  space  sp,  then  construct  its  symmetric  algebra  S* HspL  with  the  grading
induced, and then make S* HspL  into the Poisson algebra with the new grading induced from S* HspL .

Parity. This is the grading −− called P −− by residues modulo 2, i.e.,  its values are 0
��

 or 1
��

. It is
given, as any grading is always given, on the basis elements of the space or on the generators of the
algebra or the module. When given, the Sign Rule is automatically taken into account in all products
(brackets). If parity is not given but should be taken into account, the answers will contain factors of

the form H-1LP@xD . 

The simplest way to determine a parity is to declare simultaneously with the announcement of
the space the list of dimensions of the even and odd parts of the space with the help of the optional
argument Dim . For example, VectorSpace@v, Dim ® 86, 14<D  makes the first 6 elements of the basis
~ v[1] to v[6] ~ even the other 14 ~ v[7] to v[20] ~ odd. This was a description of the basis of
the superspace in the standard  format.  For a  nonstandard  basis,  Dim  lists  the dimensions, starting
with even vectors, e.g., Dim ® 80, 3, 14, 15<  makes the first 3 and the last 15 elements of the basis
odd, the rest of the basis vectors even. 

Observe  that  declaring  Dim ® H6 È 14L  we  determine  a  superdimension  without  affecting  the
parity of the basis elements!

In either case the first and/or the last elements of the list of arguments of Dim  may be Infinity,
determining an infinite dimension of the component.

Another method to determine parity: explicitly determine the list of parities of 0
��

’s and 1
��

’s after
the  argument  PList.  For  example,  the  arguments  PList ® 80, 1, 1, 0, 0, 0<  and  Dim ® 81, 2, 3<  are
equivalent.

Determined on a basis, the parity becomes a property of the space v . To see the lists of dimen­
sions and parities determined on v ,  type PDim@vD  or  PList@vD .  The function P  returns the parity of
the element.

GList -> 8g1 , g2. ..<
@ D
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0 1
PList PList ® 80, 1, 1, 0, 0, 0< Dim ® 81, 2, 3<

v
v PDim@vD PList@vD

the element.

Grading  is  a  generic  term  to  denote  any  grading  by  means  of  scalars,  usually  integers,  but
noninteger  and  other  scalar  variables  and  expressions may be  used.  Same as  parity,  the  grading is
always given on the basis elements of the space or on the generators of the algebra or the module.
The parameter GList -> 8g1 , g2. ..<  in the constructor determines the grading of the basis elements
or generators while the function (property) GList@spD  returns the list of the gradings of the elements
(generators) of the space sp .  By default the grading of the generators of the algebra are equal to 1,
those of the module over the algebra are equal to 0. The function Grade returns the grading of the
element.

The  grading  is  used  as  a  powerful  tool  for  subdivision  of  the  infinite  dimensional  space  into
finite  dimensional  components.  The  parameter  Grade ® d  restricts  the  computation  of  the  genera­
tors and defining relations with grading d . This is convenient in the study of spaces (algebras, mod­
ules)  whose  dimension  is  infinite  or  just  huge,  e.g.,  enveloping  algebras.  The  function  Dim@spD
returns  the  dimension  of  the  space,  while  Dim@sp, dD  returns  the  dimension  of  the  component  of
grading d . The function PDim  behaves similarly.

Weight  is  the  grading  by  means  of  a  list  of  scalars.  Weight  is  determined  and  called  in  the
same way as parity and grading with the help of the parameter and function WList .  The function
Weight  returns the weight of the element.

à 3.2. Spaces|relatives. The tensor space

The  space,  not  a  superspace,  has  two  relatives:  itself  and  its  dual.  For  the  superspace  over
complex  numbers  there  are  8  relatives:  one  can  (1)  change  parity,  (2)  consider  linear  functions
acting on  the  left  or  on  the  right,  (3)  consider  even and odd linear  functions.  (Over reals,  one can
also consider  different linearities (linear and  antilinear) over  complex numbers.  So far,  we did  not
consider this case.)

If the space is a module over a Lie superalgebra, then all its relatives are also modules over the
same Lie superalgebra. There is a constructor for each of the spaces−relatives; all of them are listed
above. The list of the declared relatives of the space in the order indicated is a property of the space,
one can get it by means of the function Relatives. This list always contains 8 elements; the nonde­
clared spaces should be replaced with None.

Observe  that  if  a  basis  of  the  initial  space  is  a  one−indexed  one,  the  respective  basis  of  the
spaces−relatives will be indexed accordingly.

An important example: w = DLeft@vD ,  the space of differential 1−forms on the superspace v .
Accordingly, the expression w@iDïw@ jD  is a 2−form, w@iDïw@ jDïw@kD  is a 3−form,and so on. If v  is
an algebra,  then the exterior algebra of  exterior forms is  automatically endowed with a  derivation,
the exterior differential, Der . This Der is defined on the space of 1−forms and its values lie in the
space of 2−forms and the coaction and further extension to higher forms are defined via Leibniz rule.
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à 3.3. Vector operations. Tensor products

The  constructor  TensorSpace@t, v 8comp, ...<, options ...D  constructs  the  space  t  of  tensors
over  v ,  by  tensoring  the  components  indicated.  All  these  components  must  be  relatives  of  v .
Observe, however, that all the elements of t  are of the form t@i, j ...D , in other words, their expression
never  uses  the  fact  that  they  are  tensor  products  and  the  sign  of  tensor  product  is  never  used  to
express them.

SuperLie  has  no  ready−to−use  constructor  for  the  associative  tensor  algebra,  however,  the
tensor product operation Ä (other name ~ tp ~ is used for compatibility with the version for Mathe­
matica 2.2) allows for any number of factors, is associative multi−linear by default and possesses a
unity Id (i.e., Id Ä v = v Ä Id = v  for any vector v). So we can, actually, perform actions in the tensor
algebra. Usually, one uses Ä to multiply (to tensor) elements of the same space. The tensor product
of n  copies of the same element x  can be expressed as x^Än  or xÄn  (in full format: tPower[x,n]).
Observe, however, that by default x^Ä0 is not replaced with Id.

When we wish to (point out that we) tensor elements from different spaces, we should use the
formal tensor product. The operation **  (full name NonCommutativeMultiply) is used in this
case.  This  operation  is  binary  (hence,  one  should  not  worry  about  associativity),  is  not  linear  by
default, and does not recognize vector unity Id  (i.e., neither v ** Id  not Id ** v  are replaced with v).
Its only by default property is ZeroArg , i.e., formal tensoring by 0 gives a 0.

Instructive examples. 1. The constructor VectorLieAlgebra@a, vD  constructs the algebra a
with a basis consisting of expressions w@iD, v@ jD ** v@iD , Hv@ jD* v@kDL ** w@lD , where w  is the space of
left even linear forms on v .

2. The space of 2−cochains on g  with values in the module m  has for a basis elements of the
form a ** Hdg@iDïdg@ jDL , where dg is the space of left odd forms on g .

It  is  usually  convenient  to  endow  **  with  "linearity  with  respect  to  one  argument"  property
(say, in the last example, with respect to the second argument). This enables one to get the answer in
a compressed, simplified, form, e.g., H4 a + bL ** dg@iDïdg@ jD .
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Alphabetical list of symbols in SuperLie

à A

á Act

Act  is the default name of the bracket operation in Lie (super)algebras and the action of alge­
bras on modules.

Act@g1 , g2 D  for elements g1 , g2  of a Lie (super)algebra is the bracket operation in this algebra. 
Act@g, vD  for an element g  of the algebra and an element v  of the module over the algebra is

the action of g  on v . The name of the operation can be different, Act is only the default name.
The  properties  of  Act  are  Vector,  Linear,  Graded,  Jacobi®{CircleTimes,VTimes}.  The

output format of Act@x, yD  is @x, yD .

á act

act@g1 , g2 D  and act@g, vD  represent the unevaluated operation Act.

á Additive

Additive@ f D  constitutes the automatic additive expansion of f :
f @ ..., x + y, ...D = f @ ..., x, ...D+ f @ ..., y, ...D

Additive@ f ® FirstD  and Additive@ f ® LastD  see to that the function f  is only additive in the
first (last) argument.

Here + denote either Plus  or VPlus  depending on the definition of the function f .  This prop­
erty can be assigned to functions that are declared having All (resp. First, Last)  Scalar or Vector
arguments and scalar or vector values.

See also AdditiveRule, UnAdditive.

á AdditiveRule

AdditiveRule@ f D  is the replacement rule for the additive expansion of f : 
f @ .., x + y, ..D ® f @ .., x, ..D + f @ .., y, ..D .

AdditiveRule@ f , FirstD  and AdditiveRule@ f , LastD  are rules for the additive expansion of the
first (last) argument of f .

The  rule  is  valid  for  functions  that  are  declared  having  All  (resp.  First,  Last)   Scalar  or
Vector arguments and scalar or vector values.

See also Additive, UnAdditive.

á AddSplit

AddSplit@e1 , e2 , ...D  adds the terms of splitted sums e1 , e2 , ...  with equal keys and returns the
merged splitted sum.



á Algebra

Algebra@g, optionsD  defines  the  vector  space  and  algebra  g .  The  operation  on  g  should  be
defined explicitly.

Algebra ® g  is  an option for some module constructors. It  specifies the algebra acting on the
modules in consideration.

á AlgebraDecomposition

AlgebraDecomposition@F, g, 8h1 , ...<D  −  defines  the  decomposition  F : g® h1 + ...  of  the  Lie
(super)algebra g  in  the  sum of  subalgebras   h1 ,  ...  .  (The  sum should  be  the  direct  sum of  vector
spaces).

á AntiSkewSymmetric

AntiSkewSymmetric@ f D  introduces the  automatic  sorting of  arguments of  f  using super−anti−

skew symmetry  f @ .., y, x, ..D = - H-1LH1+P@xDL H1+P@yDL f @ .., x, y, ..D .

á AntiSkewSymmetricQ

AntiSkewSymmetricQ@ f D  returns True if f was declared anti−skew−symmetric.

á AntiSkewSymmetricRule

AntiSkewSymmetricRule@ f D  is the replacement rule for sorting of arguments of f  using super−

anti−skew symmetry  f @ .., y, x, ..D ® - H-1LH1+P@xDL H1+P@yDL f @ .., x, y, ..D .

á AntiSymmetric

AntiSymmetric@ f D  introduces the automatic sorting of arguments of f  using super−antisymme­

try  f @ .., y, x, ..D = - H-1LP@xD P@yD f @ .., x, y, ..D .

á AntiSymmetricQ

AntiSymmetricQ@ f D  returns True if f was declared antisymmetric.

á AntiSymmetricRule

AntiSymmetricRule@ f D  is the replacement rule for sorting of arguments of f  using super−anti­

symmetry  f @ .., y, x, ..D ® - H-1LP@xD P@yD f @ .., x, y, ..D .

á ApplySplit

ApplySplit@ f , eD  applies function f  to terms of the splitted sum or list e .
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á ArgForm

ArgForm@controlstringD @ f @x, ...DD  is  equivalent  to  StringForm@controlstring, x, ...D .  It  is  used
as value of format options, e.g.,TeX®ArgForm["\\left[‘1‘,\\,‘2‘\\right]"].

á Auto

Auto is the default value for some options.

à B

á Basis 

Basis@VD  returns  the  basis  of  the  space  V .  Basis@V , dD  returns  the   basis  of  the  d−th  grade
component of the space V .

á BasisPattern

BasisPattern@VD  returns the pattern for basis of the space V . This pattern matches all elements
of the basis of V . No other expressions matching this pattern should be used in calculations.

á Bb

Bb@x, yD  is the Buttin bracket (operator).

á bb

bb@x, yD  is the Buttin bracket (unevaluated form).

á bracket

bracket@gD  returns  the  name  of  the  unevaluated  form  of  the  bracket  in  Lie  algebra  g.
bracket@g, mD  returns the  name of  the  unevaluated  form of  the  action  of  the  Lie  algebra g  on  the
module m (not implemented yet).

á Bracket

Bracket@gD  returns the name  of the bracket in Lie algebra g.  Bracket@g, mD  returns the name
of the action of the Lie algebra g on the module m (not implemented yet).

á BracketMode

BracketMode@mD  returns the method of the definition of the bracket operation on the algebra or
of the action of the algebra on the module. The valid modes are Regular or Tabular.
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á ButtinAlgebra

ButtinAlgebra@g, 8x, y<D  defines  a  Buttin  algebra  g,  the  algebra  of  polynomials  on
x1 , ..., xn , y1 , ..., yn  with the standard Buttin bracket. The spaces x  and y  should be declared with
the same dimension. For every i  the parities of xi  and yi  should be different.

à C

á CartanMatrixAlgebra

CartanMatrixAlgebra@g, 8x, h, y<, matr, rangeD  defines  a  Lie  (super)algebra  g  with  given
Cartan matrix matr.  Its elements are named hi  (Cartan  subalgebra), xi  (of positive weight), yi  (of
negative  weight).  Computations  go  up  to  terms  of  degree  range.  The  parities  P@xi D  and  grading
Grade@xi D  of  positive  generators  may  be  defined  by  options  PList ® 8p1 , p2 , ...<  and
GList ® 8g1 , g2 , ...< . The option  Grade ® g  limits computations up to terms of grading (degree) g.

á CartanTriade

CartanTriade@gD = 8g+ , g0 , g- <  is  the  decomposition  of  algebras  into  3  subalgebras
g�g+ Åg0 Åg- , the components of positive, zero and negative weight.

á CircleTimes

v1 Ä v2 Ä ...   denotes the tensor product of e1 , e2 , ...  as operation in tensor algebra.

á CleardSymbol

CleardSymbol@D  clears the symbol that was used as differential operator.

á CoLeft

CoLeft@mD  returns the name of the space of left even linear form on m, or None if this space was
not defined.

CoLeft@m® lD  builds the module l  on the space of left even linear form on m.  The function is
implemented only for finite−dimensional modules with one−indexed basis.

CoLeft ® l  is the options to the VectorSpace.

á CommutativeLieAlgebra

CommutativeLieAlgebra@VD  defines on space V  a Lie bracket  @vi , v j D = 0.

á CompList

If  V = 8vi1 ,... in <  is  an  n−indexed  tensor  space  declared  with  constructor  TensorSpace,
CompList@VD  returns the list of vector spaces−components of the tensor space V .
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á Components

For an algebra (module) m with Regular bracket (action of the algebra) Components@mD  returns
the list of the regular components of m.

á CondOp

CondOp@domainD  returns the name of a conditional operation with values in the domain. This
operation is defined as 

op@cond, valueD :=

looooom
n
ooooo

value, if cond � True,

0, if cond � False,

unevaluated, otherwise.

 

The conditional operation is involved in symbolic processing.
CondOp@domain -> nameD  defines this operation.

á ContactAlgebra

ContactAlgebra@g, x, tD  and  ContactAlgebra@g, x, t, 88c1 , i1 , j1 <, ..., 8cm , im , jm <<D  define
the Lie (super)algebra g  as the contact algebra of the polynomials in x1 ,... and t .

 ContactAlgebra@g, 8p, ..., q<, tD  defines  the  contact  algebra  of  polynomials  in  p1 ,  ...  qn ,  t .
The  Poisson bracket  on  x  or  8p, ... q<  is  also  defined.  The  spaces  x  or  p ,  ...,  q  should  be  already
defined (as for PoissonAlgebra).

á ContactK

ContactK@gD  is the operator from functions to vector fields (implemented as differential opera­
tors) associated with the bracket in the Contact algebra g.

á CoRight

CoRight@mD  returns the name of the space of right even linear form on m, or None if this space
was not defined.

CoRight@m® rD  builds the module r on the space of right even linear form on m. The function
is implemented only for finite−dimensional modules with one−indexed basis.

CoRight ® r  is the options to the VectorSpace.

á CTimes

CTimes@opD  declares  new  "Coefficient  Times"  operation  that  may  be  used  instead  of  **
between  coefficient  and  vector  parts  of  forms,  vector  fields,  etc.  CTimes -> op  is  an  options  that
indicates such operation.

à D

á D

D@gD  is the Laplacian in the algebra g.

C 51



á DateString

DateString[] returns a string representing the current date and time.

á DecompositionList

DecompositionList@g, f D  returns  the  list  8g1 , ... <  of  subalgebras  in  the  decomposition  f  of
subalgebra g1 Å ... Ì g . The bracket operation is defined for any pair of elements in g1 Å ...  .

á DecompositionRule

expr �. DecompositionRule@g, f D  replaces the elements of the basis of g  in the expression expr
with their images under decomposition f : g�g1 Å ...  .

á DefSubAlgebra

DefSubAlgebra@h, g, 8g1 , ...<D  − defines the subalgebra h  of the Lie  (super)algebra g   on the
vector space SpanHg1 , ...L Ì g . The space should be closed with respect to the bracket in g .

The  bracket  in  the  subalgebra  is  defined  in  Tabular  form.  It  is  fastest  for  calculations  and
supported by all functions in SuperLie package. 

Option Split®f  instructs to split the space in order to accelerate calculations.

á Deg

Deg@expr, xD  returns the degree of  x  (or all  elements matching pattern x)  in  vector expression
expr . If the expression is not homogeneous, the result is Mixed.

á DegreeBasis

DegreeBasis@deg, varsD  returns the list of elements of degree deg in the symmetric algebra of
variables  vars.  DegreeBasis@deg, vars, opD  uses  op  instead  of  VTimes.  The  operation  op  must  be
Flat and Listable.

á DegTimes

DegTimes@opD  introduces the property Deg@op@v1 , ... vn D, xD = Deg@v1 , xD+ ... + Deg@vn , xD  .

á Delta

Delta@x, yD =
loom
noo

1, if x � y

0, if x ¹ y
.

Delta@xD = Delta@x, 0D .
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á Der

Der@ΩD  is the exterior derivative of the form (multilinear function) Ω with trivial (scalar) coeffi­
cients.

Der@m ** ΩD  is the exterior derivative of the form  m ** Ω  with coefficients in a module.
The form Ω may be an odd left form on a Lie algebra or an exterior product of such forms; m

must be an element of a module over the same algebra. The derivative of 0−form with coefficients
in a g−module is written as Der0@m, gD .

á der

der is the passive form of the exterior derivative Der.
Properties: Linear®First

á Der0

Der0@m, gD  is  the  exterior  derivative  of  the  0−form  m ** wedge@D  with  coefficients  in  a
g−module.

á DiffAlgebra

DiffAlgebra@g, VD  defines  g  as  the  algebra  of   differential  operators  on  the  space  V .  The

option  D ® d  defines  the  notation  for  partial  derivative:  
¶

��������
¶ x

is  denoted  by  d@xD .  The  option

Bracket ® b  declares the name of the supercommutator with respect to the standard parity induced
by that of V . The default options are D ® d  and Bracket ® Dc .

á Dim

Dim@vD  returns the dimension of the vector space v .
Dim@v, nD  returns the dimension of the components of degree n  of the space v .
Dim ® d   is  the  option  of  space  constructors  that  defines  the  dimension  of  the  constructed

space. The value of d may be
� a non−negative integer, a scalar expression or Infinity. The result will be an even vector space of a given

dimension. 

� Hd0 È d1 L , where both  d0  and d1  are non−negative integers, Infinity, or symbolic expressions. The result

will be a superspace of given dimension. The parity of the elements of the basis are not defined (except for the case
when d0 � 0 or d1 � 0).

� 8d0 , d1 , d2 , ..., dm < , where all the di  are non−negative integers with two exceptions:

 (1) d0 (or d1  if d0 � 0) may be Infinity and 
 (2) dm  may be a symbolic expression or Infinity.  The  first d0  elements of the basis of the created space

are  even, the next d1  elements are odd, the further d2  elements are even, and so on. 

á Div

The options Div®operation of function VectorLieAlgebra gives the name the divergence of
(poly)vector fields. The default name is also Div.

Div@vD  calculates the divergence of the vector  (or polyvector) field v .
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á DLeft

DLeft@mD  returns  the  name  of  the  space  of  left  odd  linear  form on  m  (differential  forms,  for
short), or None if this space was not defined.

DLeft@m® dD  builds  the  module  d  on  the  space  of  left  odd  linear  forms  on  m  (differential
forms). If m is a Lie algebra, DLeft also defines the exterior derivative Der : d� dï d . The func­
tion is implemented only for finite−dimensional modules with one−indexed basis.

DLeft ® d  is the option of the VectorSpace.

á dNormal

dNormal@eD  gives the standard form of differential expression. The multiplication of vectors is
interpreted as a composition of differential operators. See also dSortRule, dSymbol, DiffAlgebra,
and VNormal.

á DPrint

DPrint@level ,  data ... D  prints data (using Print) if $DPrint ³ level . See also $DPrintLabel.

á DRight

DRight@mD  returns the name of the space of right odd linear form on m,  or None if  this space
was not defined.

DRight@m ® mdD  builds the module of right odd forms on m .
DRight ® d  is an option of the VectorSpace.

á dSortRule

e ��. dSortRule  sorts the terms in the differential expression e:   d@xD x ® x d@xD+ 1, where the
symbol d  is defined by the function dSymbol or option D of DiffAlgebra.

á dSymbol

dSymbol@dD  assigns the  symbol  used as  differential  operator:  d@xDn  represents the  differential

operator 
¶n

�����������
¶ xn .

à E

á EnvelopingOperation

EnvelopingOperation@times, power, brk, orderD  defines  times  to  be  an  operation  in  envelop­
ing  algebra  with  Lie  bracket  brk.  The  argument   power  is  the  power  operation  corresponding  to
times. The parameter order is an user−supplied function that defines the what will be called in what
follows the canonical order: order@ f , gD  returns True if f and g are in the canonical order. (In other
words, the user defines any order in the enveloping algebra and it will be called canonical as a point
for  reference.) The parameters power,  brk  and order  are  optional;  the  default  values are None,  Act
and the value of $EnvLess, respectively.
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á EnvelopingSymbol

EnvelopingSymbol@symb, mult, brk, orderD  introduces notations:  symb@ ...D  for  the  elements of
basis of an enveloping algebra, mult@ ...D  for the multiplication in enveloping algebras with bracket
brk .  The  user−supplied  function  order@ f , gD  should  return  True  if  symb@ f , gD  is  in  the  canonical
order in the enveloping algebra.

á EnvNormal

EnvNormal@eD  gives the standard form of an element e  of the enveloping algebra with multiplica­
tion VTimes and bracket Act. The factors in the vector products are sorted (see Sort) using ordering
function $EnvLess.

EnvNormal@e, pD  uses  p  as  an  ordering  function.  The  ordering  function  p  is  defined  so  at  the
value of p@x, yD  is True if the factors x  and y  should appear in the products in that order.

See also VNormal.

á EnvSortRule

e ��. EnvSortRule  sorts the terms of the multiplication in the enveloping algebra (with multipli­
cation VTimes, bracket Act and order function $EnvLess) into the canonical order.

á EulerOp

EulerOp@gD  is the Euler operator in the algebra g .

á ExpandOp

ExpandOp@e, opD  expands  the  operation  op  in  the  expression  e  as  a  (noncommutative)
multiplication.

á ExpandOpRule

e ��. ExpandOpRule@opD  expands  the  operation  op  in  the  expression  e  as  a  (noncommutative)
multiplication.

á ExteriorAlgebra

ExteriorAlgebra@W, xD  defines the exterior algebra on the space x . Options change the opera­
tion names: Wedge ®exterior product, Der ®derivative, CTimes ®the multiplication in x × dx .  The
PiRight  relative of x  should be defined.

à F

á FDim

FDim@VD  returns dimension of the vector (super)space V formatted  for output.
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á FilterBasis

FilterBasis@d, 8x1 , ..., xn <D  returns the list  of elements of grade £ d  in the symmetric alge­
bra  in  indeterminates  8x1 , ..., xn < .  The  grades  of  the  x1 ,  ...,  xn  must  be  predefined.
FilterBasis@d, 8x1 , ..., xn <, opD  uses  op  instead  of  VTimes.  The  operation  op  must  be  Flat  and
Listable.

á ForSplit

ForSplit@8expr, memb, cnt<, bodyD  or  ForSplit@8expr, sel ® memb, cnt<, bodyD  evaluates
the body  for each term of the splitted sum or list expr.  The variables sel  and memb  are assigned to
the current values of the selector and the member of the expr,  respectively. The optional cnt  is the
loop counter. The functions Break@D , Continue@D  and Return@valueD  can be used in the body.

á FreeLieAlgebra

FreeLieAlgebra@g, 8g1 , ... gn <, 8r1 , ... rk <, rangeD  defines  the  (super)algebra  Lie  g  generated
(as free algebra) by the elements g1 , ..., gn  modulo relations r1 , ... rk . Options Grade ® 8d1 , ... dn <
and PList ® 8p1 , ..., pn <  define, respectively, the degrees and parities of the generators. All compu­
tation are made for elements with degree £ range .

à G

á GenBasis

GenBasis@gD  returns the representation of the basis of g in terms of (free) generators. This list is
prepared by some space constructors.

á GeneralBasis

GeneralBasis@v, cD  converts  a  general  sum v = c1  v1 + ... + cn  vn with  arbitrary  vector  expres­
sions v1 , ..., vn  into the list 8v1 , ..., vn < .

á GeneralPreImage

GeneralPreImage@ f , x, c, y, dD  calculates  the  projection  of  x = c1  x1 + c2  y2 ...  to  the   preim­
age of  y = d1  y1 + d2  y2 ...  under f .

á GeneralReduce

GeneralReduce@v, cD  eliminates  insignificant  coefficients  in  the  general  sum  v = c1  e1 + ...  ,
renumbers the remaining coefficients and returns the result.

á GeneralSolve

GeneralSolve@equ, v, cD  solves the vector equation equ for c1 , ... , substitutes the found coeffi­
cients c1 , ... in the general sum v = c1  e1 + ...  , renumbers the remaining coefficients ci  and returns
the result. 

GeneralSolve@equ, v, c, aD  solves the equation  eliminating the scalar coefficients a1 , ... .
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á GeneralSum

GeneralSum@c, 8v1 , ...<D  returns  the  general  linear  combination  c1  v1 + ...  and  declares  ci

scalars. 
GeneralSum@c, 8v1 , ...<, f D  returns  the  general  linear  combination  v = c1  v1 + ...  such  that

f @vD� 0.

á GeneralZero

GeneralZero@g, v, c, brkD  returns  the  general  solution  of  brk@g, vD  with  coefficients  c1 ,  ...  .
The g  is an element or a list of elements of an algebra g; v  is either a list of vectors in the g−module
or a general sum with coefficients ci  . The default value for brk is Act.

á GenRel

GenRel@gD  returns the list of relations between the generators of g. This list is prepared by some
space constructors.

á glAlgebra

glAlgebra@g, V , optionsD  defines  g  as  a  matrix  Lie   (super)algebra  on  the  space
V .

glAlgebra@g, optionsD   defines g as Lie (super)algebra of square matrices; the size of matrices
and the parities of rows are given by options Dim or PList.

á GList

GList ® 8d1 , ... <  is the optional parameter of some space constructor functions. It is the list of
degrees of generators of the new space.

á GPlus

GPlus is the name of "+" in the Common domain. The operation + is treated as GPlus when (a)
not all operands are defined as Vectors or Scalars, or (b) a scalar is added with a vector. The
operation GPlus is automatically replaced with VPlus if all operands become vectors and with Plus
if all operands become scalars.

á GPower

GPower is the name of the power operation in the Common domain. The operations a^b  and ab

are treated as  GPower when a is not defined as either Vectors or Scalars.
The operation GPower is automatically replaced with VPower when a is a vector and with Power

when a is a scalar.

á Grade

For a graded object m,  the value Grade@mD  is the grading (degree) of m.
Grade ® 8d1 , ...<  is an option for space constructors.
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á GradeBasis

GradeBasis@d, 8x1 , ... xn <D  returns the list  of elements of grade d  in  the symmetric algebra in
x1 , ... xn .  The  grades  of  the  indeterminates  must  be  predefined.  GradeBasis@d, 8x1 , ... xn <, opD
uses op instead of VTimes. The operation op must be Flat and Listable.

á Graded

Graded@opD  introduces the property Grade@a~op~bD = Grade@aD+ Grade@bD .

á GradedKerSpace

GradedKerSpace@U, V , f D  calculates  the  subspace  U = 8v Î V È f HvL� 0< .  Here   f  is  a  linear
function or a list of linear functions on V . The oprions From ® degree  and To ® degree  restricts the
calculations to the specified degrees (the defaults are 0 and GRange@VD , respectively).

á GradedQ

GradedQ@opD  returns True if the operation op is graded.

á GRange

GRange ® n  is  an  optional  parameter for  space constructors.  It  restricts the  calculations to  the
range n  (the range of generators must be given). GRange@VD  returns this limit. The results of opera­
tions in V  are evaluated only if their grades are £ GRange@VD .

á GTimes

GTimes  is  the  name  of  multiplication  in  the  Common  domain.  The  operation  *  is  treated  as
GTimes  when  not  all  operands  are  defined  as  Vectors  or  Scalars.  The  operation  GTimes  is
automatically  replaced  with  VTimes,  SVTimes,  and  Times,  when  all  operands  become  vectors  or
scalars. 

à H

á HamiltonianH

HamiltonianH@gD  is  the  operator  from  functions  to  vector  fields  (implemented  as  differential
operators) associated with the bracket in the Poisson algebra g .

á Homogen

Homogen@ f ® rD  introduces the property f @ ..., c * v, ...D = cr * f @ ..., v, ...D  for a scalar c  and a
vector v . Except for the case r = 0, the function f  should be declared as Vector or Scalar.

Homogen@ f D  is equivalent to Homogen@ f ® 1D .
Homogen@ f ® FirstD  and  Homogen@ f ® LastD  introduce  homogeneity  (with  degree  1)  in  only

the first or only the last argument of f .
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á HomogenRule

HomogenRule@ f , rD  is  the  replacement  rule  f @ ..., c * v, ...D ® cr * f @ ..., v, ...D ,  where  c  is  any
scalar and v  any vector. The parameter r  is optional, the default value is 1.

HomogenRule@ f , First, rD  and HomogenRule@ f , Last, rD  act only on the first/last argument of f .

á HWModule

HWModule@m, g, wD  builds  the  irreducible  g−module  m  with  highest  weight  w .  The  algebra  g
should be expressed as the direct sum of spaces g = g+ Åg0 Åg-  using functions Decomposition­
List  and DecompositionRule  with CartanTriade  as  the  name of  the  decomposition.These func­
tions are defined by some constructors of Lie algebras. The function Grade should be defined on g
and  should  agree  with   decomposition  (the  sign  of  the  grade  should  discriminate  the  parts).  The
function  Weight  should  be  defined  on  g  and  should  agree  with  Cartan  subalgebra  g0 :
@hi , gD = Weight@gDPiT g .

HWModule@m, g, w, Grade ® rD  makes  all  calculations  down  to  degree  -r .  The  algebra  g
should be graded. The degree of the highest vector is assumed to be 0.

HWModule@m, g, w, Grade ® r, Factor ® FalseD  builds the Verma module with given highest
weight (does not make the quotient modulo the maximal submodule).

Option Order ® 8y1 , ..., ym <  gives the order in which the elements of g-  should appear in the
expressions of the basis of m  in terms of generators of UHg- L . Default order is given by Basis@g- D .

Option P ® p  gives the parity of the highest vector (default is 0).

à I

á Ideal

Ideal@i, g, 8g1 , ...<D   defines the ideal i in the Lie (super)algebra g , generated by elements g1 ,
... .

á Image

Image@VD  returns  the  list  of  images  of  basis  elements  of  V  if  V  is  defined  as  a  subspace
(subalgebra, submodule).

á InSpace

If a space V  is defined as subspace (subalgebra, submodule), InSpace@VD  returns the name of
the ambient space.
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à J

á Jacobi

Jacobi@ f ® gD  introduces the property ( f  acts as a bracket in Lie superalgebra):

f @x, g@y1 , y2 , ..DD = g@ f @x, y1 D, y2 , ..D ± g@y1 , f @x, y2 D, ...D ± ...

Jacobi@ f ® 8g1 , ...<D  introduces this property for every gi .

á JacobiRule

JacobiRule@ f , gD  returns  the  rule  which  expands   f @x, g@x1 , ...D, ...D  into  the  sum  of
± g@ ..., f @xi , ...D , ...D  (like the bracket in the Lie superalgebra).

JacobiRule@ f , 8g1 , ..., gk <D  returns the list of rules for function g1 , ..., gk .

á JoinSplit

JoinSplit@e1 , e2 , ...D   joins terms of splitted lists e1 , e2 , ...  .

à K

á Kb

Kb@x, yD  is the Contact bracket (the operator in the contact algebra).

á kb

kb@x, yD  represents  the  Contact  bracket  (the  operator  in  the  contact  algebra)  but  is  not
unevaluated.

á KerSpace

KerSpace@U, V , f D  calculates  the  kernel  subspace  U = 8v Î V È f HvL� 0< .  Here   f  is  a  linear
function or a list of linear functions on V . 

à L

á Lb

Lb@x, yD  is the Lie bracket (the bracket in the Lie (super)algebra of vector fields).

á lb

lb@x, yD  represents the Lie bracket (the operator in the algebra of vector fields) in the unevalu­
ated form.
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á LDer

LDer@e, x, ptrnD  calculates  the  left  partial  derivative  of  expression  e  with  respect  to  x.  The
pattern ptrn should match all independent and none of the dependent variables.

á Leibniz

Leibniz@ f ® gD  introduces the property ( f  acts on g  as a derivation of parity P@ f D): 

f �g@x1 , x2 , ...D = g@ f � x1 , x2 , ...D ± g@x1 , f � x2 , ...D ± ...  . 

Leibniz@ f ® 8g1 , ...<D  introduces this property for every gi .

á LeibnizRule

LeibnizRule@ f , gD  returns the rule to expand  f @g@x1 , ...DD  into the sum of ± g@ ..., f @xi D , ...D
(so f  acts like the derivative of parity  P@ f D).

LeibnizRule@ f , 8g1 , ..., gk <D  returns the list of rules for function g1 , ..., gk .

á LieAlgebra

Options[LieAlgebra] holds default options for constructors of Lie algebras.

á Linear

Linear@ f D  introduces  the  (multi)linearity  of  f .  The  linearity  is  equivalent  to  the  union  of  3
properties: Additive, Homogen®1 and ZeroArg.

Linear@ f ® FirstD  and Linear@ f ® LastD  introduces linearity only in the first/last argument.
The  function  f  should  be  declared  vector−  or  scalar−valued  and  having  all  (resp.  first,  last)

vector argument.

á LinearChange

LinearChange@expr, ruleD  applies the rule (that may be also a list of rules) to the linear compo­
nents of expr in an attempt to transform the expression.

á LinearCollectRule

LinearCollectRule@ f D  returns the list of rules that may be used to collect together the term in
the sum f @x1 , y1 , ..D + f @x2 , y2 , ..D+ ...  wich differ in one argument only. 

LinearCollectRule@ f , FirstD  and  LinearCollectRule@ f , LastD  return  the  rules  for  linear
collecting in the first or last argument of f .

The  function  f  should  be  declared  vector−  or  scalar−valued  and  having  all  (resp.  first,  last)
vector argument. Though the function f  is (mathematically) linear, it should not be declared linear,
homogeneous or additive.
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á LinearRule

LinearRule@ f D  returns  the  list  of  rules  for  (multi)linear  expansion  of  expressions  containing
f @ ...D . 

LinearRule@ f , FirstD  and  LinearRule@ f , LastD  return  the  rules  for  linear  expansion  in  the
first/last argument of f  only.

The  function  f  should  be  declared  vector−  or  scalar−valued  and  having  all  (resp.  first,  last)
vector argument. It should not be declared linear.

á LogPower

LogPower@ f D  introduces the property f @xr D = r * f @xD .  The function f  should be declared  vec­
tor− or scalar−valued.

LogPower@ f ® opD  introduces the property f @xr D = op@r, f @xDD .

á LogPowerPule

LogPowerRule@ f D  returns the rule f @xr D® r * f @xD . The function f  should be declared  vector−
or scalar−valued.

LogPowerRule@ f , opD  returns the rule f @xr D® op@r, f @xDD .

à M

á Mapping

The  option  Mapping ® f  instructs  the  sub−  and  quotiontspace   constructors  to  define  fn  as  a
mapping function (immersion or projection).

Mapping@U, VD  returns the last defined map U �V .

á MappingRule

MappingRule@U, VD  is a replacement rule that implements the last defined Mapping U �V .

á MapSplit

MapSplit@ f , eD  applies function f  to the member of lists ~ the terms of splitted list e .

á MatchList

MatchList@e, pD  returns  the  list  of  different  terms  in  expression  e ,  matching  the  pattern  p .
MatchList@e, p, f D  returns the list of values of different values of f @termD .

á Mb

Mb@x, yD  is the Moebius bracket (the operator in the Moebius−Poisson superalgebra).
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á mb

mb@x, yD  represents  the  unevaluated  Moebius  bracket  (the  operator  in  the  Moebius−Poisson
superalgebra).

á MergeSplit

MergeSplit@ fn, e1 , e2 , ...D  merges  splitted  expressions  (lists  or  sums).  The  terms  t1 , ... tn
with the same selector are merged using fn@t1 , ... tn D .

á Mixed

The functions Parity and Deg return Mixed if the argument is not homogeneous.

á MLeft

MLeft is the first item in the list of relative spaces that denotes "the space itself".
MLeft@mD  returns m  for any vector space m .

á MoebiusAlgebra

MoebiusAlgebra@g, 8x, Θ, t<D  defines the Moebius−Poisson superalgebra g  as the algebra on the
space  of   polynomials  in  x1 , ... xn ,  Θ ,  and  t .  The  x  may  be  also  a  list  of  components,  as  in
PoissonAlgebra.

á MRight

MRight@mD  returns the name of the module P ÄmÄ P ,  where P   is  the 1−dimensional trivial
odd module, or None if this module was not defined.

MRight@m® rD  builds  the  module  r = P ÄmÄ P ,  where  P   is  the  1−dimensional  trivial  odd
module.

MRight ® r  is an optional parameter to the constructor VectorSpace.

à N

á NewBracket

NewBracket@opD  prepares op to be used as the bracket in a Lie superalgebra.

á NewBrace

NewBrace@opD  prepares op to be used as the bracket in a Lie superalgebra.

á NewOverscript

NewOverscript@op, " s "D  introduces an overscript notation for op@xD  � x
s

 in the standard and
traditional formats.

NewOverscript@op, " s ", sTeXD  introduces also TeX notation for s.
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á NewPower

NewPower@op, " s "D  introduces  superscript  notation  for  op@x, rD� xs r in  the  standard  and
traditional formats and x^s r  for the output format and for the input in any format. The s  should be a
single character (not a letter or digit).

NewPower@op, " s ", sTeXD   introduces also TeX notation for s .

á NewRelative

NewRelative@relation, V -> WD  creates and attaches a new relative to the family of spaces−rela­
tives. The first argument is the relation of the new space W  to the old space V.  The valid relations
are CoLeft, MRight, CoRight, PiRight, DLeft, PiLeft, DRight.

á NewSuperscript

NewSuperscript@op, " s "D  introduces superscript notation for op@xD  � xs  in the standard and
traditional formats.

NewSuperscript@op, " s ", sTeXD  introduces also TeX notation for s.

á NGen

NGen@mD  is the number of generators of the module or algebra m.

à O

á Ob

Ob@x, yD  is the odd Contact bracket (the operator in the "odd" contact algebra).

á ob

ob@x, yD  represents  the unevaluated  odd  Contact  bracket  (the  operator  in  the  "odd"  contact
algebra).

á OKAlgebra

OKAlgebra@g, 8x, y , t<D   defins the "odd" Contect algebra g  as the contact algebra of the polyno­
mials  in  x1 , ... , xn , y1 , ... yn  and  t  with  the  odd  contact  bracket  8., .<m.b. .  The  Buttin  bracket
8., .<B.b.  is also defined. The spaces x  and y  should be already defined (as for ButtinAlgebra).

á Operator

If  s  denotes  the  passive  form  of  some  operator,   Operator[s]  returns  the  name  of  the  active
form of the same operator.

á OpSymbol

If s denotes the active form of some operator, OpSymbol[s] returns the name of the passive form
of the same operator.
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á Output

Output@v ® f D  defines  the  fomat  of  exprerssion  v@ ...D  in  the  Output  form  as   f @v@ ...DD
.

Output ® f  is an optional parameter to space constructors that defines the output format of the
space elements.

à P

á P

P@vD  returns  the  parity  of  the  even  or  odd  vector  v .  For  mixed  (inhomogeneous)  vector  the
result is indefinite.

á Parity

Parity@vD  checks  if  v  is  a  homogenious  vector  and  returns  its  parity.  For  Inhomogeneous
vectors, and when checking fails, it returns Mixed.

á PartSplit

PartSplit@expr, selD  and  PartSplit@expr, sel, defaultD  return  the  part  of  splitted  expression
expr with given selector sel or the default if the part not found. The default value for default is 0.

á Pb

Pb@x, yD  is the Poisson bracket (the operation in the Poisson algebra).

á pb

pb@x, yD  represents the unevaluated Poisson bracket (the operation in the Poisson algebra).

á PDim

PDim@VD  returns the list 8evenDim, oddDim<  of dimensions of the even and odd components of
the vector superspace V . 

PDim@V , rD  returns the superdimension of the component of degree r in the graded space V .

á PiLeft

PiLeft@mD  returns the name of the module P Äm ,  where P   is  the 1−dimensional trivial odd
module, or None if this module was not defined.

PiLeft@m® lD  builds the module l = P Äm , where P   is the 1−dimensional trivial odd module.
PiLeft ® l  is an optional parameter to the constructor VectorSpace.
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á PiRight

PiRight@mD  returns the name of the module mÄ P , where P   is the 1−dimensional trivial odd
module, or None if this module was not defined.

PiRight@m® rD  builds the module r = mÄ P , where P   is the 1−dimensional trivial odd mod­
ule.

PiRight ® r  is an optional parameter to the constructor VectorSpace.

á PList

PList ® 8p1 , ...<  is the optional parameter for some space constructors. It is the list of parities
of either (a) the vectors forming a basis of the new space, (b) the generators of an algebra or a mod­
ule, or (c) rows and columns of matrices.

PList@VD  returns the parity list used in the definition of the space.

á Plus2

Plus2@a, b, ...D  is the sum a + b + ...  modulo 2.

á PlusOp

PlusOp@domainD  is the name of + in the domain.

á Plus$

When parsing the user’s input, the operation Plus is first replaced with GPlus$ and then, depend­
ing  on  operands,  it  may  be  replaced  with  Plus$  or  VPlus$.  In  the  last  step  the  operations  Plus$,
VPlus$ and GPlus$ are replaced with, respectively, Plus, VPlus and GPlus

To ensure that the final operation will be Plus independently of operands, one can enter Plus$
instead of Plus.

á PoissonAlgebra

PoissonAlgebra@g, xD  defines the Lie (super)algebra g  as the Poisson algebra on the space of
polynomials in xi , ..., x2 n  (the vector space x  should be already defined) with the Poisson bracket 

8 f , g<P.b.
= -H-1LP@ f D  â

i=1

n I ¶ f
����������
¶ xi

 
¶ g

�����������������������
¶ x2 n+1-i

- H-1LP@xi D  ¶ f
�����������������������
¶ x2 n+1-i

 
¶ g

����������
¶ xi
M .

PoissonAlgebra@g, 8p, q<D  defines  the  Lie  (super)algebra  g  as  the  Poisson  algebra  of  the
polynomials in p1 , ..., pn , q1 , ..., qn  (the vector spaces p  and q  should be already defined and have
the same superdimension) with the Poisson bracket 

8 f , g<P.b.
=â

i=1

n H-1LP@ f D P@pi D  I ¶ f
�����������
¶ pi

 
¶ g

����������
¶ qi

- H-1LP@pi D  ¶ f
����������
¶ qi

 
¶ g

����������
¶pi
M .

PoissonAlgebra@g, 8Θ<D  defines the Lie (super)algebra g  as the Poisson algebra of the polynomi­
als  in the odd variables Θ1 ,  ...,  Θn  (the vector space Θ  should be already defined) with the Poisson
bracket

8 f , g<P.b.
= H-1LP@ f D  â

i=1

n ¶ f
����������
¶ Θi

 
¶ g

����������
¶ Θi
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PoissonAlgebra@g, 8Θ<D g
Θ1 Θn Θ

8 f , g<P.b.
= H-1LP@ f D  â

i=1

n ¶ f
����������
¶ Θi

 
¶ g

����������
¶ Θi

.

PoissonAlgebra@g, 8p1 , ... pn , qn , ... q1 <D  and  PoissonAlgebra@g, 8p1 , ... pn , Θ, qn , ... q1 <D ,
where all pi , qi  and Θ  are (super)spaces, define the Lie (super)algebra alg as the Poisson algebra of
the polynomials on the direct sum of vector spaces spaces with the Poisson bracket equal to the sum
of the Poisson brackets on pairs  pi , qi  and on Θ .

PoissonAlgebra@g, x, 88c1 , i1 , j1 <, ..., 8cm , im , jm <<D  defines  the  Poisson  algebra  with  the
bracket 

8 f , g<P.b.
= -H-1LP@ f D  â

k=1

m
ck  

¶ f
�������������
¶ xik

 
¶ g

��������������
¶ x jk

.

á PolyGrade

PolyGrade@vD  is  a  polygrading  function.  For   Zn −graded  or  filtered  modules,  PolyGrade@vD
returns a list 8g1 , ... gn <  that represents the Zn −grading or filtration of the vector v.

For filtered modules, the function is defined on the elements of the basis. For graded modules,
the function is defined on homogeneous vectors.

The function PolyGrade  is defined by some space constructors. When an algebra is built from
generators, the PolyGrade@vD  is defined as the degree of the expression of v in term of generators.

á PowerOp

PowerOp@opD  is the name of "power" operation, associated with "times" operation op. 
PowerOp@op ® nameD  defines this operation.

á Power$

When  parsing  the  user’s  input,  the  operation  Power  is  first  replaced  with  GPower$  and  then,
depending  on  the  first  operand,  it  may  be  replaced  with  Power$  or  VPower$.  In  the  last  step  the
operations  Power$,  VPower$  and  GPower$  are  replaced  with,  respectively,  Power,  VPower  and
GPpower.

To  ensure  that  the  final  operation  will  be  Power  independently  of  the  first  operands,  one  can
enter Power$ instead of Power.

á PreSL

PreSL  is  preprocessor  that  converts  operations  +, -, * , � , ^   to  vector  or  scalar  opera­
tions.

$Pre = PreSL  turns the preprocessor on. $Pre =.  turns the preprocessor off.

á pslAlgebra

pslAlgebra@g, VD   defines the algebra g = pslHVL = slHVL �Xcenter\ . The even and odd compo­
nents of V should have the same dimension.

pslAlgebra@g, Dim ® nD  and  pslAlgebra@g, PList ® 8p1 , ... pn <D  defines  the  algebra
g = pslHnL = slHnL �Xcenter\ .  The dimension may be a number, an expression, or a list 8n1 , n2 , ...< ,
as for VectorSpace.
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á psq2Algebra

psq2Algebra@g, nD  defines  the  superalgebra  g = psqHnLH2L   with  basis  gi @kD = gi  Τk ,

gi, j @kD = gi, j  Τk .

á psqAlgebra

psqAlgebra@g, 8x, y<, nD  defines the superalgebra g = psqHnL   with basis  xi ,  xi, j  (the  even ele­
ments) and yi , yi, j  (the odd elements).

à Q

á q2Algebra

q2Algebra@g, nD  defines the superalgebra g = qHnLH2L   with basis gi, j @kD = gi, j  Τk .

á qAlgebra

qAlgebra@g, 8x, y<, nD  defines the superalgebra g = qHnL   with basis xi, j  (the even elements) and
yi, j  (the odd elements).

á QuotientModule

QuotientModule@f, G, g, hD  builds the quotient module f = g �h , where g and h are defined as
submodules in G and hÌ gÌG.

Option Split®f  instructs to split the space in order to accelerate calculations.
QuotientModule@f, G, g, h, splitFnD  builds a graded submodule using splitting function splitFn.

à R

á RamondAlgebra

RamondAlgebra@g, 8x, Θ, t<D  defines the Ramond superalgebra g  as the algebra of the polynomi­
als in x1 , ... xn , Θ , and t . The x  may be also a list of components, as in PoissonAlgebra.

á RamondD

RamondD@ f , t, Θ, ptrnD   is  the  D  operator  used in  the definition of  the  Ramond superalgebra.
The pattern ptrn should match all independent variables.

á RamondK

RamondK@algD  is the operator from functions to vector fields (implemented as differential opera­
tors) associated with the bracket in the Ramond superalgebra.

á Rank

Rank@TD  returnt the rank of the tensor space T .
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á Rb

Rb@x, yD  is the Ramond bracket (the operator in the Ramond superalgebra).

á rb

rb@x, yD  represents the unevaluated Ramond bracket (the operator in the Ramond superalgebra).

á ReGrade

ReGrade@V , gradingD changes the grading on the space V and all known relatives of V.
The parameter grading may be either a list of new degrees for the elements of the basis (or for

generators  only  if  an  algebra  or  a  module  is  built  using  generators),  or  the  name  (a  symbol  or  a
number) of a particular grading predefined by the space constructor of V.  

á Regular

One of possible modes of the definition of the bracket and action.

á RemoveOverscript

RemoveOverscript@opD  removes the overscript notation (such as x��) for the operation op@xD .

á RemovePower

RemovePower@opD  removes the power−like notation (such as xÄn ) for the operation op@x, nD .

á RemoveSuperscript

RemoveSuperscript@opD  removes the superscript notation (such as xÖ ) for the operation op@xD .

á RestrictModule

RestrictModule@V , gD  defines  an  action  of  g  on  V ,  if  V  is  a  defined  as  a  subspace  of  some
g−module.

à S

á Scalar

Scalar@c, ...D  declares that c, ...  are scalars. Any expression c@ ...D  whose header is declared as
scalar, is also a scalar. So Scalar@ f D  may be used to declare function f  scalar−valued.

Scalar@ f ® nD  declares that the n−th operand of f  is scalar. Here n  may be a number, First,
Last, All or _.
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á ScalarEquation

ScalarEquation@equD  converts  the  equation  or  a  system  of  vector  equations  equ  with  scalar
variables into a system of scalar equations.

á ScalarQ

ScalarQ@cD  and ScalarQ@c@ ...DD   returns True if c  was declared Scalar.

á SeqForm

SeqForm@e1 , ...D @h@a1 , ..DD  prints the sequence e1 , ...,  substituting    h, a1 , ...  instead of place­
holders #0, #1, ... .

á SimplifySign

SimplifySign@exprD  simplifies the expressions H-1Lpolynom  in expr.

á SimplifySignRule

SimplifySignRule is the replacement rule for simplifying H-1Lpolynom .

á SkewSymmetric

SkewSymmetric@ f D  introduces an automatical sorting of arguments of f  using super−skew−sym­
metry

  f @ .., y, x, ..D = H-1LH1+P@xDL H1+P@yDL f @ .., x, y, ..D .

á SkewSymmetricQ

SkewSymmetricQ@ f D  returns True if f  was declared skew−symmetric.

á SkewSymmetricRule

SkewSymmetricRule@ f D  is  the  replacement  rule  for  sorting  of  arguments  of  f  using  super−
skew−symmetry

 f @ .., y, x, ..D® H-1LH1+P@xDL H1+P@yDL f @ .., x, y, ..D .

á SkipVal

SkipVal  is  a  special value of selection function f  used in SplitSum  and SplitList.  If, for a
member m of the splitting expression, f @mD� SkipVal , then m is omitted.
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á slAlgebra

slAlgebra@g, VD   defines  the  Lie   (super)algebra g = slHVL of  traceless  matrices on  the  space
V .

slAlgebra@g, Dim ® nD  defines the algebra g = slHnL  of traceless n * n  matrices. The dimension
may be a number, expression, or a list 8n1 , n2 , ...< , as for VectorSpace.

á SpacePlus

SpacePlus@W, 8V1 , ... Vn <D  defines the space W = V1 Å ... Å Vn  as the direct sum of the terms.

á Split

The optional parameter Split ® f  instructs the space constructor to split the space into homoge­
neous components. The value of f  is a constant on each component. Splitting increases the speed of
calculations.

á SplitList

SplitList@list, ptrnD  transforms the list of vectors 8c1 * v1 , c2 * v2 , ...<  with v1 , v2 , ...  match­
ing  pattern  ptrn,  gathering  terms  with  equal  v’ s .  The  result  is  the  list
8 vΣ1

® 8cΤ11
, cΤ12

, ..<, vΣ2
® 8 ...<, ... < ,  where  8 vΣ1

, vΣ2
, ... <  is  a  sorted  list  of  different  vi ’ s  in

the list  and 8cΤi,1
, ...<  is the list of coefficients of all vectors vk  equal to vΣi

.

SplitList@list, ptrn, f D  transforms  the  list  of  vectors  8c1 * v1 , c2 * v2 , ...<  with  v1 , v2 , ...
matching  pattern  ptrn  into  a  list  8 f1 ® 8e11 , ...<, f2 ® 8e21 , ...<, ... < ,   where  8 f1 , f2 , ... <  is  a
sorted list of different values of f @vi D  and  8ei 1 , ...<  is the list of the members of list giving value fi
of the function f  (not including members with f @vi D� SkipVal).

á SplitSum

Split Sum@sum, ptrnD  transforms the vector sum c1 * v1 + c2 * v2 + ...  with v1 , v2 , ...  matching
pattern ptrn, gathering terms with equal v’ s . The result is the list 8 vΣ1

® s1 , vΣ2
® s2 , ... < , where

8 vΣ1
, vΣ2

, ... <  is  a  sorted list  of different vi ’ s  in the sum   and si  is  the sum of coefficients of all
vectors vk  equal to vΣi

.
Split Sum@sum, ptrn, f D  transforms the vector sum c1 * v1 + c2 * v2 + ...  with v1 , v2 , ...  match­

ing pattern ptrn  into a list 8 f1 ® s1 , f2 ® s2 , ... < ,   where 8 f1 , f2 , ... <  is a sorted list of different
values of f @vi D  and  8ei 1 , ...<  is the sum of the members of sum giving value fi  of function f  (not
including members with f @vi D� SkipVal).

á sqAlgebra

sqAlgebra@g, 8x, y<, nD  defines  the  Lie  superalgebra  g = sqHnL   with  basis  xi, j  (the  even  ele­
ments), yi  (the odd diagonal elements), and yi, j  (the odd off−diagonal elements, i ¹ j).

S 71



á Standard

Standard@v ® f D  defines  the  output  format  of  the  expression  v@ ...D  in  Standard  form  as
f @v@ ...DD  .

Standard ® f  is  an  optional  parameter to  space constructors that  defines the  Standard output
format of the space elements.

The output in the standard form produced by the function Standard may not be reused for the
input. Use MakeBoxes and InterpretationBox to define reusable output forms.

Standard@v ® SubscriptedD  defines  also  the  interpretation  of  the  subscripted  v  in  Standard
input format: vi,... �v@i, ...D .

á STimesOp 

STimesOp@domainD  is the name of *  in Scalar * domain .

á StopUseAsSymbol

StopUseAsSymbol@exprD  cancels usage of the expression expr (e.g., v� ) as a single symbol.

á SubAlgebra

SubAlgebra@h, g, 8g1 , ... H, gLk <D  or  SubAlgebra@h, g, 8h1 ® g1 , ... H, hLk ® gk <D  builds  the
subalgebra h  of the Lie (super)algebra g  generated (the subalgebra) by the elements g1 , ... gk Î g .
The second forms gives also names for the generators of g .

Specific options: 
GRange ® r   is the maximal degree of relations (default is Infinity);
Grade ® fn   defines a grading on h: Grade@hD = fn@image@hDD  (default is Grade).
Grade ® r    computes up to grade r  ( r  should be a number; the Grade function must be defined

in g).
Grade ® 8 fn, r<    computes up to grade r  and defines a grading on h .
Weight ® fn    defines a weight on h: Weight@hD = fn@image@hDD  (default is Weight).
The function SubAlgebra calculates the basis of h  in terms of generators and relations between

the generators. They are stored as respective properties GenBasis and GenRel of algebra h .

á SubModule

SubModule@n, m, 8v1 , ..., vk <D  buillds the submodule n of the module m generated (the submod­
ule) by the elements v1 , ..., vk Î m .

SubModule@n, m, 8v1 , ..., vk <, Split ® wtD  buillds a graded submodule n Ì m  generated by the
elements  v1 , ..., vk Î m .  The  argument  wt  is  the  grading  function.  Graded  submodules  are  calcu­
lated faster than non−graded ones.

SubModule@n, m, 8v1 , ..., vk <, Algebra ® gD  should  be  used  if  more  than  one  algebra  acts  on
the module m . The function is implemented for finite dimensional algebras and modules with 1−in­
dex bases.

á SubSpace

SubSpace@U, V , 8v1 , ...<D  defines a subspace U Î V  with a given basis 8v1 , ...< .
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á SumOp

SumOp@opD  returns  the  name  of  "Sum"  function,  associated  with  the  "plus"  operation
op.

SumOp@op ® nameD  defines this operation.

á SVExpandRule

expr �. SVExpandRule expands out all scalar coefficients in c * v .

á SVFactorRule

expr �. SVFactorRule factorizes all scalar coefficients in c * v .

á SVNormalRule

expr �. SVNormalRule  converts  all  scalar  coefficients  in  c * v  to  the  normal  form  using  the
function $SNormal.

á SVSimplifyRule

expr �. SVSimplifyRule simplifies all scalar coefficients in c * v .

á SVSolve

SVSolve@eqns, vars, ...D  attempts  to  solve  a  vector  equation  or  set  of  equations  eqns  for  the
scalar variables vars. For other parameters and options, see Solve.

SVSolve@eqnsD  treats all non−vector variables  encountered as vars above.

á Symmetric

Symmetric@ f D  introduces an automatic sorting of arguments of f  using supersymmetry

f @ .., y, x, ..D = H-1LP@xD P@yD f @ .., x, y, ..D .

á SymmetricNormal

SymmetricNormal@eD  returns the normal form of the vector expression, assuming the supersym­
metry of the vector product VTimes. See also VNormal.

á SymmetricQ

SymmetricQ@ f D  returns True if f  was declared Symmetric.

á SymmetricRule

SymmetricRule@ f D  is the replacement rule for sorting of arguments of f  using supersymmetry

f @ .., y, x, ..D® H-1LP@xD P@yD f @ .., x, y, ..D .
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à T

á Tabular

One of possible modes of the definition of the bracket and action. These operations are defined
via a "multiplication table".

á TCollect

TCollect@expr, caseD  collects together terms a ** b  with the same a  (if case=First)    or with
same b (if case=Last).

TCollect@expr, case, opD  collect terms of operation  op rather than ** . The operation should
be declared neither Additive nor Linear.

á TensorSpace

TensorSpace@T, V , 8C1 , C2. ..<D  defines  the  space  T = C1 Ä C2 Ä ...  .  Repeated  components
may  be  written  as  Cn .  All  components  must  be  relatives  of  the  space  V .  The  basis  of  T  is
T@i1 , i2 , ...D .

á TestFirst

TestFirst@ f D  introduces  the  property  f @x1 + ...D = f @x1 D .  This  property  reduces  the  time  of
the calculation of f @x1 + ...D , but restricts f to homogeneous arguments only.

á TestFirstRule

TestFirstRule@ f D  is the replacement rule f @x1 + ...D® f @x1 D . It may be applied to the homoge­
neous (with respect to f ) vector sum.

á TeX

TeX@v ® f D  defines the output format of expression v@ ...D  in TEX  form as f @v@ ...DD  .
TeX ® f  is  an  optional  parameter to  space constructors that  defines the  TEX  output  format of

the space elements.

á TheAlgebra

TheAlgebra@mD  is the name of the algebra acting on the module m.

á TheModule

TheModule@vD  is the name of the module hosting the vector v .

á TheSpace

For any space name or other vector symbol or expression x ,  TheSpace@xD  returns the name of
original space from which x  is derived.
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á ThreadGraded

ThreadGraded@ f D  introduces  the  property  f @aëbD = f @aD+ f @bD  for  any  graded  operation  ë.
The function f  should be declared to be scalar or vector.

ThreadGraded@ f ® plusD  introduces the property f @aëbD = plus@ f @aD, f @bDD .

á ThreadGradedRule

ThreadGradedRule@ f D  is the replacement rule f @aëbD® f @aD+ f @bD  for any graded operation ë.
The function f  should be declared to be scalar or vector.

ThreadGradedRule@ f , plusD  is the replacement rule f @aëbD® plus@ f @aD, f @bDD

á Times2

Times2@a, b, ...D  is the product a * b * ...  modulo 2.

á TimeString

TimeString@D  returns a string representing the current time.

á Times$

When  parsing  the  user’s  input,  the  operation  Times  is  first  replaced  by  GTimes$  and  then,
depending  on  operands,  may  be  replaced  with  Times$,  VTimes$,  or  SVTimes$.  In  the  last  step  the
operations Times$,  VTimes$,  SVTimes$,  and GTimes$  are replaced respectively with Times,  VTimes,
SVTimes, and GTimes.

To  ensure  that  the  final  operation  will  be  Times  independently  of  operands,  one  can  enter
Times$ instead of Times.

á Tp

Tp@e1 , e2 , ...D  or e1 ** e2 ** ...  denotes the tensor product of e1 , e2 ,  ... in the cases where it is
not regarded as an operation in the tensor algebra (for example, f @xD ** dx). In the internal Mathemat­
ica format the operation NonCommutativeMultiply is used instead of Tp.

á tPower

tPower@v, nD , v^Än , or vÄn  is the n−th tensor power of v .

á Traditional

Traditional@v ® f D  defines the output format of the expression v@ ...D  in the Traditional form
as f @v@ ...DD .

Traditional ® f  is  an optional parameter to space constructors that defines the Traditional
output format of the space elements.
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á TrivialSpace

TrivialSpace@zD  defines the space z  of dimension 1 and basis 8z< .
TrivialSpace@Ζ, OddD  defines the  space Ζ  of dimension 0|1 and basis 8Ζ< .

à U

á UnAdditive

UnAdditive@ f D  cancels the additive expansion of f @ .., x + y, ..D .
UnAdditive@ f ® FirstD  and  UnAdditive@ f ® LastD  cancel  the  additive  expansion  of  the  first

(last) argument of f .

á UnAntiSkewSymmetric

UnAntiSkewSymmetric@ f D  cancels the automatic sorting of the operands of f .

á UnAntiSymmetric

UnAntiSymmetric@ f D  cancels the automatic sorting of the operands of f .

á UnDegTimes

UnDegTimes@opD  cancels the property Deg@op@v1 , ... vn D, xD = Deg@v1 , xD+ ... + Deg@v1 , xD  .

á UnGraded

UnGraded[op] cancels the property Grade@a~op~bD = Grade@aD+ Grade@bD .

á UnHomogen

UnHomogen@ f D  cancels the property f @ ..., c * v, ...D = cr * f @ ..., v, ...D  for a scalar c  and vector
v . 

UnHomogen@ f ® FirstD  and  UnHomogen@ f ® LastD  cancels  homogeneity  in  the  first  or  last
argument of f  only.

á UniqueCounters

UniqueCounters@exprD  returns the expr with all counters in all sums and tables replaced with a
unique symbol.

á UnJacobi

UnJacobi@ f ® gD  cancels the property of action of f  on g@ ...D  as a bracket in Lie superalgebra.
UnJacobi@ f ® 8g1 , ...<D  cancels this property for every gi .
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á UnLeibniz

UnLeibniz@ f ® gD  cancels the property of action of f  on g@ ...D  as a derivation.
UnLeibniz@ f ® 8g1 , ...<D  cancels this property for every gi .

á UnLinear

UnLinear@ f D  cancels the automatic (multi)linear expansion of f @ ...D .
UnLinear@ f ® FirstD  and  UnLinear@ f ® LastD  cancels  the  linearity  in  the  first/last  argument

only.

á UnLogPower

UnLogPower@ f D  cancels the property f @xr D = r * f @xD .
UnLogPower@ f ® opD  cancels the property f @xr D = op@r, f @xDD .

á UnOutput

UnOutput@vD  cancels the output format of the expression v@ ...D  defined by Output .

á UnScalar

UnScalar@c, ...D  cancels the declaration of c as a scalar. See also Scalar and ScalarQ.

á UnSkewSymmetric

UnSkewSymmetric@ f D  cancels the automatic sorting of the operands of f .

á UnStandard

UnStandard@opD  cancels  the  format  of  expression  op@ ...D   in  the  Standard  form  defined  by
Standard.

á UnSymmetric

UnSymmetric@ f D  cancels  the  automatic  sorting  of  the  operands  of  f .  See  also  Symmetric,
SymmetricRule.

á UnTestFirst

UnTestFirst@ f D  cancels the property f @x1 + ...D = f @x1 D ,  so the function f  may be applied to
non−homogeneous vector sum. See also TestFirst.

á UnTeX

UnTeX@vD  cancels the format of the expression v@ ...D   in TEX  form defined by TeX.
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á UnThreadGraded

UnT hreadGraded@ f D  cancels the property f @aëbD = f @aD+ f @bD  for any graded operation ë.
UnT hreadGraded@ f ® plusD  cancels the property f @aëbD = plus@ f @aD, f @bDD .

á UnTraditional

UnTraditional@opD  cancels  the  format  of  the  expression  op@ ...D   in  the  Traditional  form
defined by Traditional.

á UnVector

UnVector@v, ...D  cancels the declaration of v as a vector. See also Vector and VectorQ.

á UnZeroArg

UnZeroArg@ f D  cancels  the  property  f @ ..., 0, ...D = 0  introduced  by
ZeroArg@ f D .

UnZeroArg@ f ® FirstD  and  UnZeroArg@ f ® LastD  cancel  the  properties  introduced  by  respec­
tively  ZeroArg@ f ® FirstD  and ZeroArg@ f ® LastD .

á UpToDegreeBasis

UpToDegreeBasis@d, 8x1 , ..., xn <D  returns the list of elements of degree £ d  in the symmetric
algebra in x1 , ..., xn .

UpToDegreeBasis@d, 8x1 , ..., xn <, opD  uses  op  instead  of  VTimes.  The  operation  op  must  be
Flat and Listable.

á UseAsSymbol

UseAsSymbol@eD  allows to use the expression e  as a single symbol. So e  may be used, e.g.,  as a
module’s  name.  Typically,  expressions  in  a  symbol−like  standard  form  (such  as  x` )  are  used  as
symbols.

à V

á VBasis

VBasis@exprD  returns the list of different linear vector terms encountered in the expression.

á VCollect

VCollect@exprD  tries to simplify the expression expr by collecting together the terms ci * v  with
the same v . 
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á Vector

Vector@v, w ...D  declares  that  v, w, ...  are  vectors.  Any  expression  v@ ...D  whose  header  is
declared as vector, is also vector. So Vector@ f D  may be used to declare function f  vector−valued.

Vector@ f ® nD  declares that the n−th operand of f  is a vector. Here n  may be a number, First,
Last, All or _.

á VectorLieAlgebra

VectorLieAlgebra@g, xD  defines a Lie (super)algebra g = vectHxL  of vector fields on the space
x  and  its  action  on  the  (super)space of  polynomials  and  polyvectors  on  x .  The  space  x  should  be
defined as well as the space of left even forms on x  (CoLeft space).

The basis of g  is 8pi @xD ** v@ jD< , where 8pi @xD<  is the basis of polynomials on x  and 8v@ jD<  is the
basis of CoLeft@xD  (the space of left even linear forms on x).  The name of the Lie bracket and the
action is (by default) Lb, the unevaluated form is lb.

Unless  the  space  x  was  already  graded,  the  standard  grading  is  defined  on  x  assuming
Deg@xi D = 1. The grading of x  induces a gradinng of g . 

The algebra g  may be regraded by calling ReGrade@g, gradingD .  The predefined gradings are
numbered from 0 to the odd dimension of x. In the i−th grading, the first i odd element of the basis
of x have degree 0, all other x j ’ s  have degree 1.

The following options alter the default operation names:
Lb is the name of Lie bracket (the default is Lb)
CTimes  is  the name of the tensor multiplication **  (the default is NonCommutativeMultiply,  a

synonym of Tp)
Wedge is the multiplication of polyvectors (the default is wedge).

á VectorQ

VectorQ@xD  returns True if x  is an object of Vector domain.

á VectorSpace

VectorSpace@VD  defines  the  vector  space  V .  The  dimension  and  parities  may  be  given  by
optional parameters Dim ® d  or  PList -> 8p1 , ... pn < .

á VExpand

VExpand@exprD  expands out all VTimes and SVTimes  products in expr.

á VExpandRule

expr ��. VExpandRule expands out all VTimes and SVTimes  products in expr.

á VIf

VIf@cond, vD  is a vector−valued version of the If function. It is evaluated to v if cond � True

and to 0 if  cond � False . A number of rules of symbolic evaluation works with unresolved VIf[...].
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á VNormal

VNormal@exprD  tries to convert a vector expression to the standard (normal) form.
It expands out all VTimes and SVTimes  products in expr, collects together terms ci * v  with the

same v , converts the scalar coefficients to the standard form. 

á VOrder

VOrder@v1 , v2 D  returns  0, +1, -1  depending  on  the  order  of  vectors  v1  and  v2 .The  scalar
coefficients are ignored. See also the Mathematica function Order.

á VOrderQ

VOrderQ@v1 , v2 D  returns True or False depending on the order of vectors v1  and v2 .The scalar
coefficients are ignored. See also the Mathematica function OrderedQ.

á VPlus

VPlus@v1 , v2 , ...D  is  the  vector  sum  of  v1 , v2 , ...  .  The  expression  v1 + v2 + ...  typed  in  the
notebook is converted to VPlus@v1 , v2 , ...D  if all terms are vectors.

á VPower

VPower@v, nD  is  the n−th symmetric power of vector v .   The expressions v^n  and vn  typed in
the notebook are converted to VPower@v, nD  if v  is vector.

á VSameQ

VSameQ@v1 , v2 D  returns True if v1 = c1 * v , v2 = c2 * v  with same v  and scalars c1 , c2  and False
otherwise.

á VSolve

VSolve@eqns, vars, ...D  attempts to solve an equation or set of equations for the vector variables
vars. For other parameters and options, see Solve.

VSolve@eqnsD  treats all vector variables encountered as vars above.

á VSort

VSort@v1 + ...D  sorts  the  terms  in  the  vector  sum  in  the  alphabetical  order.  The  scalar  coeffi­
cients are irrelevant for sorting.

80 List of  symbols



á VSum

VSum@expr, iter, ...D  is  the  vector−valued  version  of  the  Sum  function.  A  number  of  rules  of
symbolic evaluation works with unresolved VSum[...].

For  both  Sum  and  VSum,  an  alternative  iterator   8i, to ® from<  is  defined.  If  the  difference
diff = from - to  is a number, this iterator is replaced with

(a) 8i, from, to - 1<  if diff > 0;
(b) 8i, to, from - 1<  and the whole sum is multiplied by -1 if diff < 0.
(c) the whole sum is replaced with 0 if diff = 0;

á VTimes

VTimes@v1 , v2 , ...D  is the product of vectors of v1 , v2 , ...  .  The vector product may have vari­
ous meanings. It may be used for any associative operation. The expression v1  v2. .. , v1 * v2 * ... , or
v1 ´ v2 ´ ...  typed in the notebook is converted to VTimes@v1 , v2 , ...D  if all factors are vectors.

The  vector  product  is  non−symmetric  by  default,  i.e.,  the  terms  are  not  sorted  automatically.
Use Symmetric and UnSymmetric to set and cancel the (super)symmetric sorting of terms.

à W

á Wedge

Wedge@v1 , v2 , ...D or  v1 ï v2 ï ...  is  the  exterior  multiplication  (the  operation  in  the  exterior
algebra). The operation is assotiative. The "power" operation for Wedge  is not defined. The evalua­
tion rules of Wedge are Linear, Symmetric and IdArg. After sorting the operands, Wedge is replaced
with wedge.

á wedge

wedge@e1 , ..., en D  is  the  internal  representation  of  the  basis  of  exterior  algebras.  The  external
representation is e1 ï ...ï en .

See also Wedge.

á Weight

Weight@vD  is the weight of the vector v . The weight is defined for homogeneous elements only.

á WeightMark

WeightMark@length, m1 , ...D  returns  a  list  of  given  length.  All  elements  of  the  result  are  ini­
tially set to 0. For every mark mi , if mi > 0, then the mi −th element of the result is increased by 1. If
mi < 0, then the H-mi L−th element is diminished by 1.

á WithoutPreSL

Use WithoutPreSL@expr; ...D  to prevent preprocessing of expressions when the preprocessing is
turned on.
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á WithUnique

WithUnique@8s1 , ...<, exprD  evaluates expr  replacing the symbols s1 , ...  with the new symbols
with unique names.

à Z

á ZeroArg

ZeroArg@ f D  introduces the property f @ ..., 0, ...D = 0.
ZeroArg@ f ® FirstD  and ZeroArg@ f ® LastD  acts on the first/last argument of f  only.

á ZeroArgRule

ZeroArgRule@ f D  returns the replacement rule f @ ..., 0, ...D® 0.
ZeroArg@ f ® FirstD  and ZeroArg@ f ® LastD  return rules f @0, ...D® 0 and f @ ..., 0D® 0.

á ZId

ZId is the identity operator. It is used in symbolic calculations.

á ZLDer

ZLDer@x, ptrnD  is the operator of left partial derivative with respect to x. ZLDer@x, ptrnD@exprD  is
the left partial derivative of expression expr  with respect to x.  The pattern ptrn should match all the
independent  and  none  of  the  dependent  variables.  ZLDer@x, ptrnD  may  be  used  in  symbolic
calculations.

á ZRamondD

ZRamondD@t, Θ, ptrnD  returns  the  Ramond  operator   D  as  a  differential  operator  acting  on  the
space of Laurent polynomials in t , Θ , and the indeterminates matching the pattern ptrn.

à $

á $DPrint

DPrint@level, data ...D  prints data (using Print) if $DPrint ³ level . 

á $DPrintLabel

The  value  of  $DPrintLabel@D  is  printed  as  a  label  for  debug  printing.  Use
$DPrintLabel = DateString  or  TimeString  to  use  [date  and]  time  as  label.  Use
$DPrintLabel = None  for debug printing without labels.
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á $EnvLess

The  value  of  $EnvLess  is  the  default  sorting  function  for  the  product  in  enveloping  algebras.
The default value of $EnvLess is OrderedQ[{#1,#2}]&

á $SNormal

The value of $SNormal  is the user−defined function which is called by VNormal  to convert the
scalar  coefficients  to  the  normal  form.  It  should  always  convert  to  zero  the  scalars  that  are  really
equal to zero. The default value of $SNormal is Expand.

á $Solve

The value of $Solve  is the user−defined function for solving the scalar equations. The default
setting is $Solve = Solve .

$ 83



Classical Lie Superalgebras in SuperLie 
Here we describe how to define classical Lie superalgebras when working in SuperLie.

à Matrix algebras

à General matrix algebra

Algebra gl(m|n):

glAlgebra@name, Dim ® 8m, n<D

Algebra gl(par) with given format par = 8p1 , ...< , pi Î 80, 1<:
glAlgebra@name, PList ® parD

Algebra of linear operators on given superspace V with basis V[1], ..., V[n]:

glAlgebra@name, VD

à Special matrix algebra

Algebra sl(m|n):

slAlgebra@name, Dim ® 8m, n<D

Algebra sl(par) with given format par = 8p1 , ...< , pi Î 80, 1<:
slAlgebra@name, PList ® parD

Algebra of supertraceless linear operators on given superspace V with basis V[1], ..., V[n]:

slAlgebra@name, VD

Algebra sl(m|n) given by means of Cartan matrix, for example, 
Algebra sl(2|2):

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
2 -1 0

-1 0 1

0 -1 2

y

{
zzzzzz, ¥, PList ® 80, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 0

-1 0 1

0 -1 0

y

{
zzzzzz, ¥, PList ® 81, 1, 1<E

Algebra sl(1|3):

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 0

-1 2 -1

0 -1 2

y

{
zzzzzz, ¥, PList ® 81, 0, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 0

-1 0 1

0 -1 2

y

{
zzzzzz, ¥, PList ® 81, 1, 0<E



à Algebra psl(m|m)

Algebra psl(m|m):

pslAlgebra@name, Dim ® 8m, m<D

Algebra  psl(par)  with  given  format  par = 8p1 , ...< ,  pi Î 80, 1< ,  where  the  number  of  0’s  and
1’s should be equal:

pslAlgebra@name, PList ® parD

Algebra of supertraceless linear operators on the given superspace V  with basis V[1], ...,  V[n];
the operators are given modulo scalar operators:

pslAlgebra@name, VD

à Algebra osp(m|2n)

Not implemented as matrix algebra. May be defined as Lie superalgebra with Cartan matrix:

Algebra osp(3|2)

CartanMatrixAlgebraAname, 8x, h, y<, J 0 1

-2 2
N, ¥, PList ® 81, 0<E

CartanMatrixAlgebraAname, 8x, h, y<, J 0 1

-1 1
N, ¥, PList ® 81, 1<E

Algebra osp(2|4)

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 0

-1 2 -2

0 -1 2

y

{
zzzzzz, ¥, PList ® 81, 0, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 0

-1 0 2

0 -1 2

y

{
zzzzzz, ¥, PList ® 81, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 -2 1

-2 0 1

-1 -1 2

y

{
zzzzzz, ¥, PList ® 81, 1, 0<E

Algebra osp(3|4)

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
2 -1 0

-1 0 1

0 -2 2

y

{
zzzzzz, ¥, PList ® 80, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 0

-1 0 1

0 -1 1

y

{
zzzzzz, ¥, PList ® 81, 1, 1<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 0

-1 2 -1

0 -1 1

y

{
zzzzzz, ¥, PList ® 81, 0, 1<E

Algebra osp(5|2)
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CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
2 -1 0

-1 0 1

0 -1 1

y

{
zzzzzz, ¥, PList ® 80, 1, 1<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 0

-1 0 1

0 -2 2

y

{
zzzzzz, ¥, PList ® 81, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 0

-1 2 -1

0 -2 2

y

{
zzzzzz, ¥, PList ® 81, 0, 0<E

Algebra osp(6|2)

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

0 1 0 0

-1 2 -1 -1

0 -1 2 0

0 -1 0 2

y

{

zzzzzzzzzzz
, ¥, PList ® 81, 0, 0, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

0 1 0 0

-1 0 1 1

0 -1 2 0

0 -1 0 2

y

{

zzzzzzzzzzz
, ¥, PList ® 81, 1, 0, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 0 0

-1 0 1 1

0 1 0 -2

0 1 -2 0

y

{

zzzzzzzzzzz
, ¥, PList ® 80, 1, 1, 1<E

Algebra osp(4|4)

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 0 0

-1 0 1 1

0 -1 2 0

0 -1 0 2

y

{

zzzzzzzzzzz
, ¥, PList ® 80, 1, 0, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

0 1 0 0

-1 0 1 1

0 1 0 -2

0 1 -2 0

y

{

zzzzzzzzzzz
, ¥, PList ® 81, 1, 1, 1<E

à Exceptional finite dimensional algebras

à Algebra ospH4 È 2; ΑL

(also named d(Α))

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
2 -1 0

Α 0 -1 - Α

0 -1 2

y

{
zzzzzz, ¥, PList ® 80, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
2 -1 0

-1 0 -Α

0 -1 2

y

{
zzzzzz, ¥, PList ® 80, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 -1 - Α

-1 0 -Α

-1 - Α Α 0

y

{
zzzzzz, ¥, PList ® 81, 1, 1<E
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à Algebra ag
2

 

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 0

-1 2 -3

0 -1 2

y

{
zzzzzz, ¥, PList ® 81, 0, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 0

-1 0 3

0 -1 2

y

{
zzzzzz, ¥, PList ® 81, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 -3 1

-3 0 2

-1 -2 2

y

{
zzzzzz, ¥, PList ® 81, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
2 -1 0

-3 0 2

0 -1 1

y

{
zzzzzz, ¥, PList ® 80, 1, 1<E

à Algebra ab3

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 0 0

-3 0 1 0

0 -1 2 -2

0 0 -1 2

y

{

zzzzzzzzzzz
, ¥, PList ® 80, 1, 0, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

0 -3 1 0

-3 0 2 0

1 2 0 -2

0 0 -1 2

y

{

zzzzzzzzzzz
, ¥, PList ® 81, 1, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 0 0

-1 2 -1 0

0 -2 0 3

0 0 -1 2

y

{

zzzzzzzzzzz
, ¥, PList ® 80, 0, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 0 0

-2 0 2 -1

0 2 0 -1

0 -1 -1 2

y

{

zzzzzzzzzzz
, ¥, PList ® 80, 1, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

0 1 0 0

-1 0 2 0

0 -1 2 -1

0 0 -1 2

y

{

zzzzzzzzzzz
, ¥, PList ® 81, 1, 0, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 0 0

-1 2 -1 0

0 -2 2 -1

0 0 -1 0

y

{

zzzzzzzzzzz
, ¥, PList ® 80, 0, 0, 1<E

à Algebra as(4|4)

It is implemented as a subalgebra in vect(4|4) with basis

ai, j = xi  
¶

����������
¶x j

- Ξ j  
¶

���������
¶Ξi

, i ¹ j

ai = ai,i - ai+1,i+1

bi, j = xi  
¶

����������
¶Ξ j

+ x j  
¶

���������
¶Ξi

ci, j = Ξi  
¶

����������
¶x j

- Ξ j  
¶

���������
¶xi

- ΛIxk  
¶

���������
¶Ξl

- xl  
¶

����������
¶Ξk
M , where Hi, j, k, lL Î A4

d = Λ â
i=1

4
xi  

¶
���������
¶xi

+ Ξi  
¶

���������
¶xi
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See the notebook as−4_4.nb for details of implementation.

à Infinite dimensional algebras with Cartan matrix

All computations will be made up to the degree r.

à Algebra ag
2
H1L

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 0 0

4 0 -1 0

0 -1 2 -3

0 0 -1 2

y

{

zzzzzzzzzzz
, r, PList ® 80, 1, 0, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

0 -4 3 0

-4 0 1 0

3 1 0 -3

0 0 -1 2

y

{

zzzzzzzzzzz
, r, PList ® 81, 1, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 0 0

-1 2 -1 0

0 -3 0 2

0 0 -1 1

y

{

zzzzzzzzzzz
, r, PList ® 80, 0, 1, 1<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 0 0

-3 0 3 -1

0 3 0 -2

0 -1 -2 2

y

{

zzzzzzzzzzz
, r, PList ® 80, 1, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

1 -1 0 0

-2 0 3 0

0 -1 2 -1

0 0 -1 2

y

{

zzzzzzzzzzz
, r, PList ® 81, 1, 0, 0<E

à Algebra ospH4 È 2LH2L

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
1 -1 0

-1 0 1

0 -2 2

y

{
zzzzzz, r, PList ® 81, 1, 0<E

à Algebra slH3 È 3LH4L

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
2 -2 0

-1 0 1

0 -2 2

y

{
zzzzzz, r, PList ® 80, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
2 -2 0

-1 0 1

0 -2 2

y

{
zzzzzz, r, PList ® 81, 1, 1<E

à Algebra svectΑ
L H1 È 2L

$SNormal = Together

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
2 -1 -1

1 - Α 0 Α

1 + Α -Α 0

y

{
zzzzzz, r, PList ® 80, 1, 1<E
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à Algebra psqH3LH2L

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
0 1 -1

-1 0 1

1 -1 0

y

{
zzzzzz, r, PList ® 81, 1, 1<E

à Algebra psqH4LH2L

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 0 -1

-1 2 -1 0

0 -1 2 -1

-1 0 1 0

y

{

zzzzzzzzzzz
, r, PList ® 80, 0, 0, 1<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

0 1 0 -1

-1 2 -1 0

0 -1 0 1

-1 0 1 0

y

{

zzzzzzzzzzz
, r, PList ® 81, 0, 1, 1<E

à Algebra pslH3 È 3LH4L

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
1 -1 0

-1 0 -1

0 1 1

y

{
zzzzzz, r, PList ® 81, 1, 1<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k
jjjjjj
2 -1 0

-1 0 -1

0 1 2

y

{
zzzzzz, r, PList ® 80, 1, 0<E

à Algebra slH2 È 4LH2L

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 -1 0

-1 0 2 -1

-1 2 0 -1

0 -1 -1 2

y

{

zzzzzzzzzzz
, r, PList ® 80, 1, 1, 0<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 0 0

-2 0 1 1

0 -1 0 2

0 -1 2 0

y

{

zzzzzzzzzzz
, r, PList ® 80, 1, 1, 1<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 -1 0 0

-2 2 -1 0

0 -1 0 2

0 0 -1 2

y

{

zzzzzzzzzzz
, r, PList ® 80, 0, 1, 0<E

à Algebra ospH4 È 2; ΑLH1L

(also called dHΑLH1L )

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

2 0 0 -1

0 2 0 -Α

0 0 2 1 + Α

-1 -1 -1 0

y

{

zzzzzzzzzzz
, r, PList ® 80, 0, 0, 1<E

CartanMatrixAlgebraAname, 8x, h, y<,
i

k

jjjjjjjjjjj

0 -1 -Α 1 + Α

-1 0 1 + Α -Α

-Α 1 + Α 0 -1

1 + Α -Α -1 0

y

{

zzzzzzzzzzz
, r, PList ® 81, 1, 1, 1<E
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à Vectorial algebras

à Lie Superalgebra of polynomial vector fields vect(m|n)

Algebra vect(m|n)

VectorSpace@x, Dim ® 8m, n<, CoLeft ® vD;
Symmetric@VTimesD;
VectorLieAlgebra@g, xD;

Graded algebra vect(m|n; r)

ReGrade@g, rD

à Lie Superalgebra of divergence−free polynomial vector fields svect(m|n)

Use VectorLieAlgebra and use the divergence−free elements only.

à Algebra svect0 (1|n)

<Not implemented yet>

à Algebra svect~ (0|n)

<Not implemented yet>

à Poisson algebra po(2n|m)

The Poisson algebra is implemented for different forms of the Poisson bracket.

The  vector  spaces  x,  p,  q,  Ζ,  Η,  Θ  should  be  defined  with  VectorSpace@x, ...D  or
TrivialSpace@x, ...D  .

The vector multiplication VTimes is used as supersymmetric multiplication of polynomials, so
it should be declared symmetric.

Note that  the odd variables are denoted here as Ζ  and Η.  The common notation Ξ  and Η  is  not
convenient because the variables are sorted alphabetically.

In a Poisson algebra g, the following function are defined:

Pb@x, yD = 8x, y<
P.b.

  is the Poisson bracket;
pb[x,y] is the unevaluated expression of the Poisson bracket;

EulerOpg =â
i=1

n
xi  

¶
���������
¶xi

 is  the  Euler  operator  E:g�g  (here  8x1 , ... xn <  is  the  basis  of

the base space);
Dg = 2 - EulerOpg  is a convenient operator;

HamiltonianHg,x @yD = -8x, y<
P.b.

 is  the Hamilnonian g�der(g).

The  function  names  (except  D)  may  be  changed  using  options,  e.g.,
PoissonAlgebra@ ..., EulerOp ® EuD
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Use PoissonAlgebra@name, x, Variables® 8v, ...<D  to define a Poisson bracket on x extended
to polynomials in x  and v (the bracket and the Euler operator will not depend on v).

á po({p,q})

8 f , g<
P.b.

=â
i=1

n H-1LPH f L PHpi L  I ¶ f
�����������
¶ pi

 
¶ g

����������
¶ qi

- H-1LPHpi L  ¶ f
����������
¶ qi

 
¶ g

����������
¶pi
M  where ParHpL = ParHqL:

dim = ...
VecorSpace@p, Dim ® dimD
VecorSpace@q, Dim ® dimD
Symmetric@VTimesD;
PoissonAlgebra@name, 8p, q<D

á po({Θ})

8 f , g<
P.b.

= H-1LP@ f D  â
i=1

n ¶ f
����������
¶ Θi

 
¶ g

����������
¶ Θi

, where PHΘi L = 1:

VecorSpace@Θ, Dim ® 80, n<D
Symmetric@VTimesD;
PoissonAlgebra@name, 8Θ<D

á po({p,Ζ,...,Η,q}) and po({p,Ζ,...,Θ,...,Η,q})

This  is  a  combination  of  the  two  forms  above  (where  p,  q,  Ζ,  Η  are  arbitrary  superspaces,
ParHpL = ParHqL  and  ParHΖL = ParHΗL; here  any number of such pairs is possible; PHΘi L = 1):

VectorSpace@ ...D;
... ;
Symmetric@VTimesD;
PoissonAlgebra@name, 8p, Ζ, Η, q<D;
PoissonAlgebra@name, 8p, Ζ, Θ, Η, q<D;

á po(x)

8 f , g<
P.b.

= -H-1LPH f L  â
i=1

n I ¶ f
����������
¶ xi

 
¶ g

�����������������������
¶ x2 n+1-i

- H-1LPHxi L  ¶ f
�����������������������
¶ x2 n+1-i

 
¶ g

����������
¶ xi
M  where PHxi L = PHx2 n+1-i L:

VecorSpace@x, Dim ® ...D
Symmetric@VTimesD;
PoissonAlgebra@name, xD

á po(x;c)

Poisson bracket of the general form 

8 f , g<
P.b.

= -H-1LP@ f D  â
k=1

m
ck  

¶ f
�������������
¶ xik

 
¶ g

��������������
¶ x jk

. 

No checking.

VecorSpace@x, Dim ® ...D
Symmetric@VTimesD;
PoissonAlgebra@name, x, 88c1, i1, j1<, ..., 8cm , im , jm <<D
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à Hamilton algebra h(2n|m)

Algebra h(2n|m) is implemented as the quotient po(2n|m)/Xconst\;

Grading r=0,...,m/2

GradeHv1  v2 ... vk L = grHv1 L + grHv2 L + ... + grHvk L - 2,
grHpi L = grHqi L = grHΘ j L = 1
grHΖi L = 0 for i = 1..r  and 1 for i = Hr + 1L .. n
grHΗi L = 2 - grHΖi L

à Contact algebra k(2m+1|n)

The  contact  bracket  is  defined  with  the  help  of  the  Poisson bracket.  All  forms of  the  Posson
bracket described above, except po(x;c), are supported.

Here we show only the version po({p,q}):

dim = ...
VecorSpace@p, Dim ® dimD
VecorSpace@q, Dim ® dimD
Symmetric@VTimesD;
ContactAlgebra@name, 8p, q<, tD

No need to declare t  as the trivial space; this is done by the function ContactAlgebra.

In a contact algebra g, the following functions are defined (in addition to PoissonAlgebra
functions):

Kb@x, yD = 8x, y<
K.b.

= Dg @xD ¶y
�������
¶t

-
¶x
�������
¶t

 Dg @yD+ 8x, y<
P.b.

 is the contact bracket

kb[x,y] is the unevaluated expression of the contact bracket

ContactKg @xD = Dg @xD ¶t  -HamiltonianHg @xD +
¶x
�������
¶t

 EulerOpg  is  the  contact

operator ContactKg : g ® derHgL

The function names may be changed using options, e.g., ContactAlgebra[..., Kb®Cb]

The option Variables -> 8v, ...<  extends the algebra to polynomials in v (the bracket does
not depend on v).

à Buttin algebra bHnL

The  function  ButtinAlgebra  defines  the  Buttin  antibracket  on  polynomial  in
x1 , ..., xn , y1 , ..., yn , where PHyi L = 1 - PHxi L:

VecorSpace@x, ...D
VecorSpace@x, ...D
Symmetric@VTimesD;
ButtinAlgebra@name, 8x, y<, tD

On the Buttin algebra b, the following functions are defined:

Bb@ f , gD = 8 f , g<
B.b.

= H-1LPH f L PHxi L  ¶ f
���������
¶xi

 
¶g

���������
¶yi

+ H-1LPH f L PHyi L  ¶ f
���������
¶yi

 
¶g

���������
¶xi

 is the Buttin bracket;

bb[x,y] is the unevaluated expression of Poisson bracket;

EulerOpb =â
i=1

n
xi  

¶
���������
¶xi

+ yi  
¶

���������
¶yi

E : b�b;

Db = 2 - EulerOpb
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Bb@ f , gD = 8 f , g<
B.b.

= H-1LPH f L PHxi L  ¶ f
���������
¶xi

 
¶g

���������
¶yi

+ H-1LPH f L PHyi L  ¶ f
���������
¶yi

 
¶g

���������
¶xi

EulerOpb =â
i=1

n
xi  

¶
���������
¶xi

+ yi  
¶

���������
¶yi

  is the Euler operator E : b�b;

Db = 2 - EulerOpb .

The  function  names  (except  D)  may  be  changed  using  options,  e.g.,  ButtinAlgebra[...,
EulerOp®Eu].

The option Variables -> 8v, ...<  extends the algebra to polynomials in v (the bracket does
not depend on v).

Grading r=0,...,n (grading r = n - 1 is not the Weisfeiler one)

GradeHv1  v2 ... vk L = grHv1 L + grHv2 L + ... + grHvk L - 2,
grHxi L = 1 for i = 1..r  and 2 for i = Hr + 1L .. n
grHyi L = 2 - grHxi L

à "Odd" contact algebra mHnL

The  function  OKAlgebra  defines  the  Buttin  antibracket  and  the  "odd  contact  bracket"  on
polynomials in x1 , ... xn , y1 , ... yn , Τ,  where PHyi L = 1 - PHxi L  and PHΤL = 1:

VecorSpace@x, ...D
VecorSpace@x, ...D
Symmetric@VTimesD;
OKAlgebra@name, 8x, y, Τ<D

No need to declare Τ  as an odd trivial space; this is done by the function OKAlgebra.

On the odd contact algebra m, the following functions are defined (in addition to the functions
in the Buttin algebra):

Ob@ f , gD = 8 f , g<
O.b.

= Db @ f D ¶g
�������
¶t

+ H-1LPH f L  ¶ f
��������
¶t

 Db @gD- 8 f , g<
B.b.

 is  the  odd  contact

bracket;

ob[x,y] is the unevaluated expression of the odd contact bracket;

The names of the functions may be changed using options, e.g., OKAlgebra[..., Ob®Ok].

The option Variables -> 8v, ...<  extends the algebra to polynomials in v (the bracket does
not depend on v).

Grading r=0,...,n (grading r = n - 1 is not the Weisfeiler one)

GradeHv1  v2 ... vk L = grHv1 L + grHv2 L + ... + grHvk L - 2,
grHxi L = 1 for i = 1..r  and 2 for i = Hr + 1L .. n
grHyi L = 2 - grHxi L
grHΤL = 2

à The deformation of the Buttin algebra bΛ HnL

The algebra bΛ HnL  is implemented as a subalgebra in mHnL , namely, as
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bΛ HnL = 9 f Î mHnL : Hb n - a EulerOpm L ¶ f
��������
¶Τ

= a â
i=1

n ¶2 f
�����������������
¶xi  ¶yi

= , where Λ=
2 a

�����������������
nHa-bL

Special cases to be treated with extra care:
Λ=0: b0 HnL = bHnL  is not simple; bHnL � Xconst\ = leHnL;

Λ=1: b1 HnL  contains an ideal b1
0 HnL  of codimension 1;

Λ=¥: b¥ HnL  contains an ideal b¥
0 HnL  of codimension 1;

Λ=
2

�����������
n-1

: bΛ HnL  preserves the volume;  bΛ HnL = smHnL;

Λ=
1
�����
n

;
2
�����
n

.

For n=2, additionally, Λ=−
1
�����
2

or -
3
�����
2

: at these points there are extra deformations.

Grading r=0,...,n (grading r = n - 1 is not the Weisfeiler one)

GradeHv1  v2 ... vk L = grHv1 L + grHv2 L + ... + grHvk L - 2,
grHxi L = 1 for i = 1..r  and 2 for i = Hr + 1L .. n
grHyi L = 2 - grHxi L
grHΤL = 2

Grading E (for bΛ H2L  only)

GradeHv1  v2 ... vk L = GradeHv1 L + GradeHv2 L + ... + GradeHvk L ,
GradeHxi L = 1
GradeHyi L = -1
GradeHΤL = 0

See the notebook b_lambda−n.nb for implementation details.

à Leites algebras leHnL, sleHnL, sleo HnL

Algebra leHnL  is implemented as the quotient bHnL � Xconst\;
Algebra sleHnL Ì leHnL  is determines as sleHnL = 9 f Î leHnL Éâ

i=1

n ¶2 f
�����������������
¶xi  ¶yi

= 0=;
Algebra sle0 HnL Ì sleHnL  is an ideal, the codimension 1 complement to Xy1 ... yn \ .

Grading r=0,...,n (grading r = n - 1 is not Weisfeiler one)

GradeHv1  v2 ... vk L = grHv1 L + grHv2 L + ... + grHvk L - 2,
grHxi L = 2 for i = 1..r  and 1 for i = Hr + 1L .. n;
grHyi L = 2 - grHxi L .

See the notebook le.nb for the details of implementation.

à Exceptional algebras

á Algebra kas

The algebra is implemented as a subalgebra in k(1|6):
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VectorSpace@Ζ, Dim ® 80, 3<D;
VectorSpace@Η, Dim ® 80, 3<D;
Symmetric@VTimesD;
ContactAlgebra@k16, 8Ζ, Η<, tD

The basis of subalgebra kas is:

tn - n Hn - 1L Hn - 2L tn-3  Ζ1  Ζ2  Ζ3  Η1  Η2  Η3

tn  Ζi + n Hn - 1L tn-2  
¶

�����������
¶Ηi

 HΖ1  Ζ2  Ζ3  Η1  Η2  Η3L

tn  Ηi + n Hn - 1L tn-2  
¶

�����������
¶Ζi

 HΖ1  Ζ2  Ζ3  Η1  Η2  Η3L

tn  Ζi  Ζj + n 
¶

�����������
¶Ηi

 
¶

�����������
¶Ηj

 HΖ1  Ζ2  Ζ3  Η1  Η2  Η3L

tn  Ζi  Ηj + n 
¶

�����������
¶Ηi

 
¶

�����������
¶Ζj

 HΖ1  Ζ2  Ζ3  Η1  Η2  Η3L

tn  Ηi  Ηj + n 
¶

�����������
¶Ζi

 
¶

�����������
¶Ζj

 HΖ1  Ζ2  Ζ3  Η1  Η2  Η3L

tn  Ζ1 Ζ2 Ζ3
tn  HΖ1 Ζ3 Η1 + Ζ2 Ζ3 Η2L,
tn  H- Ζ1 Ζ2 Η1 + Ζ2 Ζ3 Η3L
tn  H- Ζ1 Ζ2 Η2 - Ζ1 Ζ3 Η3L
tn Ζ3 Η1 Η2
tn  H- Ζ2 Η1 Η2 + Ζ3 Η1 Η3L
tn  HΖ1 Η1 Η2 + Ζ3 Η2 Η3L,
tn Ζ2 Η1 Η3
tn  HΖ1 Η1 Η3 - Ζ2 Η2 Η3L
tn Ζ1 Η2 Η3

See the notebook kas.nb for the details of implementation.

á Algebra ksle(5|10)

First implementation:  in svectHx1 , ... x5 LÅ PdW1 Hx1 , ..., x5 L:

@PΩ1 , PΩ2 D = Ω1  Ω2  dx1
-1  dx2

-1  dx3
-1  dx4

-1  dx5
-1  where dxi

-1 =
¶

���������
¶xi

@Ξ1 , Ξ2 D  is Lie bracket on vect(x)
@Ξ, PΩD = P LΞ  Ω

Standard grading e(5|10)

Grade@xi D = 2, Grade@dxi D = -
1
�����
2

 (GradeA ¶
���������
¶xi
E = -Grade@dxi D  and Grade@PD = 0  for all

gradings)

Regrading e(9|6)

Grade@xi D = 1, Grade@dxi D = -
1
�����
2

 (i £ 4)

Grade@x5 D = 2, Grade@dx5 D =
1
�����
2

 

Regrading e(11|9)

Grade@xi D = 2, Grade@dxi D = 0 (i £ 3)
Grade@xi D = 1, Grade@dxi D = -1 (i ³ 4)
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Regrading ck(9|11)

Grade@xi D = 3, Grade@dxi D = 0 (i £ 2)
Grade@xi D = 2, Grade@dxi D = -1 (i ³ 3)

Second implementation: as a submodule in svect(5|10) genearated as the Cartan prolongation
of the pair Hg-1 , g0 L , where

g-1 = Xni, j , i £ i < j £ 5\ ,  ni, j =
¶

������������
¶Θi, j

+â Θk,l  
¶

�����������
¶xm

,  the  sum  over  Hk, l, mL  such  as

Hi, j, k, l, mL Î A5 ;

g0 = Xzi, j , 1 £ i ¹ j £ 5 Ü zi,i - zi+1,i+1 , 1 £ i £ 4\ , where zi, j = xi  
¶

����������
¶x j

+â
k=1

5
Θ j,k  

¶
������������
¶Θk,i

.

See the notebook ksle−5_10.nb for the details of implementation.

Regrading e(11|9):

Grade@xi D = 9
2, i £ 3

1, i ³ 4
Grade@Θi, j D = 4 - Grade@xi D- Grade@x j D

Regrading ck(11|9)

Grade@xi D = 9
2, i £ 2

1, i ³ 3

á Algebra mb(4|5)

This algebra is implemented as a subalgebra in the odd−contact algebra m(4|5) generated as a
generalized Cartan prolongation of Hg-2 , g-1 , g0 L ,where g-2 = X1\  and g-1 = Xq0 , ... q3 , Ξ0 , ... Ξ3 \
coincide with the corresponding components in m(4|5), and where for the basis of g0 we take

-q0  qi + Ξ j  Ξk  for all Hi, j, kL Î A3

qi  Ξ j  for all 1 £ i £ 3, 0 £ j £ 3
q0  Ξ0 - qi  Ξi , 1 £ i £ 3
qi  q j  for all 1 £ i £ j £ 3
Ξi  Ξ j  for all 1 £ i < j £ 3

Standard grading:

Grade@qi D = Grade@Ξi D = 1,
Grade@ΤD ^= 2

Regrading K

Grade@q0 D = 0
Grade@Ξ0 D = 3
Grade@qi D = 2, i > 0
Grade@Ξi D = 1, i > 0
Grade@ΤD ^= 3

See the notebook mb−4_5.nb for the details of implementation.
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á Algebra vas(4|4) 

This  algebra  is  implemented  as  subalgebra  in  vect(4|4).  The  subalgebra  is  singled  out  by  the

following equations on the vector field Ξ =â
i=1

4
fi  

¶
����������
¶pi

+ gi  
¶

���������
¶Θi

:

(1) 
¶ fi����������
¶p j

+ H-1LPHΞL  ¶g j����������
¶Θi

= 0, 1 £ i ¹ j £ 4;

(1a) 
¶ fi����������
¶pi

+ H-1LPHΞL  ¶gi���������
¶Θi

=
1
�����
2

 â
j=1

4 ¶ f j����������
¶p j

, 1 £ i £ 4;

(2)  
¶ fi����������
¶Θ j

+
¶ f j����������
¶Θi

= 0, 1 £ i, j £ 4;

(3)  
¶gi����������
¶p j

-
¶g j����������
¶pi

- H-1LPHΞL  Λ 
¶ fk����������
¶Θl

+ H-1LPHΞL  Λ 
¶ fl����������
¶Θk

= 0 for Hi, j, k, lL Î A4  and Λ ¹ 0

Standard grading:

Grade@pi D = Grade@Θi D = 1

See the notebook vas−4_4.nb for the details of implementation.

á Algebra vle(4|3)

This algebra is implemented as a subalgebra in vect(4|3). The subalgebra is singled out by the

following equations on the vector field Ξ =â
i=0

3
fi  

¶
����������
¶pi

+â
i=1

3
gi  

¶
���������
¶Θi

:

(1) 
¶ fi����������
¶p j

+ H-1LPHΞL  ¶g j����������
¶Θi

= 0 for 1 £ i ¹ j £ 3;

(1a) 
¶ fi����������
¶pi

+ H-1LPHΞL  ¶gi���������
¶Θi

=
1
�����
2

 â
j=0

3 ¶ f j����������
¶p j

, 1 £ i £ 3;

(2)  
¶ fi����������
¶Θ j

+
¶ f j����������
¶Θi

= 0 for 1 £ i, j £ 4;

(3)  
¶gi����������
¶p j

-
¶g j����������
¶pi

+ H-1LPHΞL  ¶ f0����������
¶Θk

= 0, Hi, j, kL Î A3 ;

(4) 
¶ fi�����������
¶p0

= 0 for 1 £ i £ 3;

(5) 
¶ fi����������
¶Θ j

-
¶ f j����������
¶Θi

- H-1LPHΞL  2 
¶gk�����������
¶p0

= 0 for Hi, j, kL Î A3 .

Standard grading:

Grade@pi D = Grade@Θi D = 1

Regrading r=1

Grade@p0 D = 0,
Grade@pi D = 2  for i > 0,
Grade@Θi D = 1.

Regrading r=2

Grade@p0 D = 0,
Grade@p1 D = 2,
Grade@Θ1 D = 0,
Grade@pi D = Grade@Θi D = 1 for  i > 1.
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See the notebook vle−4_3.nb for the details of implementation.

à Stringy algebras

à Moebius|Poisson Algebra 

The Moebius|Posson bracket is defined in terms of the Poisson bracket. All forms of Poisson
bracket described above, except for po(x;c), are supported.

Here we show only the version po({p,q}).

The function MoebiusAlgebra defines the Poisson bracket and the Moebius|Posson bracket
on the space of polynomials in pi , qi , Θ, t, t-1 :

dim =. ..;
VecorSpace@p, Dim ® dimD
VecorSpace@q, Dim ® dimD
Symmetric@VTimesD;
MoebiusAlgebra@name, 88p, q<, Θ, t<D

No need to declare Θ  and t  as an trivial spaces; this is done by the function MoebiusAlgebra.

On the Moebius|Posson algebra m , the following function are defined (in addition to the func­
tions in the Poisson algebra; the functions EulerOp and D are redefined):

Mb@ f , gD = 8 f , g<
M.b.

= 8 f , g<
P.b.

+ H-1LPH f L  1
�����
t

 
¶ f
��������
¶Θ

 
¶g
�������
¶Θ

 is  the  Moebius|Posson

bracket;

mb@ f , gD  is the unevaluated expression of Moebius|Posson bracket;

EulerOpm = EulerOppo + Θ 
¶

�������
¶Θ

 is  the Euler operator E : m�m;

Dm = 2 - EulerOpm .

The names of the functions (except D)  may be changed using options, e.g.,  MoebiusAlge­
bra[..., EulerOp®Eu].

The option Variables -> 8v, ...<  extends the algebra to polynomials in v (the bracket does
not depend on v).

à Moebius Contact (Ramond) algebra kM H1 ÈnL

The Ramond bracket is defined with the help of the Moebius|Poisson bracket which, in turn, is
defined  with  the  help  of  the  Poisson  bracket.  All  forms  of  the  Poisson  bracket  described  above,
except po(x;c), are supported. Here we show only the version po({p,q}).

The  function  RamondAlgebra  defines  the  Poisson  bracket,  the  Moebius|Poisson  bracket,
and  the  Ramond  bracket  on  the  space  of  polynomial  in  pi , qn , Θ, t, t-1 ,  where  PHpi L = PHqi L ,
PHΘL = 1 and PHtL = 0:
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dim =. ..;
VecorSpace@p, Dim ® dimD
VecorSpace@q, Dim ® dimD
Symmetric@VTimesD;
RamondAlgebra@name, 88p, q<, Θ, t<D

No need to declare Θ  and t  as  trivial spaces; this is done by the function RamondAlgebra.

On the Ramond algebra, r, the following functions are defined (in addition to the functions on
Poisson and Moebius|Poisson algebras):

Rb@ f , gD = 8 f , g<
O.b.

= Dr @ f D DHgL -DH f LDr @gD- 8 f , g<
M.b.

 is  the Ramond bracket, where

D =
¶

������
¶t

-
Θ

�������
2 t

 
¶

�������
¶Θ

;

rb[x,y] is the unevaluated expression of the Ramond bracket;

HamiltonianHr @ f D = HamiltonianHpo @ f D- H-1LPH f L  1
�����
t

 
¶ f
��������
¶Θ

 
¶

�������
¶Θ

RamondKr @ f D = Dr @ f D D - HamiltonianHr @ f D+DH f L EulerOpr  is  the  operator   R:
r�der(r).

The function names Rb and rb may be changed using options, e.g., RamondAlgebra[..., Rb®
Bk].

à Other algebras

à Algebra gl(Λ)

The algebra is implemented as the subalgebra in diffHK1 L  generated by

x+ = u2  
¶

�������
¶u

- HΛ - 1L u ,     z =
¶2

����������
¶u2 ,    x- = -

¶
�������
¶u

See the notebook gll.nb for the details of implementation.

à Engel Algebra

In the notebook Engel.nb, there are two implementations of the Engel algebra: as a subalgebra of
vectHK1 L  and manually by giving the basis and the multiplication table.
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Package SuperLie‘Cohom‘: Calculation 
of cohomology

This  package  helps  to  calculate  cohomology  of  Lie  [super]algebas  with  coefficients  in  any
module (splitted into a sum of finite−dimensional subspaces).

The  main  algebra  a  should  be  defined  in  Tabular  mode,  i.e.,  with  basis  a1 ,...  an  and  the
bracket defined via multiplication table. If it is not the case, one should first define a  as SubAlgebra
of the original algebra. 

If another algebra g0  acts on both the main algebra a  and on the module of coefficients m  so
that  a + g0  acts  on  m  and  dHgH f LL == gHdH f LL ,  the  action  of  g0  may  be  used  in  calculations.  For
example, it suffices to calculate the highest vectors in cohomologies (with respect to an even semi­
simple subalgebra of g0 ).

See example below.

à Reference

àVariables

à Input data

ch$raise

� ch$raise should hold the list of rising vectors in even semisimple part of g0 .

ch$lower

� ch$lower should hold the list of lowering vectors in even semisimple part of g0 .

ch$gen

� ch$gen holds the list of generators of algebra g0 . This list is used to speed up the calculation of different g0 −modules
by skipping calculating the full action table. Set ch$gen=All to calculate full action table (this is the default value).

ch$basis

�  The value of ch$basis if the name of the function fn[r,d] that  returns the list of all r−forms of degree d.  The default
name is chBasis.

ch$Split

� The value of ch$Split is the name of the function that should be passed to SplitList or SplitSum when splitting
expressions to homogenous parts. The default name is chSplit.

�  The values  of  this  function are used for  indexing the results of  calculations. They are referred to as  selectors  in  this
documents.

ch$Wt



� The value of ch$Wt is a (possibly user−defined) weight function relative to a fixed Cartan subalgebra of g0 .

� The default value is Weight.

ch$Out

� The value of ch$Out is a function that is applied to cohomology when printing. The default value is Identity.

àStorage

These symbols are used to store the information required for calculation. Normally their values
are assigned automatically, but the user can change them if required. 

ch$alg

� ch$alg holds the name of the algebra a  those cohomoligy are calculated.

ch$d

� ch$d holds the name of the module DLeft@aD  of differential 1−forms on the main algebra a  with trivial coefficients.

ch$g0

� ch$g0 holds the name of the algebra g0  acting on the main algebra a . This action is used to simplify the calculations: it
suffices  to calculate only cohomology of the highest weight with respect to the even semisimple subalgebra of g0 .

� See also ch$raise  and chSplit .

ch$M

� ch$M denotes the module of differential forms.

ch$ex

� ch$ex denotes the g−module of exact forms (the last component calculated by chExMod ).

àResults

The results of calculations are stored as values of ch$tab[...], ch$res[...], and ch$book[...].

To  avoid  reusing  the  same  storage  for  solutions  of  different  problems,  bind  the  variables
ch$tab, ch$res, and/or ch$book to different symbols, as follow:

ch$book = prob1answer;
H*solve problem 1*L
ch$book = prob2answer;
H*solve problem 2*L
H*compare the results*L

ch$tab

� ch$tab[degree]={selector®{{Dim[ker0],Dim[im0]},...},...} stores the dimensions of the spaces stores in ch$res.

ch$res

� ch$res[degree, rank]={selector®{ker,im}, ...} stores the results of chCoHom[s, r].
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ch$book

� The final results are stored as ch$book[degree, rank,selector]=cohomology or a list of cohomologies.

� To see all stored results, invoke DownValues[ch$book].

àFunctions

chSetAlg

� chSetAlg@a, dD  defines d  as DLeft [a] and stores a  as algebra for calculation of cohomology. 

� chSetAlg@a, d, g0 D  specifies also the algebra g0  that acts on a .

� Algebras a  and g0  should be already defined as well as the action of g0  on a .

chScalars

� chScalars[b,c] declares the names of scalar coefficients to be used in calculations.

chHVect

� chHVect[f] calculates the highest vectors in the space given as the general sum f. The result is also a general sum.

chLVect

� chLVect[f] calculates the lowest vectors in the space given as the  general sum f. The result is also a general sum.

chGenDim

� chGenDim[f] returns the number of indeterminate coefficients in the general sum f.

chCoHom

�  chCoHom[s,  r]  calculates  the  component  of  grade  s  of  the  kernel  and  the  image of  the  operator  d : Wr �Wr+1 .The
result is stored in ch$res[s, r] as list of two general sums.

� This function is called from chCalc .

chRes

� chRes[s,r] prints the results of calculations of (<=r)−cohomologies of grade s.

chEqu

� chEqu[s, r, w] solves equations of exactness for the coefficients of a generic closed r−form of grade s and weight w.

chCalc

� chCalc[s,r] calculates (<=r)−cohomologies of grade s and prints a short summary.

� chCalc[s,{p,q}] calculates r−cohomologies (p£r£q) of grade s and prints a short summary.

� The summary contains the total number of independent highest vectors in the kernel and image of the exterior deriva­
tives. 

� Use chNext@D  to enumerate the calculated cohomologies.

chNext

� chNext[] shows the next calculated cohomology of the current degree. If the cohomology is pure, the result is stored
(using chBook []) and returned. Otherwise the function returns the conditions of exactness (see chEqu ) and the rates
of  coefficients  (see  chRate )  for  the  next  cohomology.  To  store  the  results  in  this  case,  the  user  should  manually
invoke  chBook  with  appropriate  arguments.  Even  for  pure  cohomologies,  one  can  call  chBook  to  overwrite  the
results stored automatically (e.g., chBook[c[1]®2] will store the cohomology in different scale).

�  chNext[degree]  begins  enumerating the  cohomologies of  the  given degree (they should be already calculated using
chCalc ).
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� chNext[] shows the next calculated cohomology of the current degree. If the cohomology is pure, the result is stored
(using chBook []) and returned. Otherwise the function returns the conditions of exactness (see chEqu ) and the rates
of  coefficients  (see  chRate )  for  the  next  cohomology.  To  store  the  results  in  this  case,  the  user  should  manually
invoke  chBook  with  appropriate  arguments.  Even  for  pure  cohomologies,  one  can  call  chBook  to  overwrite  the
results stored automatically (e.g., chBook[c[1]®2] will store the cohomology in different scale).

�  chNext[degree]  begins  enumerating the  cohomologies of  the  given degree (they should be already calculated using
chCalc ).

chBook

�  chBook[rule]  takes  the  last  calculated  cohomology  (pointed  by  chNext ),  replaces  the  indeterminate  scalar  coeffi­
cients (first, using the given replacement rule (it may be also a list of rules) and then the remaining ones with 0), and
stores the result in ch$book [grade, rank, selector].

� chBook[rule1,rule2,...] stores a list of cohomologies, one for each argument. The number of rules should be equal to
the multiplicity of the cohomology.

� chBook[] stores a cohomology for every indeterminate scalar coefficient. This form should be used for pure cohomol­
ogy only.

chPos

�  chPos[]  takes  the  current  position  in  the  enumeration  of  cohomologies,  i.e.,  the  list  {grade,  rank,  selector}.  This
position is advanced by function chNext[]

chExMod

� chExMod[s,r] builds the g0 −module of exact r−forms of grade s using the default list ch$gen  of generators of g0 .

� chExMod[s,r,gen] uses the given list of generators of g0 .

� chExMod[s,r,All] builds the module of exact forms and the full table of the g0 −action on this module. This is slower
and should be used only if the  g0 −action is required for calculations.

� The name of the module of exact forms is ch$ex.

chMod

�  chMod[m,v]  builds  the  g0 −module  m  generated  by  the  form  (or  list  of  forms)  v  and  returns  the  dimension  of  the
module modulo the module of exact forms, see chDim . The module of exact forms should be already calculated for
the required grade and "arity", see chExMod . To simplify the calculations, the default list ch$gen  of generators of
g0  is used.

� chMod[m,v,gen] uses the given list of generators of g0 .

� chMod[m,v,All] builds the module generated by v and the full table of the  g0 −action on this module. This is slower
and should be used only if the  g0 −action is required for calculations.

chDim

�  chDim@m, ...D calculates  the  dimension of  the  [sum of]  the  given g0 −module(s)  of  forms modulo the  module of  the
exact forms.

� The module of exact forms should be already calculated for the required grade and "arity", see chExMod . 

� This function is used to determine the g0 −structure on the space of cohomology in case where g0  is not a semisimple
Lie algebra.

chInMod

� chInMod@m, vD  checks if the vector v  is inside module m  (modulo the module of exact forms).

chInSol

� chInSol@m, vD  solves condition v Î m  (modulo the module of exact forms).
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chRate

�  chRate[v]  returns  the  table  of  ratings  for  indeterminate  coefficients  in  general  sum  v.  The  rating  is  the  number  of
occurrences of the coefficients in the expression. The ratings may help to find a relatively simple expression for basis
vectors of a given mixed cohomology.

àUser−defined functions

chBasis

� The function chBasis[r,s] should return the list of all r−forms of degree s.

� The default definition builds this list from the list of 0−forms, i.e., elements of the module of coefficients.

� The user should either redefine chBasis[r,s], or define chBasis[s] that should return the list of 0−forms of degree s. 

chSplit

� chSplit it the user−defined function that is passed to SplitList and SplitSum when splitting expressions into
homogenous parts.

�  The values  of  this  function are used for  indexing the results of  calculations. They are referred to as  selectors  in  this
documents.

à Example: Cohomology related with slH2 È 3L

Let g = slH2 È 3L .  Calculate the cohomology of the lower odd block of g (in some format) with
coefficients in g.

à First, load packages

Needs@"SuperLie‘"D
Needs@"SuperLie‘Cohom‘"D
SuperLie Package Version 2.01 installed
Disclaimer: This software is provided "AS IS", without a warranty of any kind

à Set operation properties

For our task, we need automatic expansions of 
(1) linear expressions in tensor products (i.e., x**(a+b)®x**a+x**b) and
(2) action of any algebra on tensor products and exterior products:

Linear@TpD;
Jacobi@Act -> TpD;
Jacobi@Act -> wedgeD;

à Define algebras

Next, build the algebra g and subalgebras y = g-  and h = g0 = slH2LÅslH3LÅ c .
The subalgebra g0  acts on g and g- ; this action commutes with the exterior derivative, so the

cohomologies are g0 −modules and it suffices to find the highest weight vectors.
We should also redefine the grading on g so that the subalgebra g0   has grade 0.

slAlgebra@g, Dim ® 82, 3<D;
Grade@g@i_, j_DD ^:= If@i £ 2, -1, 0D + If@j £ 2, 1, 0D;
SubAlgebra@y, g, Select@Basis@gD, Grade@#D < 0 &DD;
SubAlgebra@h, g, Select@Basis@gD, Grade@#D == 0 &DD;
RestrictModule@y, hD;
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The function RestrictModule defines action of h on y.

à Set the task

Now we explain our task to Cohom package.
The forms on y will be denoted as dy.
The function chBasis should build the basis of coefficients of the given degree.
The weight in g is defined as a gl−weight with 5 weight marks. A weight w  may be g0 −highest

only  if  w1 ³ w2  and  w3 ³ w4 ³ w5 .  Therefore  we  ignore  all  other  weights  (value  SkipVal  in
chSplit function).

chSetAlg@y, dy, hD;
chScalars@b, cD;
ch$Wt = Weight;
chBasis@d_D := Select@Basis@gD, Grade@#D � d &D;
chSplit@x_D := With@8w = Weight@xD<,
If@wP1T ³ wP2T ß wP3T ³ wP4T ³ wP5T, w, SkipValDD;

To find the highest vectors, we need the list of raising operator in h. These are elements whose
images in g are g1,2 , g3,4 , g4,5 :

pos = Position@Image@hD, g@i_, j_D �; j � i + 1D

885<, 86<, 87<<

ch$raise = 8h@5D, h@6D, h@7D<
8h5, h6, h7<

à Output format

For the output, replace dy[i] with d[g[..]]:

ch$Out = OutMap;
OutMap@v_D := v �. dy@i_D ¦ d@Image@yDPiTD

Now we are ready to calculate cohomology. 
All  the  dy’s  have  degree  1,  the  degrees  of  coefficients range  from −1  to  1,  so  the  degrees  of

r−forms are from r−1 to r+1.

à Calculations

Degree  −1: only 0−cohomologies are possible:

chCalc@-1, 0D
Total: 881, 0<<

chNext@D

81, 0, 0, 0, -1< ® g1,5

chNext@D

No more cohomologies

Degree 0: 0− and 1−cohomologies:
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chCalc@0, 1D
Total: 880, 3<, 84, 0<<

chNext@D

81, -1, 1, 0, -1< ® g1,5 ** d@g2,3D

chNext@D

No more cohomologies

Degree 1:  0− , 1−, and 2−cohomologies:

chCalc@1, 2D
Total: 880, 1<, 81, 5<, 86, 0<<

chNext@D

81, -2, 2, 0, -1< ® g1,5 ** Hd@g2,3Dïd@g2,3DL

chNext@D

No more cohomologies

Degree 2: 1− , 2−, and 3−cohomologies:

chCalc@2, 81, 3<D
Total: 880, 4<, 84, 9<, 810, 0<<

chNext@D

81, -3, 3, 0, -1< ® g1,5 ** Hd@g2,3Dïd@g2,3Dïd@g2,3DL

chNext@D

No more cohomologies

Degree 3: 2− , 3−, and 4−cohomologies:

chCalc@3, 82, 4<D
Total: 880, 6<, 86, 11<, 812, 0<<

chNext@D

81, -4, 4, 0, -1< ® g1,5 ** Hd@g2,3Dïd@g2,3Dïd@g2,3Dïd@g2,3DL

chNext@D

No more cohomologies
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Package SuperLie‘Sing‘: Calculating 
singular vectors

à Introduction

Let g = Ågi  be a Z−graded Lie superalgebra, Lk = Åi³kgi  and V  a g0 −module. The action of
g0  on  V  may  be  extended  with  0  to  L1  and  then  an  induced  g−module  is  defined  to  be
IHVL = UHg- LÄ V .

The problem is to find all possible homomorphisms IHV1 L® IHV2 L  for a certain class of g0 −mod­
ules.

This problem is related to the similar problem for modules dual to induced ones, namely, to the
modules of tensor fields.

The image of V under such a homomorphism is a g0 −module annihilated by L1 . Such modules
are called singular and their elements are called singular vectors.

We consider the case when g0  has  a  Cartan decomposition with raising generators x1 , ..., xp

and  lowering generators  y1 , ..., yq ,  and  take  the  class  of  irreducible g0 −modules  VΛ  with  highest
weight. In this situation, it suffices to find all highest weight singular vectors in IHVΛ L  for all possi­
ble Λ’s.

To find the highest  singular vectors,  it  suffices to solve the system 8xi  v = 0, z j  v = 0<,  where
the  xi  are  the  raising  generators  of  g0  and  z j  are  the  generators  of  L1  considered  as  an  ideal  in
L1 Åg0

+ . Usually (for g simple or close to simple), the z j  are only the lowest weight vectors in g1 ,
but there are exceptions.

The  calculations  are  performed  separately  for  every  degree  (with  respect  to  the  grading  of
UHg- L; this degree is equal to the degree of the corresponding invariant differential operators acting
between the dual  modules of  tensor fields) and depth  (the difference between the highest weight
and the weight of the given vector in Verma module).

First, we calculate the action of xi  and z j  on the module IHMΛ L  induced from a Verma module
MΛ  with indefinite highest weight Λ, and next we determine the condition on Λ when all the images
are induced from a submodule in MΛ .

If  g0  is  not  a  semisimple  finite  dimensional  complex  or  real  Lie  algebra,  the  submodules  in
IHVΛ L  may contain multiple highest vectors, so a "gluing"  is required.

à Functions

à Preparation

These functions are used to describe the problem.
To build the main algebra g, use functions defined in SuperLie (this step is not described here,

see the documentation to SuperLie).
To  use  the  enveloping  algebras  and  Verma  modules,  the  vector  multiplication  should  be

declared non−symmetric.



á svSetAlg

svSetAlg[g,{neg,  zero,  pos}] declares the algebra and subalgebras to be used  in calculations.
The main algebra g is divided, according to the grade, in the positive, zero, and negative parts.

The  "positive"  part  may  be  represented  by  generators  only  (as  an  ideal  over  the
"raising=positive" part of the "zero" component). In this case, pos is supplied as name®{g1, ...}

á svScalars

svScalars[c,...] declares the indefinite scalar parameters to be used in calculations. The first
parameter will be used as an indefinite coefficient of the vectors; other parameters are available for
the user. The second parameter is by convention used for the heights weight of the Verma module.

á svCheckRL

svCheckRL[r,  l,  d]  checks that  the  proposed lists  of  the  raising,  lowering, and diagonal  ele­
ments agrees with the weight defined in the algebra.

á svCart

svCart[x, h, y] builds the Cartan decomposition of g0 .
svCart[x,h,y,{gx,0,gy}]  builds  the  Cartan  decomposition  with  the  non−standard  gradings  of

the generators. Here gx and gy are either lists of generator gradings, or their common grading (if all
should have the same degree).

To build the Verma module, the Cartan decomposition should agree with the weight defined on
g0 : @hi , xD = wi @xD x . Use the function svCheckRL to check this.

á svVerma

svVerma[m,  Λ,  grade] builds the Verma module over g0  with an indefinite highest weight Λ
and the basis of UHg0

+ L; all computations are performed up to the given grade.
To  use  enveloping  algebras  and  Verma  module,  the  vector  multiplication  should  be  declared

non−symmetric before calling svVerma:

If@SymmetricQ@VTimesD, UnSymmetric@VTimesDD

á svLess

The  ordering  function  svLess  is  used  to  sort  the  terms  in  products  in  the  enveloping  algebra
UHg- L .

If svLess[x,y] returns True, the terms x and y are sorted in the order indicated.
The user may add extra definitions to function svLess, or use a different function by assign­

ing sv$Less=ownLess.
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à For every degree/depth

á svDefEq

svDefEq[deg] builds and partially solves the system of equations for singular vectors of given
degree  in  IHVL ,  with  indefinite  g0 −module  V  and  returns  the  list  of  depths  for  which  the  highest
vectors may exist.

The tensor product Tp should not be automatically linearly expanded; use UnLinear[Tp] if it
was.

á svEq

svEq[w] builds the system of equations for singular vectors in IHMΛ L  of the degree defined by
svDefEq and weight Λ - w  (i.e. depth w). The equations are stored as values of sv‘eqHi ("highness
equations") and sv‘eqZ ("singularity equations").

The  function  returns  the  list  of  substitution  rules  that  implements  the  map  of  the  indefinite
module V to MΛ . The rules contain indefinite coefficients.

While solving the equations, the rules will be specialized by reducing the amount of indefinite
coefficients and adding restrictions on the highest weight Λ.

à Calculations

á svH

svH converts the highness conditions eqHi using current map. It also assigns the result to e and
returns the result converted for printing. All printed elements of UHg- L  should annihilate the highest
weight vector of VΛ  (= map the highest weight vector of MΛ  to an element of a submodule of MΛ ).

á svZ

svZ[i]  converts  the  highness  conditions  eqZPiT  using  current  map.  The  function  svZ[]  does
the same with all eqZ. It assigns the result to e and returns the result converted for printing.

á svSolve

svSolve  examines the list  of vectors e  (stored by svH  and svZ[]) ,  tries to solve equations
ei � 0  and prints the  solutions together with conditions on Λ  whenever the equations are satisfied.
Use svSub[i] to add the solution of the i−th equation to the current map.

á svAct

svAct[u,m] returns the result of action of u Î UHg0
+ L  on m Î IHMΛ L .

á svSp

svSp[u, m] returns the scalar product of  u Î UHg0
+ L  on m Î IHMΛ L .

Defined if wHuL + wHmL = Λ .
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á svRep

svRep[expr] applies the current map to the expression expr and tries to simplify the result.

á svSub

svSub[sol,...] adds the solutions to the current map. Here sol may be 
(a) a rule Λ[_]−>._; 
(b) a rule c[__]−>_; 
(c) an integer, see svSolve; 
(d) an expression e, in this case the solution of e==0 is added .

á svExcl

svSub[expr]  adds the expression expr  to the list of non−zero expressions. Such expressions
will be cancelled in equations. The list of non−zero expressions is valid for the current branch.

á svBranch

svBranch[level] starts new logical branch of the solution. If level is <= the current level, the
current map and exclusion list are restored as they were when the level was created.

á svHiCf

svHiCf returns the coefficient at mΛ of the vector in question, hiD.
Since mΛ  cannot belong to any submodule of MΛ , this coefficient should be non−zero.
The indeterminate coefficients that are not present in this coefficient are irrelevant.

á svResult

svResult returns the solution(s) of the current replacement list, as element(s) of MΛ .

á svImg

svImg[f]  substitutes the  elements of  g- ,  g0 ,  and g+  in  the  expression f  with  their  images in
the main algebra g .

à Variables

á sv$g

The value of sv$g is the name of the main algebra g .  Assigned by svDefAlg.

á sv$n, sv$a, sv$p

The values of sv$n, sv$a, and sv$p are the names of the negative Hg- L , zeroth Hg0 L  and positive
Hg+ L  subalgebras of the main algebra. Assigned by svDefAlg.
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á sv$y, sv$h, sv$x

The names of the negative, zeroth and positive subalgebras in the Cartan decomposition of the
algebra g0 = g0

- Å g0
0 Å g0

+ . Assigned by svCart.

á sv$r, sv$l, sv$d

The  values  of  sv$r,  sv$l,  and  sv$d  are  lists  of  Chevalley−like  generators  of  g0  (the  raising,
lowering  and  diagonal,  respectively).  Required  relations:  @di , r j D = wi Hr j L r j ,  where  w(x)  is  the
weight of x, and similarly for the l j . Assigned by svCart. The proposed generators may be checked
by svCheckRL.

á sv$m, sv$Λ

The values of  sv$m  and sv$Λ  are the name and the highest  weight of  the Verma module over
g0 . Assigned by svVerma.

á sv$z

The value of sv$z  is  the list of generators of g+  as g0
+ −module. May be assigned by svDef­

Alg; otherwise should be assigned manually.

á sv$v

This is an indefinite g0 −module used in calculations.

á sv$c

The value of sv$c is the name of the scalar coefficient used in calculations.

à Private part

à Functions

svRaise[f]  for  fÎInd(V),  calculates  svAct[sv$r,f],  decomposes  the  result  with  respect  to  the
basis of UHg- L  and returns the list of coefficients (elements of V)

uCoords[f] for fÎInd(V), decomposes f with respect to the basis of UHg- L  and returns the list
of coefficients (elements of V)

modBas[d] returns the basis of the d−th component of IndHMΛ L .

eqMm[e] for e Î MΛ ,  returns the list of scalar equations equivalent to the condition eÎ  maxi­
mal submodule.  It uses current substitutions.

eqPr[f]  for  f Î IndHMΛ L  returns  the  list  of  scalar  equations  equivalent  to  the  condition  fÎ
Ind(maximal submodule). It uses current substitutions.
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gPr[f]  for  f Î IndHMΛ L  calculates  the  list  of  scalar  equations  equivalent  to  the  condition  fÎ
Ind(maximal submodule), assigns the result to e  and returns the result converted for printing. Uses
current substitutions.

mComp[w] returns the list of element of MΛ  with weight  Λ−w.

uxComp[x] returns the list of element of UHg0
+ L  of required weight.

If x Î MΛ , then the weight is Λ−w(x); if x is a list, then the weight is −x.

eqZ returns the equations of singularity.
eqH returns the equations of highness.

svImg[v] returns the image of the element v in the algebra g .

envBas[d] returns the list of elements of grade −d in UHg- L .

à Data objects

svArep is the decomposition operator of g0  in the form of a replacement rule.
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Package SuperLie‘Domain‘: Object 
Oriented Programming in Mathematica

à Properties

SetProperty

� SetProperty[obj, property] defines the property of the object.

� Both parameters can be lists.

� Either objects or properties can be with parameters, as obj®value or property®value (but not both).

�  Each property must be previously defined using the functions NewProperty,  NewValue,  NewList or NewDomain.  Only one
of the properties in the list can be a domain.

� Another way to set the property of the objects is to call property[obj, obj, ...] or property[obj−>value,  ...]. Only the second form is
valid for Value and List types of properties.

� CancelProperty[obj, property] cancels the property of the object.

� Both parameters can be lists.

� Objects as well as property can be with parameters, e.g., obj®value or property®value (but not both simultaneously).

� Another way to cancel a property of an objects is to call Unproperty[obj, obj, ...] or Unproperty[obj®value, ...].

Define

� Define[obj, prop] clears all settings of the object and calls SetProperty.

� Define[obj, prop, {attr}] sets attributes of the object before the properties.

ClearDef

� ClearDef[name] clears all settings associated with the symbol name.

à Keys

In  Mathematica,  there  are  two  forms  for  holding  the  properties  of  objects.  One  is
Attributes[obj] whose value is {key, key, ... }, the other one is Options[obj] with value of the form
{key−>value, key−>value, ... }.

The Domain package allows one to define other lists of properties, which can contain terms of
both types: key or key−>value.

NewList

� NewList[name] defines a new list of properties. The value of name[obj] will be the list of the properties of the object,
name[obj,  key]  is  the  value  of  the  property  key  (or  True  if  key  has  no  value)  and  False  if  key  has  not  a  term of
name[obj].

� The expression name[obj®list] is used to add or change the properties, Unname[obj®list]  to remove the properties.

� One function can set properties of several objects: name[obj®list, obj®list, ...] or name[{obj,obj,..}®list].

� Each member of the list must be either key or key®value. If the name[obj] already contains the member with the same key, it will be
replaced.



replaced.

�  Another way to set/reset the list  of properties (together with properties of other kinds) is  SetProperty[obj,  {...,  name®list,  ..}]
and CancelProperty[obj, {...,name®list, ..}].

NewValue

� NewValue[name,..] declares new properties of the type Value.

� After declaration one can use name[obj®val, obj®val, ...] to set (or change) the value of the property name and Unname[obj, obj, ...]
to discard the property.

� The expression name[obj] returns the value of the property name of the object obj.

�  Another way to set/reset the value of the property (together with properties of other kinds) is SetProperty[obj,  {..., name®val,
..}] and CancelProperty[obj, {..., name, ..}].

NewProperty

� NewProperty[name] declares a new property of objects. 

� NewProperty[name, {method,...}]  defines also the method of setting and resetting the property. 

� The predefined methods are:

� Flag: name[obj] sets the flag nameQ[obj] = True, Unname[obj] cancels this definition. This is the default method, if it is used,
then NewProperty is called without the second parameter.

� Flag®value  is the same as Flag with given value used instead of True.

�  Rule:  name[obj]  transforms the  replacement rule nameRule[obj]  into  a  definition attached to  obj;  name[obj®parm]  uses name­
Rule[obj, parm]. The function Unname[obj] (Unname[obj®parm]) cancels this definition.

� Rule®parm gives the default value of the parameter for nameRule[obj].

� VarRule is the same as Rule,  but adds to the name of the rule a prefix depending on the domain of the object (see below about
domains). So the property may differ from one domain to another.

� VarRule®parm gives the default value of the parameter.

�  Option:  name[obj®val]  sets  the  option  name®val  of  the  given  object;  name[obj]  sets  name®True; Unname[obj]  deletes  the
option.

� Option®value gives the default value of the option (instead of True).

� Also®{prop,..} shows that name[obj] sets also the properties from the list by calling parm[obj]. Each of them may have a parame­
ter: prop®parm, then it is used in the call prop[obj®parm].

�  Format:  shows  that  name[obj®func]  defines  the  output  format  as  Format[expr_obj,  nameForm]  :=  func[expr].  Example:
TeX[x®Subscripted] defines Format[expr_x, TeXForm] := Subscripted[expr].

NewDomain

� NewDomain[name] declares a new domain.

� To attach an object to this domain, enter name[obj,...] or name[obj®parm,...] if the domain requires a parameter.

� To detach the object, type Unname[obj,...] or Unname[obj®parm,...].

� The names of domains can be used also in SetProperty and CancelProperty.

� NewDomain[name,{method,...},"prefix"]  defines also the method of attaching and detaching an object to the domain. The methods
are the same as for NewProperty. The third parameter is the prefix used in VarRule method for this domain.

Domain

� Domain[expr] returns the domain of the value of expression expr. 

� Domain[op, n, tot] returns the domain of the n−th argument of the function op when it is called with tot arguments.

Operation

�  Operation[name,  generic[domain,  ...  ]®domain]  defines  a  new  operation  name  as  a  restriction  of  the  generic
operation if its parameters belong to certain domains.

� In case of operations with a variable number of operands, the repeated operands may be written as domain.. (two dots) or domain...
(three dots; the last version allows zero operands).

114 Package SuperLie‘Domain‘



(three dots; the last version allows zero operands).

� In the case when a repeated group of operands enters a new operation not directly but as a result of another operation, this condition
may be written as domain..® opname. An example of such a condition is the restriction of the generic Times operation (GTimes)
to  the  product  of  a  scalar  coefficient  and  the  vector:  Operation[SVTimes, GTimes[Scalar..®Times, Vector]®
Vector].

à Tools

SPrint

� SPrint[format, val, ...] converts the arguments to a string. All arguments are the same as in Print function.

AutoRule

�  AutoRule[rule]  converts  the  replacement  rule  or  list  of  rules  into  definition(s),  so  the  rule  will  be  automatically
applied whenever  possible.  The value of  the rule  is  changed to  {} (if  rule is  non−protected) to prevent  the repeated
attempts to apply the rule.

� AutoRule[rule, tag] attaches the definitions to the given tag.

UnAutoRule

� UnAutoRule[rule] cancels the definitions made by AutoRule[rule] or AutoRule[rule, tag] and restores the value
of the rule.

NameSuffix

� NameSuffix[name, "suffix"] builds a new name, appending the suffix to the old name.

PrefixName

� PrefixName["prefix", name] builds a new name, prepending the prefix to the old name.

Tag

�  Tag[expr]  returns  the  HoldPattern[tag],  where  tag  is  the  first  symbol  in  the  sequence  expr,  Head[expr],
Head[Head[expr]],... .

� Only the head of expr  is evaluated (as in the left hand side of "=")."

Target

�  Target[expr]  evaluates  the  head  and  the  arguments  of  the  expression  and  returns  the  result  enclosed  in
HoldPattern[]  to  prevent  further evaluation of  the expression.  The result  may be used as  target  for  assignment, in
replacement rules, and so on.

�  Target[expr,  head]  returns  head[value]  rather  than  HoldPattern[value].  For  example,  Print[Target[expr,
HoldForm]] prints partially evaluated expression.

AddHead

� AddHead[head, expr] returns expr if Head[expr]ºhead and  head[expr] if this expression expr has different header.

InfixFormat

� InfixFormat[sep][f] defines the infix output format for the expressions with header f: f[x1,x2,..] � x1 sep x2 ... .

� InfixFormat[sep, options][f] defines the infix format with the options:

  Prec is the precedence level (the default is 100),

  Group is  grouping (the default is None),
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   is  grouping (the default is None),

  Empty is the format for f[] (the default is 1),

  Type is the format type (the default is OutputForm).

SetFormat

� SetFormat[type, f, fun] defines the output format for the expressions with header f: f[x,...] �fun[f[x, ...]] .

� SetFormat[StandardForm, f, Subscripted] defines also the interpretation of the subscripted input.

ClearFormat

� ClearFormat[type, f] cancels the definition given by SetFormat.

SetToTag

�  SetToTag[symb]  redefines  assignments  of  expressions  with  header  symb,  so  that  assignments  symb[arg,..]  =  ...  and
symb[arg,..] := ... will be attached to arg rather than to symb.

Compound

� Compound[{f1,...fn}] returns compound function which, if applied to arguments args, evaluates (f1[args]; ...; fn[args]).

SortKeys

� SortKeys[list] sorts the list in the alphabetical order of the keys.

OrderKeys

� OrderKeys[ arg1,arg2] returns -1 , 0 , or 1  depending on the order of the keys in arguments (like function Order).

OrderedKeysQ

� OrderedKeysQ[list] returns True if keys in the list are ordered and False otherwise (like function OrderedQ).

SameKeysQ

� SameKeysQ[arg,...] returns True if all arguments have the same keys and False otherwise (like function SameQ).

Merge

� Merge[list1,list2,...] is similar to Union, but supports more options:

SameTest®test specifies the function used to determine equivalent elements (like in Union);

Sort®fn specifies the function to be used for sort the union (like in Sort).

Merge®fn specifies the function that is used to merge sets of equivalent elements.

� See also Union, Sort.

Union

� Domain‘Union supports the option Sort®fn which specifies the function to be used to sort the union (like in Sort).

� See also System‘Union, Sort.

UnionKeys

� UnionKeys[list, ... ] returns the joined list, sorted by the key order, with repeated keys dropped.
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DeleteSame

� DeleteSame[list] deletes from the list the adjacent repeated terms leaving only the first one. DeleteSame[list, test]
uses function test instead of SameQ to check the equivalence of terms.

KeyValue

� KeyValue[list,key] returns True if the list contains the member key, the value if the list contains the member key®
value, and False otherwise.
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Package SuperLie‘Enum‘: The package 
for enumerating the sets

à Creating enumerated sets

EnumSet

�  EnumSet[set,  range®comp,  ...]  builds  a  new  enumerated  set  from  given  components.  The  result  is  attached  to  the
symbol in the first argument.

� The arguments should have format {start, end, step}®{deg¦list, ... }. 

� This component will be enumerated in the following order: for every degree in the range {start, end, step}, the list of the elements is
calculated as degree /. {deg¦list, ... }.

� The value of end may be Infinity.

EnumAddTo

� EnumAddTo[set, range®comp, ...] adds more components to the enumerated set.

� See EnumSet for the argument format

EnumJoin

� EnumJoin[new, set1, ...] builds new enumerated set joining the enumerated sets set1, set2, ..., setn.

� EnumJoin[new, old] builds a duplicate of an old enumerated set.

à Iteration over enumerated sets

EnumFor

� EnumFor[var, set, options..., body] executes body repeatedly for any var from set.

� Options:

� Range®{from, to, step} restricts the range of the elements’ degree (step is optional)

� From®elt starts the iteration from the given element. This option is valid only when an earlier iteration reaches this element (using
To or Until option)

� FromNext®elt same as From®elt  but skips the given element.

� To®elt ends the iteration at the given element. The iteration may be resumed from this point using options From or FromNext.

� Until®elt same as To®elt  but stops before the given element.

EnumTable

�  EnumTable[expr,  {var,set,options...}]  generates  a  list  of  the  values  of  expr  when  var  runs  over  all  elements  of  the
enumerated set.

� EnumTable[expr, iter ...] with several iterators gives a nested list, the first iterator is outermost.

� The options (see EnumFor) restricts the range of elements.

EnumList

� EnumList[set, options ...] generates the list of elements of the enumerated set.



� The options (see EnumFor) restricts the range of the elements.

EnumPoint

� EnumPoint[var, set, elt, options ...] finds the location of the elt in the set and assigns the var to point out the result.

� The options (see EnumFor) restrict the range of the elements.

à Accessing enumerated sets

Enum

� Enum[set, i] returns the i−th component of the enumeration of the set.

� Enum[set] returns the number of the components in the enumeration of the set.

EnumRange

� EnumRange[set, i] returns the range of degrees in the i−th component of the enumerated set.

� The format of the result is {stars, end, step}.

TestRange

� TestRange[value, range] tests whether the value is in the given range. 

� The range may be {end}, {start, end} or {start, end, step}

� The result may be True, False, Greater or Less.
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Examples
Every example is described "from scratch" as if it is executed in a fresh session. The function

Off[...]  is  called  to  suppress  the  message  Equations  may  not  give  solutions  for  all  "solve"
variables.

à 1. Classical Lie superalgebras

à 1.1. Defining relations for g(A)

In  these  examples  we  will  find  the  defining  relations  between  the  positive  generators  of  two
algebras with Cartan matrix.

á 1.1.1. Defining relations for  ag
2

Needs@"SuperLie‘"D
Off@Solve::svarsD

CartanMatrixAlgebraAag, 8x, h, y<,
i

k
jjjjjj
0 1 0

-1 2 -3

0 -1 2

y

{
zzzzzz, ¥, PList -> 81, 0, 0<E

17È14

This is the basis of x = Hag
2
L

+
 in terms of generators x1 , x2 , x3 :

GenBasis@agD �� ColumnForm

x1

x2

x3

@x1,x2D
@x2,x3D
@x2,@x2,x3DD
@x3,@x1,x2DD
@x2,@x2,@x2,x3DDD
@@x1,x2D,@x2,x3DD
@@x1,x2D,@x2,@x2,x3DDD
@@x2,x3D,@x2,@x2,x3DDD
@@x2,@x2,x3DD,@x3,@x1,x2DDD
@@x3,@x1,x2DD,@x2,@x2,@x2,x3DDDD
@@x3,@x1,x2DD,@@x1,x2D,@x2,@x2,x3DDDD

These are the defining relations between generators:

GenRel@agD �� ColumnForm

@x1,x1D ® 0

@x1,x3D ® 0

@x2,@x1,x2DD ® 0

@x3,@x2,x3DD ® 0

@x2,@x2,@x2,@x2,x3DDDD ® 0



á 1.1.2. Defining relations for dHΑLH1L

All calculations are done up to degree 12

Needs@"SuperLie‘"D
Off@Solve::svarsD

Declare a scalar parameter Α. 

Scalar@ΑD;

Build the algebra up to degree 12:

CartanMatrixAlgebraAg, 8x, h, y<,
i

k

jjjjjjjjjjj

2 0 0 -1

0 2 0 -1

0 0 2 -1

-1 -Α 1 + Α 0

y

{

zzzzzzzzzzz
, 12, PList ® 80, 0, 0, 1<E

46È40

Here are the relations:

GenRel@gD �� ColumnForm

@x4,x4D ® 0

@x1,x2D ® 0

@x1,x3D ® 0

@x2,x3D ® 0

@x1,@x1,x4DD ® 0

@x2,@x2,x4DD ® 0

@x3,@x3,x4DD ® 0

@@x2,x4D,@@x1,x4D,@x3,x4DDD ®
Α

�����������
-1-Α

@@x3,x4D,@@x1,x4D,@x2,x4DDD

à 1.2. Defining relations in vectorial algebras

In the following examples we will show how to find defining relations between elements of an
existing (i.e., already defined) algebra.

á 1.2.1. Algebra of polynomial vector fields vect(2|1)

Let us find the relations between the positive generators of vect(2|1) with respect to the standard
grading, see [GL].

Needs@"SuperLie‘"D
Off@Solve::svarsD
SuperLie Package Version 2.03 installed
Disclaimer: This software is provided "AS IS", without a warranty of any kind

First let us define the algebra vect(2|1).  We will define it as algebra of vector fields on a space
x of dimension (2|1).

We will  use  the  operation VTimes  for  multiplication of  polynomials,  so  it  should  be  declared
Symmetric (i.e., supercommutative). The tensor product Tp should be declared Linear (i.e., automat­
ically expanded via linearity).
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Symmetric@VTimesD;
Linear@TpD;
VectorSpace@x, Dim ® 82, 1<, CoLeft ® vD;
VectorLieAlgebra@g, xD

g = vectHxL

Find the lowest vectors in g1 :

GeneralZero@8x2 ** v1, x3 ** v2<, Basis@g, 1D, c, LbD

c@2DHx1 x3L ** v1 + c@1DHx2 x3L ** v1 + c@2DHx2 x3L ** v2

Build  a  subalgebra  with  generators  e1 = x1 ** v2 ,  e2 = x2 ** v3 ,  z1 = x2  x3 ** v1 ,
z2 = x1  x3 ** v1 + x2  x3 ** v2 .

We will restrict the calculations to elements of grade £4 (note that the first two generators has
grade 0).

SubAlgebra@s, g,
8e1 ® x1 ** v2, e2 ® x2 ** v3, z1 ® Hx2  x3L ** v1, z2 ® Hx1  x3L ** v1 + Hx2  x3L ** v2<, Grade ® 4D

s is a sublagebra in g

Here are the relations (to start every relation with a fresh line, we print the results in the infix
format  with  the  newline  symbol  as  separator;  ColumnForm  does  not  work  because  some  relations
does not fit in one line):

GenRel@sD �� InfixFormat@"\n", Prec -> 1000D

@e2,e2D � 0 
 @e1,@e1,e2DD � 0 
 @e1,z2D � 0 
 @e1,@e1,@e1,z1DDD � 0 
 @@e1,e2D,@e2,z2DD � 0 
 @z1,z1D � 0 
 @z1,z2D � 0 
 @z2,z2D � 0 
 @z1,@e1,@e1,z1DDD � 0 
 @@e1,z1D,@e2,z1DD � -3@z2,@e2,z1DD 
 @@e2,z1D,@e1,@e1,z1DDD � 2@z2,@@e1,e2D,z1DD - 2@@e1,z1D,@e2,z2DD 
 @@e2,z1D,@@e1,e2D,z1DD � - @@e2,z1D,@e2,z2DD 

 @@@e1,e2D,z1D,@@e1,e2D,z2DD �
1
�����
2
@@e2,z2D,@e2,@e1,@e1,z1DDDD -

1
�����
2
@@e2,z2D,@@e1,e2D,@e1,z1DDD +

1
�����
2
@@e2,@e1,z1DD,@@e1,e2D,z2DD 

 @@@e1,e2D,z1D,@e2,@e1,@e1,z1DDDD �
@@e2,z2D,@@e1,e2D,@e1,z1DDD - @@e2,@e1,z1DD,@@e1,e2D,z2DD 

 @@e2,z1D,@z2,@e2,z1DDD � 0 
 @@@e1,e2D,z1D,@z2,@e2,z1DDD � 0 
 @@@e1,e2D,@e1,z1DD,@z2,@e2,z1DDD �

1
�����
2
@@e2,z2D,@@e1,z1D,@e2,z2DDD - @@@e1,e2D,z2D,@z2,@e2,z1DDD 

 @@@e1,z1D,@e2,z2DD,@@e2,z1D,@e2,z2DDD � -
1
�����
3
@@e2,z2D,@@e2,z2D,@z2,@e2,z1DDDD 

 @@@e2,z1D,@e2,z2DD,@@e2,z2D,@@e1,e2D,z1DDD �

1
�����
6
@@e2,z2D,@@e2,z2D,@@e2,z1D,@e2,z2DDDD

á 1.2.2. Algebra h(2|1)

Let us find the relations between the positive generators of H(2|1) with respect to the standard
grading, see [GL].
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Needs@"SuperLie‘"D
Off@Solve::svarsD

First, let us define the algebra H(2|1).  We will define it on polynomials of p, q, Θ. 
We will  use  the  operation VTimes  for  multiplication of  polynomials,  so  it  should  be  declared

Symmetric.

TrivialSpace@pD;
TrivialSpace@qD;
TrivialSpace@Θ, 1D;
Symmetric@VTimesD;
HamiltonAlgebra@g, 8p, Θ, q<D

g is a Hamiltonian algebra over 8p, Θ, q<

Find the lowest vectors in g1 :

GeneralZero@8q2, q Θ<, DegreeBasis@3, 8p, Θ, q<D, c, HbD

c@1Dq3

Build a subalgebra with generators e1 = p2 , e2 = p Θ , z = q3 , up to grade 5. 
Note that HamiltonAlgebra  does not define grading on polynomials, so we should specify the

grading explicitly.

SubAlgebra@s, g, 8e1 ® p2, e2 ® p Θ, z ® q3<, Grade ® 8Deg@#, BasisPattern@gDD - 2 &, 5<D

s is a sublagebra in g

Here are the relations:

GenRel@sD �� ColumnForm

@e1,e2D � 0

@e2,e2D � - e1

@e1,@e1,@e1,@e1,zDDDD � 0

@e2,@e1,@e1,@e1,zDDDD � 0

@z,@e2,zDD � 0

@@e1,zD,@e1,@e1,zDDD � @z,@e1,@e1,@e1,zDDDD
@@e2,zD,@e1,@e1,zDDD � 4@@e1,zD,@e2,@e1,zDDD
@z,@z,@e1,zDDD � 0

@@e1,@e1,@e1,zDDD,@z,@e1,zDDD �
3
����
5
@@e1,@e1,zDD,@z,@e1,@e1,zDDDD

@@z,@e1,@e1,zDDD,@z,@e1,@e1,@e1,zDDDDD �
2
����
3
@@z,@e1,zDD,@@e1,zD,@e1,@e1,@e1,zDDDDD

á 1.2.3. Algebra h(4|0)

Let us find the relations between the positive generators of h(4|0) with respect to the standard
grading, see [GL].

Needs@"SuperLie‘"D
Off@Solve::svarsD

First, let us define the algebra h(4).  We will define it on polynomials of pi , qi . 
We will  use  the  operation VTimes  for  multiplication of  polynomials,  so  it  should  be  declared

Symmetric.
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VectorSpace@p, Dim ® 2D;
VectorSpace@q, Dim ® 2D;
Symmetric@VTimesD;
HamiltonAlgebra@g, 8p, q<D

g is a Hamiltonian algebra over 8p, q<

Find the lowest vectors in g1 :

GeneralZero@8p2  q1, q2
2<, DegreeBasis@3, 8p1, p2, q1, q2<D, c, HbD

c@1Dq1 3

Build a subalgebra with generators e1 = p1  q2 , e2 = p2
2 , z = q1

3 , up to grade 5. 
Note that HamiltonAlgebra  does not define grading on polynomials, so we should specify the

grading explicitly.

SubAlgebra@s, g, 8e1 ® p1  q2, e2 ® p2
2, z ® q1

3<, Grade ® 8Deg@#, BasisPattern@gDD - 2 &, 5<D

Here are the relations:

GenRel@sD �� InfixFormat@"\n", Prec -> 1000D

@e2,@e1,e2DD � 0 
 @e1,@e1,@e1,e2DDD � 0 
 @e2,zD � 0 
 @e1,@e1,@e1,@e1,zDDDD � 0 
 @z,@e1,zDD � 0 
 @@e1,zD,@e1,@e1,zDDD � 0 

 @@@e1,e2D,zD,@e1,@e1,@e1,zDDDD � -
3
�����
5
@@e1,@e1,zDD,@@e1,e2D,@e1,zDDD 

 @@@e1,@e1,e2DD,zD,@@e1,@e1,e2DD,@e1,zDDD �
-4@@@e1,e2D,@e1,zDD,@@e1,e2D,@e1,@e1,zDDDD -
2@@@e1,e2D,@e1,zDD,@@e1,@e1,e2DD,@e1,zDDD 

 @@@e1,@e1,e2DD,@e1,zDD,@@e1,@e1,e2DD,@@e1,e2D,zDDD �

-
1
�����
4
@@@e1,e2D,@e1,@e1,zDDD,@@e1,e2D,@@e1,e2D,@e1,zDDDD -

3
�����
8
@@@e1,e2D,@@e1,e2D,zDD,@@e1,@e1,e2DD,@e1,@e1,zDDDD -

5
�����
4
@@@e1,@e1,e2DD,@e1,zDD,@@e1,e2D,@@e1,e2D,@e1,zDDDD 

 @@@e1,@e1,e2DD,@@e1,@e1,e2DD,@@e1,@e1,e2DD,zDDD,@@e1,zD,@@e1,e2D,zDDD �
-3@@@e1,@e1,e2DD,@@e1,@e1,e2DD,@e1,zDDD,@@@e1,e2D,zD,@@e1,@e1,e2DD,zDDD -
3@@@e1,@e1,e2DD,@@e1,@e1,e2DD,@@e1,e2D,zDDD,@@e1,@e1,zDD,@@e1,e2D,zDDD

à 1.3. Defining relations for glHΛL

Needs@"SuperLie‘"D
Off@Solve::svarsD

The algebra gl(Λ) is defined as a subalgebra in diff(1) with generators shown below.
Since the grades of the generators have different signs, it is not possible to restrict the calcula­

tions to some grade. Instead, we restrict the computation to some degree with respect to the genera­
tors assuming that the degree of each generator is equal to 1. 

TrivialSpace@uD;
DiffAlgebra@Diff, uD;
Scalar@ΛD;
SubAlgebra@s, Diff, 8x+ ® u2  d@uD - HΛ - 1L u, x- ® -d@uD, z ® d@uD2<, GRange ® 10D

s is a sublagebra in Diff

Here are the relations:
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GenRel@sD �� ColumnForm

@x-,zD � 0

@x+,@x+,x-DD � -2Hx+L
@x-,@x+,x-DD � 2Hx-L
@z,@x+,x-DD � 4z

@z,@z,@x+,zDDD � 0

@@x+,zD,@x+,@x+,zDDD � 8 H-4 + Λ2LHx-L +
2
����
3
@z,@x+,@x+,@x+,zDDDD

@x+,@x+,@x+,@x+,@x+,zDDDDD � 0

@@z,@x+,zDD,@x+,@x+,@x+,zDDDD � -144 H-9 + Λ2Lz -
3
����
4
@@x+,@x+,zDD,@z,@x+,@x+,zDDDD

à 1.4. Defining relations for diff(1)

Needs@"SuperLie‘"D
Off@Solve::svarsD

Case n=1:

TrivialSpace@qD;
DiffAlgebra@Diff, qD;
SubAlgebra@s, Diff,
8e ® VTimes@D, q ® q, dq ® d@qD, x ® d@qD2, y ® q2, h ® q d@qD, z ® q3<, GRange ® 16D

s is a sublagebra in Diff

Here are the relations:

GenRel@sD �� InfixFormat@"\n", Prec -> 1000D

@e,qD � 0 
 @e,dqD � 0 
 @e,xD � 0 
 @e,yD � 0 
 @e,hD � 0 
 @e,zD � 0 
 @q,dqD � - e 
 @q,xD � -2dq 
 @q,yD � 0 
 @q,hD � - q 
 @q,zD � 0 
 @dq,xD � 0 
 @dq,yD � 2q 
 @dq,hD � dq 
 @dq,zD � 3y 
 @x,yD � 2e + 4h 
 @x,hD � 2x 
 @y,hD � -2y 
 @y,zD � 0 
 @h,zD � 3z 
 @z,@z,@x,zDDD � 0 
 @x,@x,@x,@x,zDDDD � 0 
 @@x,zD,@x,@x,zDDD � 144e + @z,@x,@x,@x,zDDDD 

 @@z,@x,zDD,@x,@x,@x,zDDDD �
41472
�����������������

5
q -

3
�����
5
@@x,@x,zDD,@z,@x,@x,zDDDD 

 @@z,@x,@x,zDDD,@z,@x,@x,@x,zDDDDD � 435456y +
4
�����
5
@@x,@x,@x,zDDD,@@x,zD,@z,@x,zDDDD

Case n=2:

VectorSpace@q, Dim ® 2D;
DiffAlgebra@Diff, qD;
SubAlgebra@s, Diff, 8e ® VTimes@D, q1 ® q1, q2 ® q2, dq1 ® d@q1D,
dq2 ® d@q2D, x1 ® q2  d@q1D, x2 ® d@q2D2, y1 ® q1  d@q2D, y2 ® q2

2,

y3 ® q1  q2, y4 ® q1
2, h1 ® q1 d@q1D, h2 ® q2  d@q2D, z ® q1

3<, GRange ® 15D
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s is a sublagebra in Diff

Here are the relations:

GenRel@sD �� InfixFormat@"\n", Prec -> 1000D

@e,q1D � 0 
 @e,q2D � 0 
 @e,dq1D � 0 
 @e,dq2D � 0 
 @e,x1D � 0 
 @e,x2D � 0 
 @e,y1D � 0 
 @e,y2D � 0 
 @e,y3D � 0 
 @e,y4D � 0 
 @e,h1D � 0 
 @e,h2D � 0 
 @e,zD � 0 
 @q1,q2D � 0 
 @q1,dq1D � - e 
 @q1,dq2D � 0 
 @q1,x1D � - q2 
 @q1,x2D � 0 
 @q1,y1D � 0 
 @q1,y2D � 0 
 @q1,y3D � 0 
 @q1,y4D � 0 
 @q1,h1D � - q1 
 @q1,h2D � 0 
 @q1,zD � 0 
 @q2,dq1D � 0 
 @q2,dq2D � - e 
 @q2,x1D � 0 
 @q2,x2D � -2dq2 
 @q2,y1D � - q1 
 @q2,y2D � 0 
 @q2,y3D � 0 
 @q2,y4D � 0 
 @q2,h1D � 0 
 @q2,h2D � - q2 
 @q2,zD � 0 
 @dq1,dq2D � 0 
 @dq1,x1D � 0 
 @dq1,x2D � 0 
 @dq1,y1D � dq2 
 @dq1,y2D � 0 
 @dq1,y3D � q2 
 @dq1,y4D � 2q1 
 @dq1,h1D � dq1 
 @dq1,h2D � 0 
 @dq1,zD � 3y4 
 @dq2,x1D � dq1 
 @dq2,x2D � 0 
 @dq2,y1D � 0 
 @dq2,y2D � 2q2 
 @dq2,y3D � q1 
 @dq2,y4D � 0 
 @dq2,h1D � 0 
 @dq2,h2D � dq2 
 @dq2,zD � 0 
 @x1,y1D � - h1 + h2 
 @x1,y2D � 0 
 @x1,y3D � y2 
 @x1,y4D � 2y3 
 @x1,h1D � x1 
 @x1,h2D � - x1 
 @x2,y1D � 0 
 @x2,y2D � 2e + 4h2 
 @x2,y3D � 2y1 
 @x2,y4D � 0 
 @x2,h1D � 0 
 @x2,h2D � 2x2 
 @x2,zD � 0 
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 @y1,y2D � 2y3 
 @y1,y3D � y4 
 @y1,y4D � 0 
 @y1,h1D � - y1 
 @y1,h2D � y1 
 @y1,zD � 0 
 @y2,y3D � 0 
 @y2,y4D � 0 
 @y2,h1D � 0 
 @y2,h2D � -2y2 
 @y2,zD � 0 
 @y3,y4D � 0 
 @y3,h1D � - y3 
 @y3,h2D � - y3 
 @y3,zD � 0 
 @y4,h1D � -2y4 
 @y4,h2D � 0 
 @y4,zD � 0 
 @h1,h2D � 0 
 @h1,zD � 3z 
 @h2,zD � 0 
 @x2,@x1,x2DD � 0 
 @z,@x1,zDD � 0 
 @x1,@x1,@x1,x2DDD � 0 
 @x1,@x1,@x1,@x1,zDDDD � 0 
 @@x1,zD,@x1,@x1,zDDD � 0 

 @@z,@x1,x2DD,@x1,@x1,@x1,zDDDD �
3
�����
5
@@x1,@x1,zDD,@@x1,x2D,@x1,zDDD 

 @@@x1,x2D,@x1,zDD,@@x1,zD,@x1,@x1,x2DDDD �

1
�����
2
@@z,@x1,@x1,x2DDD,@@x1,zD,@x1,@x1,x2DDDD +

2@@@x1,x2D,@x1,zDD,@@x1,x2D,@x1,@x1,zDDDD 
 @@@x1,zD,@x1,@x1,x2DDD,@@x1,@x1,x2DD,@z,@x1,x2DDDD �

-144e -
1
�����
4
@@@x1,x2D,@x1,@x1,zDDD,@@x1,x2D,@@x1,x2D,@x1,zDDDD +

3
�����
8
@@@x1,x2D,@z,@x1,x2DDD,@@x1,@x1,x2DD,@x1,@x1,zDDDD +

5
�����
4
@@@x1,zD,@x1,@x1,x2DDD,@@x1,x2D,@@x1,x2D,@x1,zDDDD 

 @@@x1,@x1,zDD,@@x1,x2D,@x1,zDDD,@@x1,@x1,x2DD,@@x1,x2D,@z,@x1,x2DDDDD �

25920q1 -
5
�����
2
@@@x1,@x1,x2DD,@@x1,x2D,@x1,zDDD,@@z,@x1,@x1,x2DDD,@@x1,x2D,@x1,zDDDD

à 2. Singular vectors

à 2.1 k(1|6)

Not written yet; for the answer, see [GLS]

à 2.2 kas

Not written yet; for the answer, see [GLS]
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à 3. Cohomology with various coefficients

à 3.1 Trivial coefficients

á 3.1.1. Hi  HgL for g = h0
H0 ÈnL, n=4

Needs@"SuperLie‘"D
Off@Solve::svarsD
SuperLie Package Version 2.03 installed
Disclaimer: This software is provided "AS IS", without a warranty of any kind

Define h0  as subalgebra in the Hamiltonian algebra

n = 4;
VectorSpace@Θ, Dim ® H0 È nLD;
Symmetric@VTimesD;
HamiltonAlgebra@ham, 8Θ<D

ham is a Hamiltonian algebra over 8Θ<

bas = Rest@UpToDegreeBasis@n - 1, Array@Θ, nDDD
SubAlgebra@g, ham, bas, Grade ® HDeg@#, _ΘD - 2 &LD

8Θ1, Θ2, Θ3, Θ4, Θ1 Θ2, Θ1 Θ3, Θ1 Θ4, Θ2 Θ3, Θ2 Θ4, Θ3 Θ4, Θ1 Θ2 Θ3, Θ1 Θ2 Θ4, Θ1 Θ3 Θ4, Θ2 Θ3 Θ4<

g is a sublagebra in ham

Prepare calculations:

Needs@"SuperLie‘Cohom‘"D
chSetAlg@g, dg, None, 1D
chScalars@b, cD;
Jacobi@Act - wedgeD;
ch$Out := H# �. 8g@i_D ¦ Image@gDPiT, dg@i_D ¦ d@Image@gDPiTD<L &

Calculations (the grades of gi are from −1 to 1, so the grade of r−cohomology may be from −r
to r)

chCalc@-4, 4D

Total: 80, 0, 0, 0, 81, 34<<

The result shows the dimension of Im d and Ker d. One 4−cohomology is found. Print it.

chNext@D

® d@Θ1 Θ2 Θ3Dïd@Θ1 Θ2 Θ3Dïd@Θ1 Θ2 Θ3Dïd@Θ1 Θ2 Θ3D +
2d@Θ1 Θ2 Θ3Dïd@Θ1 Θ2 Θ3Dïd@Θ1 Θ2 Θ4Dïd@Θ1 Θ2 Θ4D +
2d@Θ1 Θ2 Θ3Dïd@Θ1 Θ2 Θ3Dïd@Θ1 Θ3 Θ4Dïd@Θ1 Θ3 Θ4D +
2d@Θ1 Θ2 Θ3Dïd@Θ1 Θ2 Θ3Dïd@Θ2 Θ3 Θ4Dïd@Θ2 Θ3 Θ4D +
d@Θ1 Θ2 Θ4Dïd@Θ1 Θ2 Θ4Dïd@Θ1 Θ2 Θ4Dïd@Θ1 Θ2 Θ4D +
2d@Θ1 Θ2 Θ4Dïd@Θ1 Θ2 Θ4Dïd@Θ1 Θ3 Θ4Dïd@Θ1 Θ3 Θ4D +
2d@Θ1 Θ2 Θ4Dïd@Θ1 Θ2 Θ4Dïd@Θ2 Θ3 Θ4Dïd@Θ2 Θ3 Θ4D +
d@Θ1 Θ3 Θ4Dïd@Θ1 Θ3 Θ4Dïd@Θ1 Θ3 Θ4Dïd@Θ1 Θ3 Θ4D +
2d@Θ1 Θ3 Θ4Dïd@Θ1 Θ3 Θ4Dïd@Θ2 Θ3 Θ4Dïd@Θ2 Θ3 Θ4D +
d@Θ2 Θ3 Θ4Dïd@Θ2 Θ3 Θ4Dïd@Θ2 Θ3 Θ4Dïd@Θ2 Θ3 Θ4D

chCalc@-3, 4D

Total: 80, 0, 0, 80, 20<, 820, 100<<
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No cohomology of degree −3.

chCalc@-2, 4D

Total: 80, 0, 81, 9<, 89, 51<, 852, 178<<

There are: one 2−cohomology and one 4−cohomology of degree −2. To save the volume of this
book, we do not print all cohomologies.

chCalc@-1, 4D

Total: 80, 80, 4<, 84, 20<, 820, 80<, 880, 240<<

chCalc@0, 4D

Total: 881, 0<, 80, 6<, 87, 24<, 825, 91<, 892, 263<<

chNext@D

® 1

chNext@D

® 888c@1D ® 0<<, 84, 4, 4, 4, 4, 4, 4<<

Only the coefficient c[1] gives a cohomology. Print it.

chBook@c@1D ® 1D

- d@Θ1Dïd@Θ2 Θ3 Θ4D + d@Θ2Dïd@Θ1 Θ3 Θ4D - d@Θ3Dïd@Θ1 Θ2 Θ4D + d@Θ4Dïd@Θ1 Θ2 Θ3D

chNext@D

® 888c@16D ® -c@18D - c@22D - c@25D<<,
88, 6, 6, 6, 6, 8, 8, 6, 6, 6, 6, 6, 6, 6, 6, 4, 8, 4, 8, 6, 8, 4, 6, 6, 4<<

chBook@c@16D ® 1D

- d@Θ1Dïd@Θ1 Θ2Dïd@Θ1 Θ3 Θ4D + d@Θ1Dïd@Θ1 Θ3Dïd@Θ1 Θ2 Θ4D -
d@Θ1Dïd@Θ1 Θ4Dïd@Θ1 Θ2 Θ3D + d@Θ1 Θ2Dïd@Θ1 Θ3Dïd@Θ1 Θ4D

chNext@D

® 888c@25D ® 0<<, 812, 8, 9, 9, 8, 12, 18, 14, 16, 15, 15, 22, 14, 14, 8, 18, 8, 9, 18, 23, 20,
19, 14, 6, 10, 18, 23, 15, 9, 9, 8, 8, 23, 15, 20, 9, 9, 8, 8, 27, 10, 9, 9, 9, 8, 9,
8, 21, 23, 19, 18, 10, 9, 10, 9, 22, 17, 9, 14, 10, 9, 9, 10, 9, 10, 9, 10, 9, 18, 10,
18, 18, 8, 8, 9, 27, 17, 14, 20, 9, 21, 23, 19, 8, 16, 12, 19, 8, 12, 12, 12, 12<<

chBook@c@25D ® 1D

d@Θ1Dïd@Θ1Dïd@Θ2 Θ3 Θ4Dïd@Θ2 Θ3 Θ4D - 2d@Θ1Dïd@Θ2Dïd@Θ1 Θ3 Θ4Dïd@Θ2 Θ3 Θ4D +
2d@Θ1Dïd@Θ3Dïd@Θ1 Θ2 Θ4Dïd@Θ2 Θ3 Θ4D - 2d@Θ1Dïd@Θ4Dïd@Θ1 Θ2 Θ3Dïd@Θ2 Θ3 Θ4D +
d@Θ2Dïd@Θ2Dïd@Θ1 Θ3 Θ4Dïd@Θ1 Θ3 Θ4D - 2d@Θ2Dïd@Θ3Dïd@Θ1 Θ2 Θ4Dïd@Θ1 Θ3 Θ4D +
2d@Θ2Dïd@Θ4Dïd@Θ1 Θ2 Θ3Dïd@Θ1 Θ3 Θ4D + d@Θ3Dïd@Θ3Dïd@Θ1 Θ2 Θ4Dïd@Θ1 Θ2 Θ4D -
2d@Θ3Dïd@Θ4Dïd@Θ1 Θ2 Θ3Dïd@Θ1 Θ2 Θ4D + d@Θ4Dïd@Θ4Dïd@Θ1 Θ2 Θ3Dïd@Θ1 Θ2 Θ3D

chNext@D

No more cohomologies

chCalc@1, 4D

Total: 80, 80, 4<, 84, 20<, 820, 80<, 880, 240<<

3.1 Trivial coefficients 129



chCalc@2, 4D

Total: 80, 0, 81, 9<, 89, 51<, 852, 178<<

chCalc@3, 4D

Total: 80, 0, 0, 80, 20<, 820, 100<<

chCalc@4, 4D

Total: 80, 0, 0, 0, 81, 34<<

Final  result:  one  0−cohomology,  three  2−cohomologies,  one  3−cohomology,  and  five
4−cohomologies.

á 3.1.2. Hi  HgL for g = h0
H0 ÈnL, n=5

Needs@"SuperLie‘"D
Off@Solve::svarsD

Define h0  as subalgebra in the Hamiltonian algebra.
To simplify the problem, 

k = 2;
VectorSpace@Ζ, Dim ® H0 È kLD;
VectorSpace@Η, Dim ® H0 È kLD;
TrivialSpace@Θ, 1D;
Symmetric@VTimesD;
HamiltonAlgebra@ham, 8Ζ, Θ, Η<D

ham is a Hamiltonian algebra over 8Ζ, Θ, Η<

bas = Rest@UpToDegreeBasis@2 k, Join@8Θ<, Array@Ζ, kD, Array@Η, kDDDD
SubAlgebra@g, ham, bas, Grade ® HDeg@#, Θ È _Ζ È _ΗD - 2 &LD

8Θ, Ζ1, Ζ2, Η1, Η2, Θ Ζ1, Θ Ζ2, Θ Η1, Θ Η2, Ζ1 Ζ2, Ζ1 Η1, Ζ1 Η2, Ζ2 Η1, Ζ2 Η2,
Η1 Η2, Θ Ζ1 Ζ2, Θ Ζ1 Η1, Θ Ζ1 Η2, Θ Ζ2 Η1, Θ Ζ2 Η2, Θ Η1 Η2, Ζ1 Ζ2 Η1, Ζ1 Ζ2 Η2,
Ζ1 Η1 Η2, Ζ2 Η1 Η2, Θ Ζ1 Ζ2 Η1, Θ Ζ1 Ζ2 Η2, Θ Ζ1 Η1 Η2, Θ Ζ2 Η1 Η2, Ζ1 Ζ2 Η1 Η2<

g is a sublagebra in ham

Prepare calculations

Needs@"SuperLie‘Cohom‘"D
chSetAlg@g, dg, None, 1D
chScalars@b, cD;
Jacobi@Act ® wedgeD;
ch$Out := H# �. 8g@i_D ¦ Image@gDPiT, dg@i_D ¦ d@Image@gDPiTD<L &

Calculations (the grades of gi are from −1 to 2, so the grade of r−cohomology may be from −2r
to r)

chCalc@-6, 3D

Total: 80, 0, 0, 80, 10<<

chCalc@-5, 3D

Total: 80, 0, 0, 81, 99<<

The result shows the dimension of Im d and Ker d. One 3−cohomology found. Print it.
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chNext@D

® d@Θ Ζ1 Ζ2Dïd@Θ Ζ1 Η1 Η2Dïd@Θ Ζ2 Η1 Η2D - d@Θ Ζ1 Η1Dïd@Θ Ζ1 Ζ2 Η1Dïd@Θ Ζ1 Η1 Η2D -
d@Θ Ζ1 Η2Dïd@Θ Ζ1 Ζ2 Η1Dïd@Θ Ζ2 Η1 Η2D - d@Θ Ζ2 Η1Dïd@Θ Ζ1 Ζ2 Η2Dïd@Θ Ζ1 Η1 Η2D -
d@Θ Ζ2 Η2Dïd@Θ Ζ1 Ζ2 Η2Dïd@Θ Ζ2 Η1 Η2D + d@Θ Η1 Η2Dïd@Θ Ζ1 Ζ2 Η1Dïd@Θ Ζ1 Ζ2 Η2D +
d@Ζ1 Ζ2 Η1Dïd@Θ Ζ1 Η1 Η2Dïd@Ζ1 Ζ2 Η1 Η2D + d@Ζ1 Ζ2 Η2Dïd@Θ Ζ2 Η1 Η2Dïd@Ζ1 Ζ2 Η1 Η2D +
d@Ζ1 Η1 Η2Dïd@Θ Ζ1 Ζ2 Η1Dïd@Ζ1 Ζ2 Η1 Η2D + d@Ζ2 Η1 Η2Dïd@Θ Ζ1 Ζ2 Η2Dïd@Ζ1 Ζ2 Η1 Η2D

chCalc@-4, 3D

Total: 80, 0, 80, 10<, 810, 365<<

No cohomology of degree −4.

chCalc@-3, 3D

Total: 80, 0, 80, 50<, 850, 720<<

No cohomology of degree −3.

chCalc@-2, 3D

Total: 80, 80, 5<, 85, 100<, 8100, 925<<

No cohomology of degree −2.

chCalc@-1, 3D

Total: 80, 80, 10<, 810, 115<, 8115, 860<<

No cohomology of degree −1.

chCalc@0, 3D

Total: 881, 0<, 80, 10<, 810, 85<, 885, 610<<

chNext@D

® 1

chNext@D

No more cohomologies

A single 0−cohomology found.

chCalc@1, 3D

Total: 80, 80, 5<, 85, 45<, 845, 330<<

chCalc@2, 3D

Total: 80, 0, 81, 14<, 814, 136<<

chNext@D

®
1
�����
2
d@ΘDïd@ΘD + d@Ζ1Dïd@Η1D + d@Ζ2Dïd@Η2D

A single 2−cohomology found.

chCalc@3, 3D
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Total: 80, 0, 0, 80, 35<<

No cohomology of degree 3.

Final result: one 0−cohomology, one 2−cohomology, one 3−cohomology.

à 3.2 SUGRA (H2  Hg-; gL,where g = slH4 ÈnL)

Let  e=sl(par),  there  par  is  the  format  of  the  matrix  algebra,  i.e.,  list  of  parities  of  rows  and
columns; n = dimHgL = lengthHparL =Úni and hi Ì e  are subalgebras of matrices formed by consecu­
tive ni rows and columns (i.e.,  h1 formed by first n1 columns and rows, h2 |  by the next n2 columns
and rows, etc); h = Åhi is the algebra block−diagonal matrices ; h0 Ì his the even part of h; n Ì e  is
the  subalgebra  of  block  underdiagonal  matrices;  b = n + h  (direct  sum  of  vector  spaces  but  not
algebras)

Let us find the cohomology (only the first and the second one in this example, but the higher
cohomology  may  be  calculated  in  the  same way)  of  n  with  coefficients  in  b  (the  generalized Rie­
mann case) and in e (the conformal case).

Needs@"SuperLie‘"D;
Needs@"SuperLie‘Cohom‘"D;

First  we  should  define  the  algebra.  We have  a  series of  algebras,  so  we write  a  Mathematica
program that defines the algebra and all the subalgebras mentioned above for given format par and
block decomposition 8ni < .  The program also will  define some other things required for calculation
of cohomology. The grading on e  is defined so that the subalgebra h  has grade 0, the blocks under
diagonal have grade −1 and so on.

DefTask@par_, blocksizes_D :=

Module@8dim, k, raise, lower, cent<,
dim = Length@parD;
If@dim ¹ Plus �� blocksizes, Message@DefTask::dimD; Return@$FailedDD;
slAlgebra@e, PList ® parD;
block$sizes = blocksizes;
n$blocks = Length@blocksizesD;
par$ = par;
block$no = Flatten@Table@i, 8i, n$blocks<, 8blocksizesPiT<DD;
H* block number for rows�columns *L
block$ind = Flatten@Table@j, 8i, n$blocks<, 8j, blocksizesPiT<DD;
H* indices inside blocks *L
Grade@e@i_, j_DD ^:= block$noPjT - block$noPiT;
H* the grading defined by the block decomposition *L
SubAlgebra@n, e, Select@Basis@eD, Grade@#D < 0 &DD;
SubAlgebra@h, e, Join@Select@Array@e, dimD, block$noP#P1TT == block$noP#P1T + 1TD,
Select@Basis@eD, HLength@#D � 2 ß Grade@#D == 0L &DDD;

RestrictModule@n, hD; H* define the action of h on n *L
H* list of positive and negative generators in h0 *L
ch$raise = Select@Basis@hD, P@#D � 0 ß With@8m = Mapping@h, eD@#D<, mP2T � mP1T + 1D &D;
ch$lower = Select@Basis@hD, P@#D � 0 ß With@8m = Mapping@h, eD@#D<, mP2T � mP1T - 1D &D;
H* the condition when a weight may be a highest weight of a h0-module *L
hi$cond@w_D = And �� HWith@8m = Mapping@h, eD@#D<, wPmP1TT ³ wPmP2TTD & �� ch$raiseL;
H* initialize the Cohom package *L
chSetAlg@n, dn, hD;
D;

DefTask::dim = "The sum of block sizes is not equal to the size of the whole matrix";

We are calculating cohomology with two sets of coefficients, so we should store the results in
separate places. To do this, we assign values to "store" variables ch$res, ch$tab and ch$book. The
variable ansInt  will be also used for storing results. The functions below will initialize calculating
in respective case. They return the minimal and the maximal grading of r−cochains for 0 £ r £ 2.

ConformalCase@D :=

Hconf$ = True;
;
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maxcfdeg = n$blocks - 1;
mincfdeg = 1 - n$blocks;
ch$res = resConf;
ch$tab = tbConf;
ch$book = ansConf;
Clear@resConf, tbConf, ansConfD;
tbConf@_D = 8<;
ansConf@__D = 0;
8mincfdeg, maxcfdeg + 2 Hn$blocks - 1L<L

RiemannCase@D :=

Hconf$ = False;
maxcfdeg = 0;
mincfdeg = 1 - n$blocks;
ch$res = resRm;
ch$tab = tbRm;
ch$book = ansRm;
Clear@resRm, tbRm, ansRm, ansIntD;
tbRm@_D = 8<;
ansRm@__D = 0;
ansInt@___D = 0;
8mincfdeg, 2 Hn$blocks - 1L<L

Here is the maximal and minimal possible grade of d−forms:

MaxDeg@d_D := maxcfdeg + d*Hn$blocks - 1L;
MinDeg@d_D := mincfdeg + d;

Definitions required for Cohom package. The splitting function is used to decompose modules
in sums of homogeneous parts. We will split the modules into parts of fixed weight and "total par­
ity". The "total parity" of an r−form Ω is defined as HP@ΩD + rL mod 2 . 

chScalars@b, cD;
chSplit@x_D :=

With@8w = Weight@xD<, If@hi$cond@wD, 8Mod@P@xD + Deg@x, _ch$dD, 2D, w<, SkipValDD;

H*chSplit@x_D:=With@8w=Weight@xD<,If@hi$cond@wD,w,SkipValDD;*L

The function chBasis@dD  should return the list of the elements of grade d in the basis of the
module of coefficients: 

mComp@d_D := Select@If@conf$, Basis@eD, Join@Image@nD, Image@hDDD, Grade@#D � d &D;
chBasis@d_D := If@conf$ ÈÈ d £ 0, mComp@dD, 8<D;

Linear@TpD;
Jacobi@Act -> 8wedge, Tp<D;
Off@Solve::svarsD

The function Der calculates the derivative but does not normalize the result. So we define NDer
as derivative with normalization. 

NDer@f_D := VNormal@Der@fDD;
NDer0@f__D := VNormal@Der0@fDD;

Now we will define the output format. Every matrix element is written as a letter with 4 indi­
ces.  The  subscripts  denote  the  coordinates  of  the  block  (row  and  column)  and  the  superscripts
denote  the  row and  the  column inside  the  block.  The  diagonal  elements  have  only  2  indices.  The
superscripts that correspond to a block of size 1 are omitted.

The letters used for matrix elements are H for diagonal elements, X for even elements of diago­
nal blocks, Y for odd elements of diagonal blocks, A for other even elements, Q for other odd ele­

ments. The forms are denoted by "hat": A
`

and Q
`

.
For diagonal blocks of size 2×2, the superscripts 12 and 21 at X and Y are replaced with "+"

and "−"; the superscript of H is omitted. The diagonal elements that are not elements of blocks are
written with two subscript indices that denote the adjacent blocks.
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WithoutPreSLA
OutFn@v_D := v ��.

9e@i_D ¦ With@8c = block$noPiT, j = block$indPiT<,
Which@
j � block$sizesPcT, HStringForm@"‘‘‘‘",c,c+1D,
block$sizesPcT � 2, Hc,

True, Hc
jDD,

e@i_, j_D ¦

WithA8ci = block$noPiT, cj = block$noPjT, ki = block$indPiT, kj = block$indPjT<,
IfAci � cj,

HIf@P@e@i, jDD � 0, X, YDLciIf@block$sizesPciT�2, If@i>j,"-","+"D, StringForm@"‘‘‘‘",ki,kjDD
,

HIf@P@e@i, jDD � 0, A,

QDLStringForm@"‘‘‘‘",ci,cjDStringForm@"‘‘‘‘",If@block$sizesPciT>1,ki,""D,If@block$sizesPcjT>1,kj,""DDEE,
dn@i_D ¦ HImage@nDPiT �. e -> deL,
de@i_, j_D ¦

WithA8ci = block$noPiT, cj = block$noPjT, ki = block$indPiT, kj = block$indPjT<,
IIfAP@e@i, jDD � 0, A

`
,

Q
`EM

StringForm@"‘‘‘‘",ci,cjD
StringForm@"‘‘‘‘",If@block$sizesPciT>1,ki,""D,If@block$sizesPcjT>1,kj,""DDE=E;

ch$Out = OutFn;

The following function will try to integrate the generalized Riemann cohomology as a cycle in
the conformal case. The function defined below works with highest (with respect to the action of h0 )
cycles only.

ConfIntegrate@f_D :=

With@8ff = If@ListQ@fD, GeneralSum@b, fD, fD<,
Module@8v, deg = Grade@ffD, r = Deg@ff, _ch$dD, w = ch$Wt@ffD, dv, res<,
v = Select@Block@8conf$ = True<, ch$basis@r - 1, degDD, ch$Wt@#D === w &D;
DPrint@2, "deg=", deg, ", w=", w, ", basis:", vD;
v = chHVect@vD; If@v � 0, Return@0DD;
DPrint@2, "hVect:", vD;
dv = NDer@vD; If@dv � 0, Return@0DD;
DPrint@2, "deg=", deg, ", w=", w, ", dv=", dvD;
res = GeneralSolve@dv � ff, v, c, bD;
If@res === $Failed, 0, VNormal@resD, cDDD;

Store the integral:

ires@v_D := With@8r = v �. _c ® 1<, ansInt@chPos@DD = r; ch$Out@rDD
ires@v_, rep_D := With@8r = v �. rep<, ansInt@chPos@DD = r; ch$Out@rDD
ires@v_, rep__D := HansInt@chPos@DD = HWith@8r = v �. #<, Print@ch$Out@rDD; rD & �� 8rep<L;L

Here we define short commands for invoking most used functions:

integ := ConfIntegrate@ch$book@chPos@DDD
next := chNext@D

Now we define the TEX  format:

Format@OverHat@A_D, TeXFormD := StringForm@"\\hat ‘‘", AD
WithoutPreSL@
Unprotect@PowerD;
Format@Power@Subscript@a_, i_D, j_StringD, TeXFormD := Subsuperscript@a, i, jD;
Format@Power@Subscript@a_, i_D, j_StringFormD, TeXFormD := Subsuperscript@a, i, jD;
Protect@PowerDD;

Format@a_ ** b_, TeXFormD := StringForm@"‘‘\cdot ‘‘", a, bD
Format@a_ïb_, TeXFormD := Infix@8a, b<, "\\wedge "D

Format@e_wt, TeXFormD := SequenceForm@"H", Infix@e, ",", 0D, "L"D

Format@e_label, TeXFormD := SequenceForm@eP1T, ": \n", eP2TD
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tOut@v_D := TeXForm@ch$Out@v �. wedge@e__D ¦ Infix@8e<, "\\wedge ", 145DDD

Now the define some auxiliary functions for working with TEX  files:

texfile = With@8file = "FileName" �. NotebookInformation@InputNotebook@DD<,
ToFileName@First@fileD, StringReplace@file@@2DD, ".nb" -> ".tex"DDD;

OpenTeX@D :=

Htex = OpenWrite@texfile, FormatType ® OutputForm, PageWidth ® InfinityD;
Write@tex, "% Cocycles which represent structure functions on MHNL"D;
Write@tex, "\\documentclass@12ptD8amsart<"D;
Write@tex, "\\hoffset=-2cm\\voffset=1cm\\topmargin=-0.5in"D;
Write@tex, "\\textheight=24cm\\textwidth=16.5cm"D;
Write@tex, "\\begin8document<"D;L;

CloseTeX@final_: FalseD :=

HIf@final, WriteCR@D; Write@tex, "\\end8document<"DD; Close@texDL;
ReopenTeX@D :=

Htex = OpenAppend@texfile, FormatType ® OutputForm, PageWidth ® InfinityD;
WriteCR@D;L

Print the header and the footer of the table for current format:

OutHead@D :=

HWrite@tex, ""D;
Write@tex, "\\vskip 0.3cm"D;
Write@tex, "Par = 8\\bf ", Sequence �� par$, "<"D;
Write@tex, "\\vskip 0.2cm"D;
Write@tex, "\\begin8tabular<8ÈcÈcÈlÈrÈ<"D;
Write@tex, "\\hline\r"D;
Write@tex, "$",
Subscript@"\\text8deg<", "\\text8par<"D �� TeXForm, "$&weight&dim&note\\\\"D;
Write@tex, "\\hline"D;
comm = 0; mix = False;L

OutTail@D :=

HWrite@tex, "\\end8tabular<"D;
If@mix, Write@tex, ""D; Write@tex, "$8<^*$ Mixed cohomologies"DD;
Write@tex, "\\vskip 0.2cm"D;
Write@tex, "\\noindent 8\\bf Notes:<"D;
Write@tex, ""D;
L

Print rows for given degree [and parity]:

OutDeg@deg_D := 8OutDeg@deg, 0D, OutDeg@deg, 1D<

OutDeg@deg_, par_D :=

Module@8nres, fres, lst = 8<, wt, i, j, nr, fr, nk, ni, fk, fi, nd, fd, nmix, fmix<,
nres = tbRm@degD; H* result table, Reimann case *L
fres = tbConf@degD; H* result table, Conformal case *L
For@i = 1, i £ Length@nresD, i++,
nr = nresPiT; H* the current element, Reimann case *L
wt = nrP1T;
If@wtP1T ¹ par, Continue@DD;
fr = Cases@fres, 8wt, ___<D; H* the current element, conformal case *L
If@fr === 8< Þ Length@frP1TD < 4 Þ frP1, 4T === "", fi = fd = 0,
H*else*Lfr = frP1T; fk = frP4, 1T; fi = If@ListQ@frP3TD, frP3, 2T, 0D; fd = fk - fiD;
If@Length@nrD < 4 Þ nrP4T === "", ni = nd = 0,
H*else*Lnk = nrP4, 1T; ni = If@ListQ@nrP3TD, nrP3, 2T, 0D; nd = nk - niD;
If@nd > 0, Print@8nd, wt, deg<DD;
If@nd � fd � 0, Continue@DD;
comm++;
mix = mix Þ ni > 0 Þ fi > 0;
lst = 8lst, wt ® 8nd, fd, ni > 0, fi > 0, deg, comm<<D;
For@j = 1, j £ Length@fresD, j++,
fr = fresPjT;
wt = frP1T;
If@wtP1T ¹ par, Continue@DD;

;
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If@Cases@nres, 8wt, ___<D =!= 8<, Continue@DD;
If@Length@frD < 4, fi = fd = 0,
H*else*Lfk = frP4, 1T; fi = If@ListQ@frP3TD, frP3, 2T, 0D; fd = fk - fiD;
If@fd � 0, Continue@DD;
comm++;
mix = mix Þ fi > 0;
lst = 8lst, wt ® 80, fd, False, fi > 0, deg, comm<<D;
If@lst =!= 8<,
lst = Flatten@lstD;
Write@tex, "$", Subscript@deg, parD �� TeXForm, "$"D;
For@i = 1, i £ Length@lstD, i++,
nr = lstPiT;
wt = nrP1T;
nr = nrP2T;
Write@tex,
" & $H", Infix@wtP2T, ",", 0D, "L$ & $", nrP1T, If@nrP1T > 0 ß nrP3T, "^8*<", ""D,
"�", nrP2T, If@nrP2T > 0 ß nrP4T, "^8*<", ""D, "$ & ", nrP6T, " \\\\"D;
Write@tex, If@i < Length@lstD, "\\cline82-4<", "\\hline"DDDD;

lstD

Select the information to be printed as notes:

FilterNote@wt_ ® 8__, deg_, note_Integer<D :=

HDPrint@1, "Filter notes for w=", wt, ", deg=", degD;
note ® 8wtP2T, ansRm@deg, 2, wtD, ansConf@deg, 2, wtD, ansInt@deg, 2, wtD<L;

FilterNote@wt_ ® 8__, ""<D := Unevaluated@D;

Compose  and  print  a  note  to  the  table  of  cohomology.  Use  the  following  information:  note
number, weight,  cohomology in the generalized Riemann case and in the conformal case, the inte­
gral of the Riemann cohomology as a conformal cochain:

OutNot@no_ ® 8wt_, rm_, conf_, intg_<D :=
Module@8v, both, ng, fl, n = no<,
DPrint@1, "Rm: ", rm, ", Conf: ", confD;
Which@
rm === 0 Þ rm === conf, OutVect@no, confD,
conf === 0, OutVect@no, rmD,
True,
DPrint@1, "rm: ", rm, ", conf: ", confD;
fl = If@ListQ@confD, conf, 8conf<D;
ng = If@ListQ@rmD, rm, 8rm<D;
both = Intersection@fl, ngD;
DPrint@1, "both: ", bothD;
If@both =!= 8<, fl = Complement@fl, bothD; ng = Complement@ng, bothD;
OutVect@n, bothD; n = 0D;
If@ng =!= 8<, OutVect@n, ng, "HRiemann caseL"D; n = 0D;
If@fl =!= 8<, OutVect@n, fl, "HConformal caseL"DDD;
If@intg =!= 0,
OutCR@D;
OutNote@If@ListQ@intgD,
"Conformally invariant 1-cochains:", "Conformally invariant 1-cochain:"DD;

OutVect@intgDD;
D

Print a vector or a list of vectors in a note with eventual comment:

OutVect@n_Integer, v_List, text_: ""D :=

HIf@n > 0, Write@tex, n, "L $", tOut@vP1TD, "$ ", textD,
Write@tex, "$", tOut@vP1TD, "$ ", textDD;
Do@Write@tex, "\\vskip 0.05cm"D; Write@tex, "$", tOut@vPiTD, "$ ", textD
, 8i, 2, Length@vD<D;
Write@tex, "\\vskip 0.1cm"D;L

OutVect@v_List, text_: ""D :=
HOutCR@D;
Do@Write@tex, "\\vskip 0.05cm"D; Write@tex, "$", tOut@vPiTD, "$ ", textD
, 8i, 1, Length@vD<D;
Write@tex, "\\vskip 0.1cm"D;L

OutNote@text_D :=

HWrite@tex, textD;L
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OutCR@D := HWrite@texD; Write@texDL

OutNote@n_Integer, text_D :=
HOutCR@D;
Write@tex, "\\vskip 0.1cm"D;
Write@tex, "\\noindent 8\\bf ", n, "<. ", textD; Write@texD;L

OutVect@n_Integer, v_, txt_: ""D :=
HOutCR@D;
If@n > 0, Write@tex, n, "L $", tOut@vD, "$ ", txtD,
Write@tex, "$", tOut@vD, "$ ", txtDD;
Write@tex, "\\vskip 0.1cm"D;
vL

OutVect@v_, txt_: ""D :=

HWrite@tex, "$", tOut@vD, "$ ", txtD;
Write@tex, "\\vskip 0.1cm"D;
vL

OutnVect@n_Integer, v_, txt_: ""D :=
HOutCR@D;
Write@tex, n, "L $", tOut@vD, "$ ", txtD;
Write@tex, "\\vskip 0.1cm"D;
vL

Print the results of calculations as a table with notes:

OutRes@D :=
Module@8lst = 8<<,
OutHead@D;
Do@lst = 8lst, OutDeg@degD<, Evaluate@Prepend@minmax@tbRm, tbConfD, degDDD;
OutTail@D;
DPrint@1, "Writing notes ..."D;
OutNot �� HFilterNote �� Flatten@lstDLD

minmax@tb__D :=

Module@8min = ¥, max = -¥, i, j<,
For@j = 1, j £ Length@8tb<D, j++,
With@8tt = 8tb<PjT<,
HHi = #P1, 1, 1T; If@NumberQ@iD, min = Min@min, iD; max = Max@max, iDDL &L ��
DownValues@ttDDD;

8min,
max<D

àAlgebra sl({0,0,1,1,0,0}), blocks {2,2,2}

DefTask@80, 0, 1, 1, 0, 0<, 82, 2, 2<D

áCohomologies of n = g-  with coefficients in g

ConformalCase@D

8-2, 6<

Grade r=−2

chCalc@-2, 2D

Total: 881, 0<, 0, 0<

next

80, 80, -1, 0, 0, 1, 0<< ® A31
12

Grade r=−1
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chCalc@-1, 2D

Total: 880, 2<, 84, 0<, 0<

next

81, 80, -1, 1, 0, 1, -1<< ® A31
12 ** Q

`
32

21

next

81, 81, -1, 0, -1, 1, 0<< ® A31
12 ** Q

`
21

21

next

No more cohomologies

Grade r=0

chCalc@0, 2D

Total: 880, 5<, 85, 11<, 814, 0<<

next

80, 80, -1, 2, 0, 1, -2<< ® A31
12 ** IQ`32

21 ïQ`32
21M

next

80, 81, -1, 1, -1, 1, -1<< ® A31
12 ** IQ`21

21 ïQ`32
21M

next

80, 82, -1, 0, -2, 1, 0<< ® A31
12 ** IQ`21

21 ïQ`21
21M

next

No more cohomologies

Grade r=1

chCalc@1, 2D

Total: 880, 2<, 82, 16<, 816, 24<<

next

No more cohomologies

Grade r=2

chCalc@2, 2D

Total: 880, 1<, 81, 18<, 820, 56<<

next

80, 81, -1, 1, 1, -1, -1<< ® X1
+ ** IQ`32

12 ïQ`32
21M - X1

+ ** IQ`32
11 ïQ`32

22M +

Q21
12 ** IQ`32

12 ïA`31
21M - Q21

12 ** IQ`32
22 ïA`31

11M - Q21
22 ** IQ`32

11 ïA`31
21M + Q21

22 ** IQ`32
21 ïA`31

11M

next
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80, 81, 1, -1, -1, 1, -1<< ® - Q32
11 ** IQ`21

22 ïA`31
21M + Q32

11 ** IQ`21
21 ïA`31

22M +

Q32
12 ** IQ`21

12 ïA`31
21M - Q32

12 ** IQ`21
11 ïA`31

22M - X3
+ ** IQ`21

12 ïQ`21
21M + X3

+ ** IQ`21
11 ïQ`21

22M

next

No more cohomologies

Grade r=3

chCalc@3, 2D

Total: 80, 80, 8<, 88, 58<<

Grade r=4

chCalc@4, 2D

Total: 80, 80, 4<, 84, 52<<

Grade r=5

chCalc@5, 2D

Total: 80, 0, 80, 18<<

Grade r=6

chCalc@6, 2D

Total: 80, 0, 80, 4<<

áCohomologies of n = g-  with coefficients in g- + g0

RiemannCase@D

8-2, 4<

Grade r=−2

chCalc@-2, 2D

Total: 881, 0<, 0, 0<

next

80, 80, -1, 0, 0, 1, 0<< ® A31
12

Grade r=−1

chCalc@-1, 2D

Total: 880, 2<, 84, 0<, 0<

next

81, 80, -1, 1, 0, 1, -1<< ® A31
12 ** Q

`
32

21

next

81, 81, -1, 0, -1, 1, 0<< ® A31
12 ** Q

`
21

21
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Grade r=0

chCalc@0, 2D

Total: 880, 3<, 85, 11<, 814, 0<<

next

80, 80, -1, 2, 0, 1, -2<< ® A31
12 ** IQ`32

21 ïQ`32
21M

integ

0

next

- Q21
11 ** Q

`
21
11

- Q21
12 ** Q

`
21
12

- Q21
21 ** Q

`
21
21

- Q21
22 ** Q

`
21
22

+ Q32
11 ** Q

`
32
11

+ Q32
12 ** Q

`
32
12

+ Q32
21 ** Q

`
32
21

+ Q32
22 ** Q

`
32
22

- Q21
11 ** Q

`
21
11

- Q21
12 ** Q

`
21
12

- Q21
21 ** Q

`
21
21

- Q21
22 ** Q

`
21
22

+ A31
11 ** A

`
31
11

+ A31
12 ** A

`
31
12

+ A31
21 ** A

`
31
21

+ A31
22 ** A

`
31
22

80, 80, 0, 0, 0, 0, 0<< ® 2

next

80, 81, -1, 1, -1, 1, -1<< ® A31
12 ** IQ`21

21 ïQ`32
21M

integ

0

next

80, 82, -1, 0, -2, 1, 0<< ® A31
12 ** IQ`21

21 ïQ`21
21M

integ

0

next

No more cohomologies

Grade r=1

chCalc@1, 2D

Total: 80, 80, 14<, 816, 24<<

next

81, 80, 0, 1, 0, 0, -1<< ® 888c@1D ® c@2D - c@3D<<, 86, 8, 6, 8<<

Here we have a  mixed cohomology.  The dimension of  closed cochains is  4  while the  dimen­
sion of exact cochains is 3. The chain is exact if the coefficients in the expression (not shown here)
satisfies c1 = c2 - c3 . So we should choose some set of ci  that do not satisfy the equation. The list
{6,8,6,8} shows the number of times the ci occurs in the expression, so we select c1 = 1  and ci = 0
for i ¹ 0 as, hopefully, simplest expression:

chBook@c@1D ® 1D
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- Q21
11 ** IQ`32

22 ïQ`21
21M - Q21

12 ** IQ`21
22 ïQ`32

22M + Q21
21 ** IQ`21

21 ïQ`32
21M +

Q21
22 ** IQ`21

22 ïQ`32
21M - Q32

12 ** IQ`32
12 ïQ`32

21M + Q32
12 ** IQ`32

11 ïQ`32
22M

Check if this cohomology is a derivative of some 1−cochain in conformal case:

integ

-
1
�����
2
e1 ** dn8 - e2 ** dn8 +

1
�����
2
H1 - 2 c@1DLe3 ** dn8 +

H-1 - c@1DLe4 ** dn8 +
1
�����
2
H1 + 2 c@1DLe5 ** dn8 + c@1De3,1 ** dn12 +

c@1De3,2 ** dn11 + H1 - c@1DLe3,4 ** dn6 - c@1De5,6 ** dn5

Store the integral:

ires@VNormal@2 %D, c@1D ® 0D

- H1 ** Q
`
32

21
- 2H12 ** Q

`
32

21
+ H2 ** Q

`
32

21
- 2H23 ** Q

`
32

21
+ H3 ** Q

`
32

21
+ 2X2

+ ** Q
`
32

22

next

81, 81, 0, 0, -1, 0, 0<< ® 888c@1D ® c@2D + c@3D<<, 88, 6, 6, 8<<

chBook@c@2D ® 1D

- Q21
12 ** IQ`21

12 ïQ`21
21M + Q21

12 ** IQ`21
11 ïQ`21

22M + Q32
11 ** IQ`32

11 ïQ`21
21M -

Q32
12 ** IQ`21

11 ïQ`32
11M + Q32

21 ** IQ`21
21 ïQ`32

21M - Q32
22 ** IQ`21

11 ïQ`32
21M

integ

1
�����
2
H1 + 2 c@1DLe1 ** dn7 + H1 + c@1DLe2 ** dn7 +

1
�����
2
H1 - 2 c@1DLe3 ** dn7 + e4 ** dn7 -

1
�����
2
e5 ** dn7 + c@1De1,2 ** dn4 + H-1 + c@1DLe3,4 ** dn3 + c@1De5,4 ** dn10 + c@1De6,4 ** dn12

ires@VNormal@2 %D, c@1D ® 0D

H1 ** Q
`
21

21
+ 2H12 ** Q

`
21

21
+ H2 ** Q

`
21

21
+ 2H23 ** Q

`
21

21
- H3 ** Q

`
21

21
- 2X2

+ ** Q
`
21

11

next

No more cohomologies

Grade r=2

chCalc@2, 2D

Total: 80, 80, 5<, 812, 52<<

next

80, 80, 0, 1, 1, 0, -2<< ®

H2 ** IQ`32
22 ïQ`32

21M - Q21
11 ** IQ`32

22 ïA`31
21M - Q21

12 ** IQ`32
22 ïA`31

22M + X2
+ ** IQ`32

22 ïQ`32
22M +

Q21
21 ** IQ`32

21 ïA`31
21M + Q21

22 ** IQ`32
21 ïA`31

22M - X2
- ** IQ`32

21 ïQ`32
21M - X3

+ ** IQ`32
12 ïQ`32

21M + X3
+ ** IQ`32

11 ïQ`32
22M

integ

e3,6 ** dn6 - e4,6 ** dn8
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ires@%D

Q23
12 ** Q

`
32

22
- Q23

22 ** Q
`
32

21

next

80, 80, 0, 2, 0, -1, -1<< ®

- H3 ** IQ`32
11 ïQ`32

21M - Q21
11 ** IQ`32

11 ïA`31
21M + Q21

11 ** IQ`32
21 ïA`31

11M - Q21
12 ** IQ`32

11 ïA`31
22M +

Q21
12 ** IQ`32

21 ïA`31
12M - X2

+ ** IQ`32
12 ïQ`32

21M + X2
+ ** IQ`32

11 ïQ`32
22M + X3

+ ** IQ`32
11 ïQ`32

11M - X3
- ** IQ`32

21 ïQ`32
21M

integ

- e3,5 ** dn8 + e3,6 ** dn5

ires@%D

- Q23
11 ** Q

`
32

21
+ Q23

12 ** Q
`
32

11

next

80, 81, -1, 1, 1, -1, -1<< ® X1
+ ** IQ`32

12 ïQ`32
21M - X1

+ ** IQ`32
11 ïQ`32

22M +

Q21
12 ** IQ`32

12 ïA`31
21M - Q21

12 ** IQ`32
22 ïA`31

11M - Q21
22 ** IQ`32

11 ïA`31
21M + Q21

22 ** IQ`32
21 ïA`31

11M

integ

0

next

80, 81, 0, 0, 0, 0, -1<< ® 999c@1D ®
3 c@2D
������������������

8
+
c@3D
��������������
8
==, 824, 21, 21<=

chBook@c@3D ® 1D

1
�����
4
H1 ** IQ`21

11 ïQ`32
21M +

1
�����
4
H1 ** IQ`32

22 ïQ`21
21M -

1
�����
4
H2 ** IQ`21

11 ïQ`32
21M +

1
�����
4
H2 ** IQ`32

22 ïQ`21
21M +

1
�����
4
H3 ** IQ`21

11 ïQ`32
21M +

1
�����
4
H3 ** IQ`32

22 ïQ`21
21M +

1
�����
2
X1

+ ** IQ`21
12 ïQ`32

21M +
1
�����
2
X1

+ ** IQ`21
22 ïQ`32

22M +
1
�����
2
Q21
11 ** IQ`21

11 ïA`31
21M -

1
�����
2
Q21
12 ** IQ`21

12 ïA`31
21M + Q21

12 ** IQ`21
11 ïA`31

22M -
1
�����
2
X2

+ ** IQ`21
11 ïQ`32

22M +
1
�����
2
Q21
21 ** IQ`21

21 ïA`31
21M -

1
�����
2
Q21
22 ** IQ`21

22 ïA`31
21M + Q21

22 ** IQ`21
21 ïA`31

22M -
1
�����
2
X2

- ** IQ`21
21 ïQ`32

21M +
1
�����
2
A31
12 ** IA`31

12 ïA`31
21M -

1
�����
2
A31
12 ** IA`31

11 ïA`31
22M -

1
�����
2
X3

+ ** IQ`32
12 ïQ`21

21M -
1
�����
2
X3

+ ** IQ`21
11 ïQ`32

11M + A31
22 ** IA`31

22 ïA`31
21M

To avoid fractions, repeat chBook with coefficient 4:

chBook@c@3D ® 4D

H1 ** IQ`21
11 ïQ`32

21M + H1 ** IQ`32
22 ïQ`21

21M - H2 ** IQ`21
11 ïQ`32

21M + H2 ** IQ`32
22 ïQ`21

21M + H3 ** IQ`21
11 ïQ`32

21M +

H3 ** IQ`32
22 ïQ`21

21M + 2X1
+ ** IQ`21

12 ïQ`32
21M + 2X1

+ ** IQ`21
22 ïQ`32

22M + 2Q21
11 ** IQ`21

11 ïA`31
21M -

2Q21
12 ** IQ`21

12 ïA`31
21M + 4Q21

12 ** IQ`21
11 ïA`31

22M - 2X2
+ ** IQ`21

11 ïQ`32
22M + 2Q21

21 ** IQ`21
21 ïA`31

21M -

2Q21
22 ** IQ`21

22 ïA`31
21M + 4Q21

22 ** IQ`21
21 ïA`31

22M - 2X2
- ** IQ`21

21 ïQ`32
21M + 2A31

12 ** IA`31
12 ïA`31

21M -

2A31
12 ** IA`31

11 ïA`31
22M - 2X3

+ ** IQ`32
12 ïQ`21

21M - 2X3
+ ** IQ`21

11 ïQ`32
11M + 4A31

22 ** IA`31
22 ïA`31

21M

integ
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H1 - c@1DLe1 ** dn12 - c@1De2 ** dn12 + H1 + c@1DLe3 ** dn12 +
H2 + c@1DLe4 ** dn12 + H-1 - c@1DLe5 ** dn12 + H2 - c@1DLe1,2 ** dn11 + c@1De1,3 ** dn8 +

c@1De1,4 ** dn6 + H-2 - c@1DLe3,6 ** dn3 + H-2 - c@1DLe4,6 ** dn7 + c@1De5,6 ** dn10

ires@%, c@1D ® 0D

H1 ** A
`
31

21
+ H2 ** A

`
31

21
+ 2H23 ** A

`
31

21
- H3 ** A

`
31

21
+ 2X1

+ ** A
`
31

22
- 2Q23

12 ** Q
`
21

11
- 2Q23

22 ** Q
`
21

21

next

80, 81, 1, -1, -1, 1, -1<< ® - Q32
11 ** IQ`21

22 ïA`31
21M + Q32

11 ** IQ`21
21 ïA`31

22M +

Q32
12 ** IQ`21

12 ïA`31
21M - Q32

12 ** IQ`21
11 ïA`31

22M - X3
+ ** IQ`21

12 ïQ`21
21M + X3

+ ** IQ`21
11 ïQ`21

22M

integ

0

next

80, 81, 1, 0, -2, 0, 0<< ®

- H1 ** IQ`21
22 ïQ`21

21M - X1
+ ** IQ`21

22 ïQ`21
22M + X1

- ** IQ`21
21 ïQ`21

21M + X2
+ ** IQ`21

12 ïQ`21
21M - X2

+ ** IQ`21
11 ïQ`21

22M -

Q32
12 ** IQ`21

22 ïA`31
11M + Q32

12 ** IQ`21
21 ïA`31

12M - Q32
22 ** IQ`21

22 ïA`31
21M + Q32

22 ** IQ`21
21 ïA`31

22M

integ

- e1,4 ** dn4 + e2,4 ** dn7

ires@%D

- Q12
12 ** Q

`
21

22
+ Q12

22 ** Q
`
21

21

next

80, 82, 0, -1, -1, 0, 0<< ®

H2 ** IQ`21
11 ïQ`21

21M + X1
+ ** IQ`21

12 ïQ`21
21M - X1

+ ** IQ`21
11 ïQ`21

22M - X2
+ ** IQ`21

11 ïQ`21
11M + X2

- ** IQ`21
21 ïQ`21

21M +

Q32
11 ** IQ`21

21 ïA`31
11M - Q32

12 ** IQ`21
11 ïA`31

11M + Q32
21 ** IQ`21

21 ïA`31
21M - Q32

22 ** IQ`21
11 ïA`31

21M

integ

e1,3 ** dn7 - e1,4 ** dn3

ires@%D

Q12
11 ** Q

`
21

21
- Q12

12 ** Q
`
21

11

next

No more cohomologies

Grade r=3

chCalc@3, 2D

Total: 80, 0, 80, 30<<

Grade r=4

chCalc@4, 2D
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Total: 80, 0, 80, 10<<

áOutput to TEX file

OpenTeX@D;

OutRes@D;

CloseTeX@TrueD;

à 3.3 Coefficients in the adjoint module

á 3.3.1 osp(4|2;Α)

Not written yet

à 4. The Shapovalov determinants

Not written yet

à 5. Decomposition of the tensor square

à 5.1. Algebra sl(1|1)

Needs@"SuperLie‘"D;
slAlgebra@g, Dim ® 81, 1<D
SuperLie Package Version 2.03 installed
Disclaimer: This software is provided "AS IS", without a warranty of any kind

g = slH1È1L

We will use operation NonCommutativeMultiply (defined in Mathematica) to denote the tensor
product. In SuperLie, there is a shorter synonym to this operation, Tp. In order to define a module,
we need the following properties of the tensor product:

Jacobi@Act -> TpD;
Linear@TpD;
P@TpD ^= 0;

Let us define the tensor product as a module M  over algebra g:

Vector@MD;
TheAlgebra@MD ^= g;
BasisPattern@MD ^= _Tp;
Basis@MD ^= Flatten@Outer@Tp, Basis@gD, Basis@gDDD

8g1 ** g1, g1 ** g1,2, g1 ** g2,1, g1,2 ** g1,

g1,2 ** g1,2, g1,2 ** g2,1, g2,1 ** g1, g2,1 ** g1,2, g2,1 ** g2,1<

144 Examples



Note  that  the  central  element  g1 acts  on  M  by  zero.  All  such  finite−dimensional  undecom­
posible sl(1|1)−modules are known, see [LInd]. There are two types of modules. One type may be
described as a "snake" and the another one as a "square", see below. The bullets denote the elements
of the basis and the arrows denotes all  non−zero actions of g1,2 (down and to the right) and g2,1
(down and to the left). The "snake" can have any length and may begin with the arrow directed to
the left as well:

è è è

� � � � �

è è

... ...

è

� �

è è

� �

è

Note that all elements in the lower row of the "snake" and "square" (and only they) are annihi­
lated by sl(1|1).  Let us find them:

GeneralZero@Basis@gD, Basis@MD, cD

c@1Dg1 ** g1 - c@2Dg1 ** g1,2 - c@3Dg1 ** g2,1 + c@2Dg1,2 ** g1 + c@3Dg2,1 ** g1

lv = GeneralBasis@%, cD

8g1 ** g1, - g1 ** g1,2 + g1,2 ** g1, - g1 ** g2,1 + g2,1 ** g1<

Now find the elements "glued" to these. We just calculate the action of g  on the basis of M.
Here is the action of g1,2

# ® VNormal@Act@g1,2, #DD & �� Basis@MD �� ColumnForm

g1 ** g1 ® 0

g1 ** g1,2 ® 0

g1 ** g2,1 ® g1 ** g1

g1,2 ** g1 ® 0

g1,2 ** g1,2 ® 0

g1,2 ** g2,1 ® - g1,2 ** g1

g2,1 ** g1 ® g1 ** g1

g2,1 ** g1,2 ® g1 ** g1,2

g2,1 ** g2,1 ® g1 ** g2,1 - g2,1 ** g1

and here is the action of g2,1 :

# ® VNormal@Act@g2,1, #DD & �� Basis@MD �� ColumnForm

g1 ** g1 ® 0

g1 ** g1,2 ® g1 ** g1

g1 ** g2,1 ® 0

g1,2 ** g1 ® g1 ** g1

g1,2 ** g1,2 ® g1 ** g1,2 - g1,2 ** g1

g1,2 ** g2,1 ® g1 ** g2,1

g2,1 ** g1 ® 0

g2,1 ** g1,2 ® - g2,1 ** g1

g2,1 ** g2,1 ® 0

From this information we can easily restore the structure of undecomposable submodules:
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g1,2 ** g2,1

g2,1 ** g2,1 +g2,1 ** g1,2 g1,2 ** g1,2

� � � �

g1 ** g2,1 g1 ** g1,2

-g2,1 ** g1 -g1,2 ** g1

g1,2 ** g2,1 - g2,1 ** g1,2

� �

g1 ** g2,1 + g2,1 ** g1

� �

g1 ** g1

g1 ** g1,2 + g1,2 ** g1

à 6. Embeddings in diff

Not written yet

à 7. Casimir elements

à 7.1. The Casimir element for kL H1 È 6L

The space and the algebra:

Needs@"SuperLie‘"D
Off@Solve::svarsD

VectorSpace@Ζ, Dim ® H0 È 3LD;
VectorSpace@Η, Dim ® H0 È 3LD;
Symmetric@VTimesD;
ContactAlgebra@g, 8Ζ, Η<, tD

g is a Contact algebra over 8Ζ, Η< and t

Now we define the weight and grading functions that respect the multiplication of polynomials.
These functions do not respect the contact bracket (the function Weight−{2,0,0,0} does respect it),
but this does not matter: we will use the weight only to order monomials.

Weight@Ζi_D ^:= WeightMark@4, 1, i + 1D
Weight@Ηi_D ^:= WeightMark@4, 1, -i - 1D
Weight@tD ^= 82, 0, 0, 0<;
Weight@VTimes@DD ^= 80, 0, 0, 0<;
Grade = Weight@#DP1T &;

Now we should list all monomials of degree 2 p + 1 and 2 p + 2 for an indefinite integer p:

Scalar@pD;
bas = Join@Basis@ΖD, Basis@ΗDD;
pComp = Join@8tp+1<, tp  bas, tp  DegreeBasis@2, basD, tp-1  DegreeBasis@3, basD,
tp-1  DegreeBasis@4, basD, tp-2  DegreeBasis@5, basD, tp-2  DegreeBasis@6, basDD
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8t1+p, tp Ζ1, tp Ζ2, tp Ζ3, tp Η1, tp Η2, tp Η3, tp Ζ1 Ζ2, tp Ζ1 Ζ3, tp Ζ1 Η1, tp Ζ1 Η2, tp Ζ1 Η3,

tp Ζ2 Ζ3, tp Ζ2 Η1, tp Ζ2 Η2, tp Ζ2 Η3, tp Ζ3 Η1, tp Ζ3 Η2, tp Ζ3 Η3, tp Η1 Η2, tp Η1 Η3, tp Η2 Η3,

t-1+p Ζ1 Ζ2 Ζ3, t-1+p Ζ1 Ζ2 Η1, t-1+p Ζ1 Ζ2 Η2, t-1+p Ζ1 Ζ2 Η3, t-1+p Ζ1 Ζ3 Η1, t-1+p Ζ1 Ζ3 Η2,

t-1+p Ζ1 Ζ3 Η3, t-1+p Ζ1 Η1 Η2, t-1+p Ζ1 Η1 Η3, t-1+p Ζ1 Η2 Η3, t-1+p Ζ2 Ζ3 Η1, t-1+p Ζ2 Ζ3 Η2,

t-1+p Ζ2 Ζ3 Η3, t-1+p Ζ2 Η1 Η2, t-1+p Ζ2 Η1 Η3, t-1+p Ζ2 Η2 Η3, t-1+p Ζ3 Η1 Η2, t-1+p Ζ3 Η1 Η3,

t-1+p Ζ3 Η2 Η3, t-1+p Η1 Η2 Η3, t-1+p Ζ1 Ζ2 Ζ3 Η1, t-1+p Ζ1 Ζ2 Ζ3 Η2, t-1+p Ζ1 Ζ2 Ζ3 Η3,

t-1+p Ζ1 Ζ2 Η1 Η2, t-1+p Ζ1 Ζ2 Η1 Η3, t-1+p Ζ1 Ζ2 Η2 Η3, t-1+p Ζ1 Ζ3 Η1 Η2, t-1+p Ζ1 Ζ3 Η1 Η3,

t-1+p Ζ1 Ζ3 Η2 Η3, t-1+p Ζ1 Η1 Η2 Η3, t-1+p Ζ2 Ζ3 Η1 Η2, t-1+p Ζ2 Ζ3 Η1 Η3, t-1+p Ζ2 Ζ3 Η2 Η3,

t-1+p Ζ2 Η1 Η2 Η3, t-1+p Ζ3 Η1 Η2 Η3, t-2+p Ζ1 Ζ2 Ζ3 Η1 Η2, t-2+p Ζ1 Ζ2 Ζ3 Η1 Η3, t-2+p Ζ1 Ζ2 Ζ3 Η2 Η3,

t-2+p Ζ1 Ζ2 Η1 Η2 Η3, t-2+p Ζ1 Ζ3 Η1 Η2 Η3, t-2+p Ζ2 Ζ3 Η1 Η2 Η3, t-2+p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3<

The Casimir element is defined to be the formal sum Ú
giÎg

gi
*  gi , where 8gi<  is a basis in g.

The pairing Xx, y\  in g is defined as coefficient of t-1  Ζ1  Ζ2  Ζ3  Η1  Η2  Η3 in xy .
Let us write the dual elements to pComp (up to a sign):

pDual = t-1  Ζ1  Ζ2  Ζ3  Η1  Η2  Η3  HpComp �. v : Ht È _Ζ È _ΗL ® v-1L

8t-2-p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3, - t-1-p Ζ2 Ζ3 Η1 Η2 Η3, t-1-p Ζ1 Ζ3 Η1 Η2 Η3, - t-1-p Ζ1 Ζ2 Η1 Η2 Η3,

t-1-p Ζ1 Ζ2 Ζ3 Η2 Η3, - t-1-p Ζ1 Ζ2 Ζ3 Η1 Η3, t-1-p Ζ1 Ζ2 Ζ3 Η1 Η2, - t-1-p Ζ3 Η1 Η2 Η3,

t-1-p Ζ2 Η1 Η2 Η3, - t-1-p Ζ2 Ζ3 Η2 Η3, t-1-p Ζ2 Ζ3 Η1 Η3, - t-1-p Ζ2 Ζ3 Η1 Η2, - t-1-p Ζ1 Η1 Η2 Η3,

t-1-p Ζ1 Ζ3 Η2 Η3, - t-1-p Ζ1 Ζ3 Η1 Η3, t-1-p Ζ1 Ζ3 Η1 Η2, - t-1-p Ζ1 Ζ2 Η2 Η3, t-1-p Ζ1 Ζ2 Η1 Η3,

- t-1-p Ζ1 Ζ2 Η1 Η2, - t-1-p Ζ1 Ζ2 Ζ3 Η3, t-1-p Ζ1 Ζ2 Ζ3 Η2, - t-1-p Ζ1 Ζ2 Ζ3 Η1, t-p Η1 Η2 Η3,

- t-p Ζ3 Η2 Η3, t-p Ζ3 Η1 Η3, - t-p Ζ3 Η1 Η2, t-p Ζ2 Η2 Η3, - t-p Ζ2 Η1 Η3, t-p Ζ2 Η1 Η2,

t-p Ζ2 Ζ3 Η3, - t-p Ζ2 Ζ3 Η2, t-p Ζ2 Ζ3 Η1, - t-p Ζ1 Η2 Η3, t-p Ζ1 Η1 Η3, - t-p Ζ1 Η1 Η2,

- t-p Ζ1 Ζ3 Η3, t-p Ζ1 Ζ3 Η2, - t-p Ζ1 Ζ3 Η1, t-p Ζ1 Ζ2 Η3, - t-p Ζ1 Ζ2 Η2, t-p Ζ1 Ζ2 Η1,

- t-p Ζ1 Ζ2 Ζ3, t-p Η2 Η3, - t-p Η1 Η3, t-p Η1 Η2, t-p Ζ3 Η3, - t-p Ζ3 Η2, t-p Ζ3 Η1,

- t-p Ζ2 Η3, t-p Ζ2 Η2, - t-p Ζ2 Η1, t-p Ζ2 Ζ3, t-p Ζ1 Η3, - t-p Ζ1 Η2, t-p Ζ1 Η1,

- t-p Ζ1 Ζ3, t-p Ζ1 Ζ2, - t1-p Η3, t1-p Η2, - t1-p Η1, t1-p Ζ3, - t1-p Ζ2, t1-p Ζ1, - t1-p<

Now we fix the sign:

sgn = pDual*pComp �. SVTimes@-1, _D ® -1 �. v_VTimes ® 1

81, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1<

pDual = sgn*pDual

8t-2-p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3, - t-1-p Ζ2 Ζ3 Η1 Η2 Η3, t-1-p Ζ1 Ζ3 Η1 Η2 Η3, - t-1-p Ζ1 Ζ2 Η1 Η2 Η3,

t-1-p Ζ1 Ζ2 Ζ3 Η2 Η3, - t-1-p Ζ1 Ζ2 Ζ3 Η1 Η3, t-1-p Ζ1 Ζ2 Ζ3 Η1 Η2, t-1-p Ζ3 Η1 Η2 Η3,

- t-1-p Ζ2 Η1 Η2 Η3, t-1-p Ζ2 Ζ3 Η2 Η3, - t-1-p Ζ2 Ζ3 Η1 Η3, t-1-p Ζ2 Ζ3 Η1 Η2, t-1-p Ζ1 Η1 Η2 Η3,

- t-1-p Ζ1 Ζ3 Η2 Η3, t-1-p Ζ1 Ζ3 Η1 Η3, - t-1-p Ζ1 Ζ3 Η1 Η2, t-1-p Ζ1 Ζ2 Η2 Η3, - t-1-p Ζ1 Ζ2 Η1 Η3,

t-1-p Ζ1 Ζ2 Η1 Η2, t-1-p Ζ1 Ζ2 Ζ3 Η3, - t-1-p Ζ1 Ζ2 Ζ3 Η2, t-1-p Ζ1 Ζ2 Ζ3 Η1, - t-p Η1 Η2 Η3,

t-p Ζ3 Η2 Η3, - t-p Ζ3 Η1 Η3, t-p Ζ3 Η1 Η2, - t-p Ζ2 Η2 Η3, t-p Ζ2 Η1 Η3, - t-p Ζ2 Η1 Η2,

- t-p Ζ2 Ζ3 Η3, t-p Ζ2 Ζ3 Η2, - t-p Ζ2 Ζ3 Η1, t-p Ζ1 Η2 Η3, - t-p Ζ1 Η1 Η3, t-p Ζ1 Η1 Η2,

t-p Ζ1 Ζ3 Η3, - t-p Ζ1 Ζ3 Η2, t-p Ζ1 Ζ3 Η1, - t-p Ζ1 Ζ2 Η3, t-p Ζ1 Ζ2 Η2, - t-p Ζ1 Ζ2 Η1,

t-p Ζ1 Ζ2 Ζ3, t-p Η2 Η3, - t-p Η1 Η3, t-p Η1 Η2, t-p Ζ3 Η3, - t-p Ζ3 Η2, t-p Ζ3 Η1,

- t-p Ζ2 Η3, t-p Ζ2 Η2, - t-p Ζ2 Η1, t-p Ζ2 Ζ3, t-p Ζ1 Η3, - t-p Ζ1 Η2, t-p Ζ1 Η1,

- t-p Ζ1 Ζ3, t-p Ζ1 Ζ2, - t1-p Η3, t1-p Η2, - t1-p Η1, t1-p Ζ3, - t1-p Ζ2, t1-p Ζ1, t1-p<

Now we  express  the  Casimir  element  c2  as  an  element  of  the  completed enveloping  algebra

U
`

(g).

The operation VTimes is already used (as multiplication of polynomials), so we should define
another operation in the enveloping algebra. Let it be ep .  We will not define "power" operation to
represent ep[x,x,...], so we write None instead of "power" name.

The terms of ep  should be sorted in some fixed order.  Let  us write the elements with higher
weight first. To do this, define the ordering function which compares, first, the weights (in decreas­
ing order) and next, if the weights are equal the elements themselves in the alphabetical order.

p = 10
p - 1 > 1 - p
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ep

ep

ing order) and next, if the weights are equal the elements themselves in the alphabetical order.
It turned out that with indefinite p, the comparison does not work properly, so when comparing

the weights depending on p,  we will  temporarily (only for this comparison) set  p = 10  (to be sure
that, e.g.,  p - 1 > 1 - p).

envOrd@f_, g_D := OrderedQ@88-Weight@fD, f< �. p ® 10, 8-Weight@gD, g< �. p ® 10<D;
EnveloppingOperation@ep, None, Kb, envOrdD
Jacobi@Kb ® epD

8JacobiRule@Kb, CircleTimesD, JacobiRule@Kb, epD, LinearRule@KbD<

The Casimir element is the formal sum of all ep@gi, gi
*D  (where gi are the elements of the

basis of g such that gi with gi
*  are in the above−defined order) plus a linear term Ú aj  gj ,  where

all the gj  have zero weight and the scalar coefficients ai are unknown yet. 

Here is the term of the Casimir element corresponding to pComp: 

pCas = Inner@ep, pComp, pDual, VPlusD

ep@t1+p, t-2-p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3D - ep@tp Ζ1, t-1-p Ζ2 Ζ3 Η1 Η2 Η3D +

ep@tp Ζ2, t-1-p Ζ1 Ζ3 Η1 Η2 Η3D - ep@tp Ζ3, t-1-p Ζ1 Ζ2 Η1 Η2 Η3D + ep@tp Η1, t-1-p Ζ1 Ζ2 Ζ3 Η2 Η3D -

ep@tp Η2, t-1-p Ζ1 Ζ2 Ζ3 Η1 Η3D + ep@tp Η3, t-1-p Ζ1 Ζ2 Ζ3 Η1 Η2D + ep@tp Ζ1 Ζ2, t-1-p Ζ3 Η1 Η2 Η3D -

ep@tp Ζ1 Ζ3, t-1-p Ζ2 Η1 Η2 Η3D + ep@tp Ζ1 Η1, t-1-p Ζ2 Ζ3 Η2 Η3D - ep@tp Ζ1 Η2, t-1-p Ζ2 Ζ3 Η1 Η3D +

ep@tp Ζ1 Η3, t-1-p Ζ2 Ζ3 Η1 Η2D + ep@tp Ζ2 Ζ3, t-1-p Ζ1 Η1 Η2 Η3D - ep@tp Ζ2 Η1, t-1-p Ζ1 Ζ3 Η2 Η3D +

ep@tp Ζ2 Η2, t-1-p Ζ1 Ζ3 Η1 Η3D - ep@tp Ζ2 Η3, t-1-p Ζ1 Ζ3 Η1 Η2D + ep@tp Ζ3 Η1, t-1-p Ζ1 Ζ2 Η2 Η3D -

ep@tp Ζ3 Η2, t-1-p Ζ1 Ζ2 Η1 Η3D + ep@tp Ζ3 Η3, t-1-p Ζ1 Ζ2 Η1 Η2D + ep@tp Η1 Η2, t-1-p Ζ1 Ζ2 Ζ3 Η3D -

ep@tp Η1 Η3, t-1-p Ζ1 Ζ2 Ζ3 Η2D + ep@tp Η2 Η3, t-1-p Ζ1 Ζ2 Ζ3 Η1D - ep@t-1+p Ζ1 Ζ2 Ζ3, t-p Η1 Η2 Η3D +

ep@t-1+p Ζ1 Ζ2 Η1, t-p Ζ3 Η2 Η3D - ep@t-1+p Ζ1 Ζ2 Η2, t-p Ζ3 Η1 Η3D + ep@t-1+p Ζ1 Ζ2 Η3, t-p Ζ3 Η1 Η2D -

ep@t-1+p Ζ1 Ζ3 Η1, t-p Ζ2 Η2 Η3D + ep@t-1+p Ζ1 Ζ3 Η2, t-p Ζ2 Η1 Η3D - ep@t-1+p Ζ1 Ζ3 Η3, t-p Ζ2 Η1 Η2D -

ep@t-1+p Ζ1 Η1 Η2, t-p Ζ2 Ζ3 Η3D + ep@t-1+p Ζ1 Η1 Η3, t-p Ζ2 Ζ3 Η2D - ep@t-1+p Ζ1 Η2 Η3, t-p Ζ2 Ζ3 Η1D +

ep@t-1+p Ζ2 Ζ3 Η1, t-p Ζ1 Η2 Η3D - ep@t-1+p Ζ2 Ζ3 Η2, t-p Ζ1 Η1 Η3D + ep@t-1+p Ζ2 Ζ3 Η3, t-p Ζ1 Η1 Η2D +

ep@t-1+p Ζ2 Η1 Η2, t-p Ζ1 Ζ3 Η3D - ep@t-1+p Ζ2 Η1 Η3, t-p Ζ1 Ζ3 Η2D + ep@t-1+p Ζ2 Η2 Η3, t-p Ζ1 Ζ3 Η1D -

ep@t-1+p Ζ3 Η1 Η2, t-p Ζ1 Ζ2 Η3D + ep@t-1+p Ζ3 Η1 Η3, t-p Ζ1 Ζ2 Η2D - ep@t-1+p Ζ3 Η2 Η3, t-p Ζ1 Ζ2 Η1D +

ep@t-1+p Η1 Η2 Η3, t-p Ζ1 Ζ2 Ζ3D + ep@t-1+p Ζ1 Ζ2 Ζ3 Η1, t-p Η2 Η3D - ep@t-1+p Ζ1 Ζ2 Ζ3 Η2, t-p Η1 Η3D +

ep@t-1+p Ζ1 Ζ2 Ζ3 Η3, t-p Η1 Η2D + ep@t-1+p Ζ1 Ζ2 Η1 Η2, t-p Ζ3 Η3D - ep@t-1+p Ζ1 Ζ2 Η1 Η3, t-p Ζ3 Η2D +

ep@t-1+p Ζ1 Ζ2 Η2 Η3, t-p Ζ3 Η1D - ep@t-1+p Ζ1 Ζ3 Η1 Η2, t-p Ζ2 Η3D + ep@t-1+p Ζ1 Ζ3 Η1 Η3, t-p Ζ2 Η2D -

ep@t-1+p Ζ1 Ζ3 Η2 Η3, t-p Ζ2 Η1D + ep@t-1+p Ζ1 Η1 Η2 Η3, t-p Ζ2 Ζ3D + ep@t-1+p Ζ2 Ζ3 Η1 Η2, t-p Ζ1 Η3D -

ep@t-1+p Ζ2 Ζ3 Η1 Η3, t-p Ζ1 Η2D + ep@t-1+p Ζ2 Ζ3 Η2 Η3, t-p Ζ1 Η1D - ep@t-1+p Ζ2 Η1 Η2 Η3, t-p Ζ1 Ζ3D +

ep@t-1+p Ζ3 Η1 Η2 Η3, t-p Ζ1 Ζ2D - ep@t-2+p Ζ1 Ζ2 Ζ3 Η1 Η2, t1-p Η3D +

ep@t-2+p Ζ1 Ζ2 Ζ3 Η1 Η3, t1-p Η2D - ep@t-2+p Ζ1 Ζ2 Ζ3 Η2 Η3, t1-p Η1D +

ep@t-2+p Ζ1 Ζ2 Η1 Η2 Η3, t1-p Ζ3D - ep@t-2+p Ζ1 Ζ3 Η1 Η2 Η3, t1-p Ζ2D +

ep@t-2+p Ζ2 Ζ3 Η1 Η2 Η3, t1-p Ζ1D + ep@t-2+p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3, t1-pD

Let us check that Kb@g, Úp  pCasp D = 0. It suffices to check it for generators of k(1|6).

Kb@Ζ1  Η2, pCasD �� VNormal

0

Kb@Ζ2  Η3, pCasD �� VNormal

0

Kb@Ζ2  Ζ3, pCasD �� VNormal

0

res = Kb@Η3  Η2  Η1, pCasD �� VNormal
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- ep@t-1+p Ζ1 Η1 Η2, t-p Ζ2 Η1 Η2 Η3D - ep@t-1+p Ζ1 Η1 Η3, t-p Ζ3 Η1 Η2 Η3D +

ep@t-1+p Ζ2 Η1 Η2, t-p Ζ1 Η1 Η2 Η3D - ep@t-1+p Ζ2 Η2 Η3, t-p Ζ3 Η1 Η2 Η3D +

ep@t-1+p Ζ3 Η1 Η3, t-p Ζ1 Η1 Η2 Η3D + ep@t-1+p Ζ3 Η2 Η3, t-p Ζ2 Η1 Η2 Η3D -

ep@t-1+p Η1 Η2 Η3, t-p Ζ1 Ζ2 Η1 Η2D - ep@t-1+p Η1 Η2 Η3, t-p Ζ1 Ζ3 Η1 Η3D -

ep@t-1+p Η1 Η2 Η3, t-p Ζ2 Ζ3 Η2 Η3D - pep@t-1+p Η1 Η2 Η3, t-1-p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3D +

ep@tp Ζ1 Η1 Η2, t-1-p Ζ2 Η1 Η2 Η3D + ep@tp Ζ1 Η1 Η3, t-1-p Ζ3 Η1 Η2 Η3D -

ep@tp Ζ2 Η1 Η2, t-1-p Ζ1 Η1 Η2 Η3D + ep@tp Ζ2 Η2 Η3, t-1-p Ζ3 Η1 Η2 Η3D -

ep@tp Ζ3 Η1 Η3, t-1-p Ζ1 Η1 Η2 Η3D - ep@tp Ζ3 Η2 Η3, t-1-p Ζ2 Η1 Η2 Η3D +

ep@tp Η1 Η2 Η3, t-1-p Ζ1 Ζ2 Η1 Η2D + ep@tp Η1 Η2 Η3, t-1-p Ζ1 Ζ3 Η1 Η3D +

ep@tp Η1 Η2 Η3, t-1-p Ζ2 Ζ3 Η2 Η3D + H1 + pLep@tp Η1 Η2 Η3, t-2-p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3D -

ep@t-2+p Ζ1 Ζ2 Η1 Η2 Η3, t1-p Η1 Η2D + H1 - pLep@t-2+p Ζ1 Ζ2 Η1 Η2 Η3, t-p Ζ3 Η1 Η2 Η3D -

ep@t-2+p Ζ1 Ζ3 Η1 Η2 Η3, t1-p Η1 Η3D + H-1 + pLep@t-2+p Ζ1 Ζ3 Η1 Η2 Η3, t-p Ζ2 Η1 Η2 Η3D -

ep@t-2+p Ζ2 Ζ3 Η1 Η2 Η3, t1-p Η2 Η3D + H1 - pLep@t-2+p Ζ2 Ζ3 Η1 Η2 Η3, t-p Ζ1 Η1 Η2 Η3D +

ep@t-1+p Ζ1 Ζ2 Η1 Η2 Η3, t-p Η1 Η2D + pep@t-1+p Ζ1 Ζ2 Η1 Η2 Η3, t-1-p Ζ3 Η1 Η2 Η3D +

ep@t-1+p Ζ1 Ζ3 Η1 Η2 Η3, t-p Η1 Η3D - pep@t-1+p Ζ1 Ζ3 Η1 Η2 Η3, t-1-p Ζ2 Η1 Η2 Η3D +

ep@t-1+p Ζ2 Ζ3 Η1 Η2 Η3, t-p Η2 Η3D + pep@t-1+p Ζ2 Ζ3 Η1 Η2 Η3, t-1-p Ζ1 Η1 Η2 Η3D

This should annihilate with terms corresponding to a neighboring p. To check this, we split the
sum into the sum of components ep@x, yD  with different grades of x:

splitRes = SplitSum@res, _ep, Expand@Grade@#P1TDD &D

81 + 2 p ® - ep@t-1+p Ζ1 Η1 Η2, t-p Ζ2 Η1 Η2 Η3D - ep@t-1+p Ζ1 Η1 Η3, t-p Ζ3 Η1 Η2 Η3D +

ep@t-1+p Ζ2 Η1 Η2, t-p Ζ1 Η1 Η2 Η3D - ep@t-1+p Ζ2 Η2 Η3, t-p Ζ3 Η1 Η2 Η3D +

ep@t-1+p Ζ3 Η1 Η3, t-p Ζ1 Η1 Η2 Η3D + ep@t-1+p Ζ3 Η2 Η3, t-p Ζ2 Η1 Η2 Η3D -

ep@t-1+p Η1 Η2 Η3, t-p Ζ1 Ζ2 Η1 Η2D - ep@t-1+p Η1 Η2 Η3, t-p Ζ1 Ζ3 Η1 Η3D -

ep@t-1+p Η1 Η2 Η3, t-p Ζ2 Ζ3 Η2 Η3D - pep@t-1+p Η1 Η2 Η3, t-1-p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3D -

ep@t-2+p Ζ1 Ζ2 Η1 Η2 Η3, t1-p Η1 Η2D + H1 - pLep@t-2+p Ζ1 Ζ2 Η1 Η2 Η3, t-p Ζ3 Η1 Η2 Η3D -

ep@t-2+p Ζ1 Ζ3 Η1 Η2 Η3, t1-p Η1 Η3D + H-1 + pLep@t-2+p Ζ1 Ζ3 Η1 Η2 Η3, t-p Ζ2 Η1 Η2 Η3D -

ep@t-2+p Ζ2 Ζ3 Η1 Η2 Η3, t1-p Η2 Η3D + H1 - pLep@t-2+p Ζ2 Ζ3 Η1 Η2 Η3, t-p Ζ1 Η1 Η2 Η3D,
3 + 2 p ® ep@tp Ζ1 Η1 Η2, t-1-p Ζ2 Η1 Η2 Η3D + ep@tp Ζ1 Η1 Η3, t-1-p Ζ3 Η1 Η2 Η3D -

ep@tp Ζ2 Η1 Η2, t-1-p Ζ1 Η1 Η2 Η3D + ep@tp Ζ2 Η2 Η3, t-1-p Ζ3 Η1 Η2 Η3D -

ep@tp Ζ3 Η1 Η3, t-1-p Ζ1 Η1 Η2 Η3D - ep@tp Ζ3 Η2 Η3, t-1-p Ζ2 Η1 Η2 Η3D +

ep@tp Η1 Η2 Η3, t-1-p Ζ1 Ζ2 Η1 Η2D + ep@tp Η1 Η2 Η3, t-1-p Ζ1 Ζ3 Η1 Η3D +

ep@tp Η1 Η2 Η3, t-1-p Ζ2 Ζ3 Η2 Η3D + H1 + pLep@tp Η1 Η2 Η3, t-2-p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3D +

ep@t-1+p Ζ1 Ζ2 Η1 Η2 Η3, t-p Η1 Η2D + pep@t-1+p Ζ1 Ζ2 Η1 Η2 Η3, t-1-p Ζ3 Η1 Η2 Η3D +

ep@t-1+p Ζ1 Ζ3 Η1 Η2 Η3, t-p Η1 Η3D - pep@t-1+p Ζ1 Ζ3 Η1 Η2 Η3, t-1-p Ζ2 Η1 Η2 Η3D +

ep@t-1+p Ζ2 Ζ3 Η1 Η2 Η3, t-p Η2 Η3D + pep@t-1+p Ζ2 Ζ3 Η1 Η2 Η3, t-1-p Ζ1 Η1 Η2 Η3D<

Now check that the two components annihilate with a neighboring term of the Casimir element

VNormal@PartSplit@splitRes, 1 + 2 pD + HPartSplit@splitRes, 3 + 2 pD �. p -> p - 1LD

0

Now repeat the same procedure for another positive generator, tΗ
1

.

res = Kb@t Η1, pCasD �� VNormal;
splitRes = SplitSum@res, _ep, Expand@Grade@#P1TDD &D;
VNormal@PartSplit@splitRes, 1 + 2 pD + HPartSplit@splitRes, 3 + 2 pD �. p -> p - 1LD

0

We should also test the negative generators:

Kb@Ζ2  Η1, pCasD �� VNormal

0

Kb@Ζ3  Η2, pCasD �� VNormal

1.3. Defining relations for gl(Λ) 149



0

Kb@Η2  Η3, pCasD �� VNormal

0

res = Kb@Ζ1, pCasD �� VNormal

- ep@tp, t-1-p Ζ1 Ζ2 Ζ3 Η2 Η3D + ep@t1+p, t-2-p Ζ1 Ζ2 Ζ3 Η2 Η3D - ep@t-1+p Ζ1 Ζ2, t-p Ζ3 Η2 Η3D +

pep@t-1+p Ζ1 Ζ2, t-1-p Ζ1 Ζ3 Η1 Η2 Η3D + ep@t-1+p Ζ1 Ζ3, t-p Ζ2 Η2 Η3D -

pep@t-1+p Ζ1 Ζ3, t-1-p Ζ1 Ζ2 Η1 Η2 Η3D + pep@t-1+p Ζ1 Η1, t-1-p Ζ1 Ζ2 Ζ3 Η2 Η3D -

ep@t-1+p Ζ1 Η2, t-p Ζ2 Ζ3 Η3D - pep@t-1+p Ζ1 Η2, t-1-p Ζ1 Ζ2 Ζ3 Η1 Η3D +

ep@t-1+p Ζ1 Η3, t-p Ζ2 Ζ3 Η2D + pep@t-1+p Ζ1 Η3, t-1-p Ζ1 Ζ2 Ζ3 Η1 Η2D - ep@t-1+p Ζ2 Ζ3, t-p Ζ1 Η2 Η3D +

ep@t-1+p Ζ2 Η2, t-p Ζ1 Ζ3 Η3D - ep@t-1+p Ζ2 Η3, t-p Ζ1 Ζ3 Η2D - ep@t-1+p Ζ3 Η2, t-p Ζ1 Ζ2 Η3D +

ep@t-1+p Ζ3 Η3, t-p Ζ1 Ζ2 Η2D - ep@t-1+p Η2 Η3, t-p Ζ1 Ζ2 Ζ3D + ep@tp Ζ1 Ζ2, t-1-p Ζ3 Η2 Η3D +

H-1 - pLep@tp Ζ1 Ζ2, t-2-p Ζ1 Ζ3 Η1 Η2 Η3D - ep@tp Ζ1 Ζ3, t-1-p Ζ2 Η2 Η3D +

H1 + pLep@tp Ζ1 Ζ3, t-2-p Ζ1 Ζ2 Η1 Η2 Η3D + H-1 - pLep@tp Ζ1 Η1, t-2-p Ζ1 Ζ2 Ζ3 Η2 Η3D +

ep@tp Ζ1 Η2, t-1-p Ζ2 Ζ3 Η3D + H1 + pLep@tp Ζ1 Η2, t-2-p Ζ1 Ζ2 Ζ3 Η1 Η3D -

ep@tp Ζ1 Η3, t-1-p Ζ2 Ζ3 Η2D + H-1 - pLep@tp Ζ1 Η3, t-2-p Ζ1 Ζ2 Ζ3 Η1 Η2D +

ep@tp Ζ2 Ζ3, t-1-p Ζ1 Η2 Η3D - ep@tp Ζ2 Η2, t-1-p Ζ1 Ζ3 Η3D + ep@tp Ζ2 Η3, t-1-p Ζ1 Ζ3 Η2D +

ep@tp Ζ3 Η2, t-1-p Ζ1 Ζ2 Η3D - ep@tp Ζ3 Η3, t-1-p Ζ1 Ζ2 Η2D + ep@tp Η2 Η3, t-1-p Ζ1 Ζ2 Ζ3D +

H-1 + pLep@t-2+p Ζ1 Ζ2 Ζ3 Η1, t-p Ζ1 Η2 Η3D - ep@t-2+p Ζ1 Ζ2 Ζ3 Η2, t1-p Η3D +

H1 - pLep@t-2+p Ζ1 Ζ2 Ζ3 Η2, t-p Ζ1 Η1 Η3D + ep@t-2+p Ζ1 Ζ2 Ζ3 Η3, t1-p Η2D +

H-1 + pLep@t-2+p Ζ1 Ζ2 Ζ3 Η3, t-p Ζ1 Η1 Η2D + H-1 + pLep@t-2+p Ζ1 Ζ2 Η1 Η2, t-p Ζ1 Ζ3 Η3D +

H1 - pLep@t-2+p Ζ1 Ζ2 Η1 Η3, t-p Ζ1 Ζ3 Η2D - ep@t-2+p Ζ1 Ζ2 Η2 Η3, t1-p Ζ3D +

H-1 + pLep@t-2+p Ζ1 Ζ2 Η2 Η3, t-p Ζ1 Ζ3 Η1D + H1 - pLep@t-2+p Ζ1 Ζ3 Η1 Η2, t-p Ζ1 Ζ2 Η3D +

H-1 + pLep@t-2+p Ζ1 Ζ3 Η1 Η3, t-p Ζ1 Ζ2 Η2D + ep@t-2+p Ζ1 Ζ3 Η2 Η3, t1-p Ζ2D +

H1 - pLep@t-2+p Ζ1 Ζ3 Η2 Η3, t-p Ζ1 Ζ2 Η1D + H-1 + pLep@t-2+p Ζ1 Η1 Η2 Η3, t-p Ζ1 Ζ2 Ζ3D -

ep@t-2+p Ζ2 Ζ3 Η2 Η3, t1-p Ζ1D - pep@t-1+p Ζ1 Ζ2 Ζ3 Η1, t-1-p Ζ1 Η2 Η3D +

ep@t-1+p Ζ1 Ζ2 Ζ3 Η2, t-p Η3D + pep@t-1+p Ζ1 Ζ2 Ζ3 Η2, t-1-p Ζ1 Η1 Η3D -

ep@t-1+p Ζ1 Ζ2 Ζ3 Η3, t-p Η2D - pep@t-1+p Ζ1 Ζ2 Ζ3 Η3, t-1-p Ζ1 Η1 Η2D -

pep@t-1+p Ζ1 Ζ2 Η1 Η2, t-1-p Ζ1 Ζ3 Η3D + pep@t-1+p Ζ1 Ζ2 Η1 Η3, t-1-p Ζ1 Ζ3 Η2D +

ep@t-1+p Ζ1 Ζ2 Η2 Η3, t-p Ζ3D - pep@t-1+p Ζ1 Ζ2 Η2 Η3, t-1-p Ζ1 Ζ3 Η1D +

pep@t-1+p Ζ1 Ζ3 Η1 Η2, t-1-p Ζ1 Ζ2 Η3D - pep@t-1+p Ζ1 Ζ3 Η1 Η3, t-1-p Ζ1 Ζ2 Η2D -

ep@t-1+p Ζ1 Ζ3 Η2 Η3, t-p Ζ2D + pep@t-1+p Ζ1 Ζ3 Η2 Η3, t-1-p Ζ1 Ζ2 Η1D -

pep@t-1+p Ζ1 Η1 Η2 Η3, t-1-p Ζ1 Ζ2 Ζ3D + ep@t-1+p Ζ2 Ζ3 Η2 Η3, t-p Ζ1D +

H-2 + pLep@t-3+p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3, t1-p Ζ1D + H1 - pLep@t-2+p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3, t-p Ζ1D

splitRes = SplitSum@res, _ep, Expand@Grade@#P1TDD &D

82 p ® - ep@tp, t-1-p Ζ1 Ζ2 Ζ3 Η2 Η3D - ep@t-1+p Ζ1 Ζ2, t-p Ζ3 Η2 Η3D +

pep@t-1+p Ζ1 Ζ2, t-1-p Ζ1 Ζ3 Η1 Η2 Η3D + ep@t-1+p Ζ1 Ζ3, t-p Ζ2 Η2 Η3D -

pep@t-1+p Ζ1 Ζ3, t-1-p Ζ1 Ζ2 Η1 Η2 Η3D + pep@t-1+p Ζ1 Η1, t-1-p Ζ1 Ζ2 Ζ3 Η2 Η3D -

ep@t-1+p Ζ1 Η2, t-p Ζ2 Ζ3 Η3D - pep@t-1+p Ζ1 Η2, t-1-p Ζ1 Ζ2 Ζ3 Η1 Η3D +

ep@t-1+p Ζ1 Η3, t-p Ζ2 Ζ3 Η2D + pep@t-1+p Ζ1 Η3, t-1-p Ζ1 Ζ2 Ζ3 Η1 Η2D -

ep@t-1+p Ζ2 Ζ3, t-p Ζ1 Η2 Η3D + ep@t-1+p Ζ2 Η2, t-p Ζ1 Ζ3 Η3D - ep@t-1+p Ζ2 Η3, t-p Ζ1 Ζ3 Η2D -

ep@t-1+p Ζ3 Η2, t-p Ζ1 Ζ2 Η3D + ep@t-1+p Ζ3 Η3, t-p Ζ1 Ζ2 Η2D - ep@t-1+p Η2 Η3, t-p Ζ1 Ζ2 Ζ3D +

H-1 + pLep@t-2+p Ζ1 Ζ2 Ζ3 Η1, t-p Ζ1 Η2 Η3D - ep@t-2+p Ζ1 Ζ2 Ζ3 Η2, t1-p Η3D +

H1 - pLep@t-2+p Ζ1 Ζ2 Ζ3 Η2, t-p Ζ1 Η1 Η3D + ep@t-2+p Ζ1 Ζ2 Ζ3 Η3, t1-p Η2D +

H-1 + pLep@t-2+p Ζ1 Ζ2 Ζ3 Η3, t-p Ζ1 Η1 Η2D + H-1 + pLep@t-2+p Ζ1 Ζ2 Η1 Η2, t-p Ζ1 Ζ3 Η3D +

H1 - pLep@t-2+p Ζ1 Ζ2 Η1 Η3, t-p Ζ1 Ζ3 Η2D - ep@t-2+p Ζ1 Ζ2 Η2 Η3, t1-p Ζ3D +

H-1 + pLep@t-2+p Ζ1 Ζ2 Η2 Η3, t-p Ζ1 Ζ3 Η1D + H1 - pLep@t-2+p Ζ1 Ζ3 Η1 Η2, t-p Ζ1 Ζ2 Η3D +

H-1 + pLep@t-2+p Ζ1 Ζ3 Η1 Η3, t-p Ζ1 Ζ2 Η2D + ep@t-2+p Ζ1 Ζ3 Η2 Η3, t1-p Ζ2D +

H1 - pLep@t-2+p Ζ1 Ζ3 Η2 Η3, t-p Ζ1 Ζ2 Η1D + H-1 + pLep@t-2+p Ζ1 Η1 Η2 Η3, t-p Ζ1 Ζ2 Ζ3D -

ep@t-2+p Ζ2 Ζ3 Η2 Η3, t1-p Ζ1D + H-2 + pLep@t-3+p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3, t1-p Ζ1D,
2 + 2 p ® ep@t1+p, t-2-p Ζ1 Ζ2 Ζ3 Η2 Η3D + ep@tp Ζ1 Ζ2, t-1-p Ζ3 Η2 Η3D +

H-1 - pLep@tp Ζ1 Ζ2, t-2-p Ζ1 Ζ3 Η1 Η2 Η3D - ep@tp Ζ1 Ζ3, t-1-p Ζ2 Η2 Η3D +

H1 + pLep@tp Ζ1 Ζ3, t-2-p Ζ1 Ζ2 Η1 Η2 Η3D + H-1 - pLep@tp Ζ1 Η1, t-2-p Ζ1 Ζ2 Ζ3 Η2 Η3D +

ep@tp Ζ1 Η2, t-1-p Ζ2 Ζ3 Η3D + H1 + pLep@tp Ζ1 Η2, t-2-p Ζ1 Ζ2 Ζ3 Η1 Η3D -
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ep@tp Ζ1 Η3, t-1-p Ζ2 Ζ3 Η2D + H-1 - pLep@tp Ζ1 Η3, t-2-p Ζ1 Ζ2 Ζ3 Η1 Η2D +

ep@tp Ζ2 Ζ3, t-1-p Ζ1 Η2 Η3D - ep@tp Ζ2 Η2, t-1-p Ζ1 Ζ3 Η3D + ep@tp Ζ2 Η3, t-1-p Ζ1 Ζ3 Η2D +

ep@tp Ζ3 Η2, t-1-p Ζ1 Ζ2 Η3D - ep@tp Ζ3 Η3, t-1-p Ζ1 Ζ2 Η2D + ep@tp Η2 Η3, t-1-p Ζ1 Ζ2 Ζ3D -

pep@t-1+p Ζ1 Ζ2 Ζ3 Η1, t-1-p Ζ1 Η2 Η3D + ep@t-1+p Ζ1 Ζ2 Ζ3 Η2, t-p Η3D +

pep@t-1+p Ζ1 Ζ2 Ζ3 Η2, t-1-p Ζ1 Η1 Η3D - ep@t-1+p Ζ1 Ζ2 Ζ3 Η3, t-p Η2D -

pep@t-1+p Ζ1 Ζ2 Ζ3 Η3, t-1-p Ζ1 Η1 Η2D - pep@t-1+p Ζ1 Ζ2 Η1 Η2, t-1-p Ζ1 Ζ3 Η3D +

pep@t-1+p Ζ1 Ζ2 Η1 Η3, t-1-p Ζ1 Ζ3 Η2D + ep@t-1+p Ζ1 Ζ2 Η2 Η3, t-p Ζ3D -

pep@t-1+p Ζ1 Ζ2 Η2 Η3, t-1-p Ζ1 Ζ3 Η1D + pep@t-1+p Ζ1 Ζ3 Η1 Η2, t-1-p Ζ1 Ζ2 Η3D -

pep@t-1+p Ζ1 Ζ3 Η1 Η3, t-1-p Ζ1 Ζ2 Η2D - ep@t-1+p Ζ1 Ζ3 Η2 Η3, t-p Ζ2D +

pep@t-1+p Ζ1 Ζ3 Η2 Η3, t-1-p Ζ1 Ζ2 Η1D - pep@t-1+p Ζ1 Η1 Η2 Η3, t-1-p Ζ1 Ζ2 Ζ3D +

ep@t-1+p Ζ2 Ζ3 Η2 Η3, t-p Ζ1D + H1 - pLep@t-2+p Ζ1 Ζ2 Ζ3 Η1 Η2 Η3, t-p Ζ1D<

VNormal@PartSplit@splitRes, 2 pD + HPartSplit@splitRes, 2 + 2 pD �. p -> p - 1LD

0

res = Kb@t-1 Ζ1  Ζ2  Ζ3, pCasD �� VNormal;
splitRes = SplitSum@res, _ep, Expand@Grade@#P1TDD &D;
VNormal@PartSplit@splitRes, 2 pD + HPartSplit@splitRes, 2 + 2 pD �. p -> p - 1LD

0

We  have  checked  the  components  with  p  far  from  0  (so  that  the  action  of  the  generators  of
k(1|6) cannot break the order of operands in ep[x,y]). The situation is different for p=0. 

First, not all terms of pCas/.p®0 are present in the Casimir element, but only those with correct
order of arguments:

cas0 = pCas �. ep@x_, y_D ¦ 0 �; ! envOrd@x �. p ® 0, y �. p ® 0D �. p ® 0

ep@t, t-2 Ζ1 Ζ2 Ζ3 Η1 Η2 Η3D + ep@Ζ1 Ζ2, t-1 Ζ3 Η1 Η2 Η3D -

ep@Ζ1 Ζ3, t-1 Ζ2 Η1 Η2 Η3D + ep@Ζ1 Η1, t-1 Ζ2 Ζ3 Η2 Η3D -

ep@Ζ1 Η2, t-1 Ζ2 Ζ3 Η1 Η3D + ep@Ζ1 Η3, t-1 Ζ2 Ζ3 Η1 Η2D + ep@Ζ2 Ζ3, t-1 Ζ1 Η1 Η2 Η3D +

ep@Ζ2 Η2, t-1 Ζ1 Ζ3 Η1 Η3D - ep@Ζ2 Η3, t-1 Ζ1 Ζ3 Η1 Η2D + ep@Ζ3 Η3, t-1 Ζ1 Ζ2 Η1 Η2D +

ep@t-1 Ζ1 Ζ2 Ζ3 Η1, Η2 Η3D - ep@t-1 Ζ1 Ζ2 Ζ3 Η2, Η1 Η3D + ep@t-1 Ζ1 Ζ2 Ζ3 Η3, Η1 Η2D -

ep@t-1 Ζ1 Ζ2 Η1 Η3, Ζ3 Η2D + ep@t-1 Ζ1 Ζ2 Η2 Η3, Ζ3 Η1D - ep@t-1 Ζ1 Ζ3 Η2 Η3, Ζ2 Η1D

Next, there are also linear terms:

casLin = GeneralSum@a, Select@pComp �. p ® 0, Weight@#D � 82, 0, 0, 0< &DD

a@1Dt + a@2DΖ1 Η1 + a@3DΖ2 Η2 + a@4DΖ3 Η3 + a@5Dt-1 Ζ1 Ζ2 Η1 Η2 +

a@6Dt-1 Ζ1 Ζ3 Η1 Η3 + a@7Dt-1 Ζ2 Ζ3 Η2 Η3 + a@8Dt-2 Ζ1 Ζ2 Ζ3 Η1 Η2 Η3

Let us find the coefficients ai  by calculating the linear part of Kb@ f , x Ä yD:
KbLin@x_, y_D := VNormal@Kb@x, yDD �. ep@_, _D ® 0

casLin1 = GeneralSolve@KbLin@Ζ1  Η2, cas0 + casLinD � 0, casLin, aD

a@1Dt + a@2DΖ1 Η1 + a@2DΖ2 Η2 + a@3DΖ3 Η3 + a@4Dt-1 Ζ1 Ζ2 Η1 Η2 +

H-2 + a@5DLt-1 Ζ1 Ζ3 Η1 Η3 + a@5Dt-1 Ζ2 Ζ3 Η2 Η3 + a@6Dt-2 Ζ1 Ζ2 Ζ3 Η1 Η2 Η3

casLin2 = GeneralSolve@KbLin@Ζ2  Η3, cas0 + casLin1D � 0, casLin1, aD

a@1Dt + a@2DΖ1 Η1 + a@2DΖ2 Η2 + a@2DΖ3 Η3 + H-4 + a@3DLt-1 Ζ1 Ζ2 Η1 Η2 +

H-2 + a@3DLt-1 Ζ1 Ζ3 Η1 Η3 + a@3Dt-1 Ζ2 Ζ3 Η2 Η3 + a@4Dt-2 Ζ1 Ζ2 Ζ3 Η1 Η2 Η3

casLin3 = GeneralSolve@KbLin@Ζ2  Ζ3, cas0 + casLin2D � 0, casLin2, aD

a@1Dt + 2t-1 Ζ1 Ζ3 Η1 Η3 + 4t-1 Ζ2 Ζ3 Η2 Η3 + a@2Dt-2 Ζ1 Ζ2 Ζ3 Η1 Η2 Η3
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casLin4 = GeneralSolve@KbLin@t Η1, cas0 + casLin3D � 0, casLin3, aD

2t-1 Ζ1 Ζ3 Η1 Η3 + 4t-1 Ζ2 Ζ3 Η2 Η3 + 4t-2 Ζ1 Ζ2 Ζ3 Η1 Η2 Η3

To check, we write down 3 components: the linear, p=0, and p=1.

cas = casLin4 + cas0 + HpCas �. p ® 1L

2t-1 Ζ1 Ζ3 Η1 Η3 + 4t-1 Ζ2 Ζ3 Η2 Η3 + 4t-2 Ζ1 Ζ2 Ζ3 Η1 Η2 Η3 +

ep@t, t-2 Ζ1 Ζ2 Ζ3 Η1 Η2 Η3D + ep@Ζ1 Ζ2, t-1 Ζ3 Η1 Η2 Η3D - ep@Ζ1 Ζ3, t-1 Ζ2 Η1 Η2 Η3D +

ep@Ζ1 Η1, t-1 Ζ2 Ζ3 Η2 Η3D - ep@Ζ1 Η2, t-1 Ζ2 Ζ3 Η1 Η3D + ep@Ζ1 Η3, t-1 Ζ2 Ζ3 Η1 Η2D +

ep@Ζ2 Ζ3, t-1 Ζ1 Η1 Η2 Η3D + ep@Ζ2 Η2, t-1 Ζ1 Ζ3 Η1 Η3D - ep@Ζ2 Η3, t-1 Ζ1 Ζ3 Η1 Η2D +

ep@Ζ3 Η3, t-1 Ζ1 Ζ2 Η1 Η2D + ep@t-1 Ζ1 Ζ2 Ζ3 Η1, Η2 Η3D - ep@t-1 Ζ1 Ζ2 Ζ3 Η2, Η1 Η3D +

ep@t-1 Ζ1 Ζ2 Ζ3 Η3, Η1 Η2D - ep@t-1 Ζ1 Ζ2 Η1 Η3, Ζ3 Η2D + ep@t-1 Ζ1 Ζ2 Η2 Η3, Ζ3 Η1D -

ep@t-1 Ζ1 Ζ3 Η2 Η3, Ζ2 Η1D + ep@t2, t-3 Ζ1 Ζ2 Ζ3 Η1 Η2 Η3D - ep@tΖ1, t-2 Ζ2 Ζ3 Η1 Η2 Η3D +

ep@tΖ2, t-2 Ζ1 Ζ3 Η1 Η2 Η3D - ep@tΖ3, t-2 Ζ1 Ζ2 Η1 Η2 Η3D +

ep@tΗ1, t-2 Ζ1 Ζ2 Ζ3 Η2 Η3D - ep@tΗ2, t-2 Ζ1 Ζ2 Ζ3 Η1 Η3D + ep@tΗ3, t-2 Ζ1 Ζ2 Ζ3 Η1 Η2D +

ep@tΖ1 Ζ2, t-2 Ζ3 Η1 Η2 Η3D - ep@tΖ1 Ζ3, t-2 Ζ2 Η1 Η2 Η3D + ep@tΖ1 Η1, t-2 Ζ2 Ζ3 Η2 Η3D -

ep@tΖ1 Η2, t-2 Ζ2 Ζ3 Η1 Η3D + ep@tΖ1 Η3, t-2 Ζ2 Ζ3 Η1 Η2D + ep@tΖ2 Ζ3, t-2 Ζ1 Η1 Η2 Η3D -

ep@tΖ2 Η1, t-2 Ζ1 Ζ3 Η2 Η3D + ep@tΖ2 Η2, t-2 Ζ1 Ζ3 Η1 Η3D - ep@tΖ2 Η3, t-2 Ζ1 Ζ3 Η1 Η2D +

ep@tΖ3 Η1, t-2 Ζ1 Ζ2 Η2 Η3D - ep@tΖ3 Η2, t-2 Ζ1 Ζ2 Η1 Η3D + ep@tΖ3 Η3, t-2 Ζ1 Ζ2 Η1 Η2D +

ep@tΗ1 Η2, t-2 Ζ1 Ζ2 Ζ3 Η3D - ep@tΗ1 Η3, t-2 Ζ1 Ζ2 Ζ3 Η2D + ep@tΗ2 Η3, t-2 Ζ1 Ζ2 Ζ3 Η1D -

ep@Ζ1 Ζ2 Ζ3, t-1 Η1 Η2 Η3D + ep@Ζ1 Ζ2 Η1, t-1 Ζ3 Η2 Η3D - ep@Ζ1 Ζ2 Η2, t-1 Ζ3 Η1 Η3D +

ep@Ζ1 Ζ2 Η3, t-1 Ζ3 Η1 Η2D - ep@Ζ1 Ζ3 Η1, t-1 Ζ2 Η2 Η3D + ep@Ζ1 Ζ3 Η2, t-1 Ζ2 Η1 Η3D -

ep@Ζ1 Ζ3 Η3, t-1 Ζ2 Η1 Η2D - ep@Ζ1 Η1 Η2, t-1 Ζ2 Ζ3 Η3D + ep@Ζ1 Η1 Η3, t-1 Ζ2 Ζ3 Η2D -

ep@Ζ1 Η2 Η3, t-1 Ζ2 Ζ3 Η1D + ep@Ζ2 Ζ3 Η1, t-1 Ζ1 Η2 Η3D - ep@Ζ2 Ζ3 Η2, t-1 Ζ1 Η1 Η3D +

ep@Ζ2 Ζ3 Η3, t-1 Ζ1 Η1 Η2D + ep@Ζ2 Η1 Η2, t-1 Ζ1 Ζ3 Η3D - ep@Ζ2 Η1 Η3, t-1 Ζ1 Ζ3 Η2D +

ep@Ζ2 Η2 Η3, t-1 Ζ1 Ζ3 Η1D - ep@Ζ3 Η1 Η2, t-1 Ζ1 Ζ2 Η3D + ep@Ζ3 Η1 Η3, t-1 Ζ1 Ζ2 Η2D -

ep@Ζ3 Η2 Η3, t-1 Ζ1 Ζ2 Η1D + ep@Η1 Η2 Η3, t-1 Ζ1 Ζ2 Ζ3D + ep@Ζ1 Ζ2 Ζ3 Η1, t-1 Η2 Η3D -

ep@Ζ1 Ζ2 Ζ3 Η2, t-1 Η1 Η3D + ep@Ζ1 Ζ2 Ζ3 Η3, t-1 Η1 Η2D + ep@Ζ1 Ζ2 Η1 Η2, t-1 Ζ3 Η3D -

ep@Ζ1 Ζ2 Η1 Η3, t-1 Ζ3 Η2D + ep@Ζ1 Ζ2 Η2 Η3, t-1 Ζ3 Η1D - ep@Ζ1 Ζ3 Η1 Η2, t-1 Ζ2 Η3D +

ep@Ζ1 Ζ3 Η1 Η3, t-1 Ζ2 Η2D - ep@Ζ1 Ζ3 Η2 Η3, t-1 Ζ2 Η1D + ep@Ζ1 Η1 Η2 Η3, t-1 Ζ2 Ζ3D +

ep@Ζ2 Ζ3 Η1 Η2, t-1 Ζ1 Η3D - ep@Ζ2 Ζ3 Η1 Η3, t-1 Ζ1 Η2D + ep@Ζ2 Ζ3 Η2 Η3, t-1 Ζ1 Η1D -

ep@Ζ2 Η1 Η2 Η3, t-1 Ζ1 Ζ3D + ep@Ζ3 Η1 Η2 Η3, t-1 Ζ1 Ζ2D - ep@t-1 Ζ1 Ζ2 Ζ3 Η1 Η2, Η3D +

ep@t-1 Ζ1 Ζ2 Ζ3 Η1 Η3, Η2D - ep@t-1 Ζ1 Ζ2 Ζ3 Η2 Η3, Η1D + ep@t-1 Ζ1 Ζ2 Η1 Η2 Η3, Ζ3D -

ep@t-1 Ζ1 Ζ3 Η1 Η2 Η3, Ζ2D + ep@t-1 Ζ2 Ζ3 Η1 Η2 Η3, Ζ1D + ep@t-1 Ζ1 Ζ2 Ζ3 Η1 Η2 Η3, 1D

Kb@Ζ1  Η2, casD �� VNormal

0

Kb@Ζ2  Η3, casD �� VNormal

0

Kb@Ζ2  Ζ3, casD �� VNormal

0

Kb@Η1  Η2  Η3, casD �� VNormal

- ep@tΖ1 Η1 Η2, t-2 Ζ2 Η1 Η2 Η3D - ep@tΖ1 Η1 Η3, t-2 Ζ3 Η1 Η2 Η3D +

ep@tΖ2 Η1 Η2, t-2 Ζ1 Η1 Η2 Η3D - ep@tΖ2 Η2 Η3, t-2 Ζ3 Η1 Η2 Η3D + ep@tΖ3 Η1 Η3, t-2 Ζ1 Η1 Η2 Η3D +

ep@tΖ3 Η2 Η3, t-2 Ζ2 Η1 Η2 Η3D - ep@tΗ1 Η2 Η3, t-2 Ζ1 Ζ2 Η1 Η2D - ep@tΗ1 Η2 Η3, t-2 Ζ1 Ζ3 Η1 Η3D -

ep@tΗ1 Η2 Η3, t-2 Ζ2 Ζ3 Η2 Η3D - 2ep@tΗ1 Η2 Η3, t-3 Ζ1 Ζ2 Ζ3 Η1 Η2 Η3D -

ep@Ζ1 Ζ2 Η1 Η2 Η3, t-1 Η1 Η2D - ep@Ζ1 Ζ2 Η1 Η2 Η3, t-2 Ζ3 Η1 Η2 Η3D -

ep@Ζ1 Ζ3 Η1 Η2 Η3, t-1 Η1 Η3D + ep@Ζ1 Ζ3 Η1 Η2 Η3, t-2 Ζ2 Η1 Η2 Η3D -

ep@Ζ2 Ζ3 Η1 Η2 Η3, t-1 Η2 Η3D - ep@Ζ2 Ζ3 Η1 Η2 Η3, t-2 Ζ1 Η1 Η2 Η3D

VBasis@%D ��. x_ep ¦ Grade@x@@1DDD
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85, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5<

According  to  the  above,  we  could  have  obtained  from  the  term  with  p=1  the  two  types  of
terms: with grade 1+2p=3 and 3+2p=5,  of which the first should cancel with the some terms from
the  previous  terms  (p−1=0),  which  takes  place,  and  the  one  which  will  definitely  cancel  with  the
next term. So we are done, for this generator.

Now, let us pass to other generators.

Kb@t Η1, casD �� VNormal

- ep@t2 Ζ2, t-2 Ζ3 Η1 Η2 Η3D + ep@t2 Ζ3, t-2 Ζ2 Η1 Η2 Η3D - ep@t2 Η1, t-2 Ζ2 Ζ3 Η2 Η3D +

ep@t2 Η2, t-2 Ζ2 Ζ3 Η1 Η3D - ep@t2 Η3, t-2 Ζ2 Ζ3 Η1 Η2D + ep@tΖ1 Ζ2 Η1, t-2 Ζ3 Η1 Η2 Η3D -

ep@tΖ1 Ζ3 Η1, t-2 Ζ2 Η1 Η2 Η3D + ep@tΖ1 Η1 Η2, t-2 Ζ2 Ζ3 Η1 Η3D -

ep@tΖ1 Η1 Η3, t-2 Ζ2 Ζ3 Η1 Η2D - ep@tΖ2 Ζ3 Η1, t-1 Η2 Η3D + ep@tΖ2 Ζ3 Η1, t-2 Ζ1 Η1 Η2 Η3D +

ep@tΖ2 Ζ3 Η2, t-1 Η1 Η3D - ep@tΖ2 Ζ3 Η3, t-1 Η1 Η2D - ep@tΖ2 Η1 Η2, t-1 Ζ3 Η3D -

ep@tΖ2 Η1 Η2, t-2 Ζ1 Ζ3 Η1 Η3D + ep@tΖ2 Η1 Η3, t-1 Ζ3 Η2D + ep@tΖ2 Η1 Η3, t-2 Ζ1 Ζ3 Η1 Η2D -

ep@tΖ2 Η2 Η3, t-1 Ζ3 Η1D + ep@tΖ3 Η1 Η2, t-1 Ζ2 Η3D + ep@tΖ3 Η1 Η2, t-2 Ζ1 Ζ2 Η1 Η3D -

ep@tΖ3 Η1 Η3, t-1 Ζ2 Η2D - ep@tΖ3 Η1 Η3, t-2 Ζ1 Ζ2 Η1 Η2D + ep@tΖ3 Η2 Η3, t-1 Ζ2 Η1D -

ep@tΗ1 Η2 Η3, t-1 Ζ2 Ζ3D + ep@tΗ1 Η2 Η3, t-2 Ζ1 Ζ2 Ζ3 Η1D + 2ep@Ζ1 Ζ2 Ζ3 Η1 Η2, t-1 Η1 Η3D -

2ep@Ζ1 Ζ2 Ζ3 Η1 Η3, t-1 Η1 Η2D + 2ep@Ζ1 Ζ2 Η1 Η2 Η3, t-1 Ζ3 Η1D -

2ep@Ζ1 Ζ3 Η1 Η2 Η3, t-1 Ζ2 Η1D - ep@Ζ2 Ζ3 Η1 Η2 Η3, 1D + 2ep@Ζ2 Ζ3 Η1 Η2 Η3, t-1 Ζ1 Η1D

VBasis@%%D ��. x_ep ¦ Grade@x@@1DDD

85, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5<

Kb@Ζ2  Η1, casD �� VNormal

0

Kb@Ζ3  Η2, casD �� VNormal

0

Kb@Η2  Η3, casD �� VNormal

0

Kb@Ζ1, casD �� VNormal

ep@t2, t-3 Ζ1 Ζ2 Ζ3 Η2 Η3D + ep@tΖ1 Ζ2, t-2 Ζ3 Η2 Η3D - 2ep@tΖ1 Ζ2, t-3 Ζ1 Ζ3 Η1 Η2 Η3D -

ep@tΖ1 Ζ3, t-2 Ζ2 Η2 Η3D + 2ep@tΖ1 Ζ3, t-3 Ζ1 Ζ2 Η1 Η2 Η3D -

2ep@tΖ1 Η1, t-3 Ζ1 Ζ2 Ζ3 Η2 Η3D + ep@tΖ1 Η2, t-2 Ζ2 Ζ3 Η3D + 2ep@tΖ1 Η2, t-3 Ζ1 Ζ2 Ζ3 Η1 Η3D -

ep@tΖ1 Η3, t-2 Ζ2 Ζ3 Η2D - 2ep@tΖ1 Η3, t-3 Ζ1 Ζ2 Ζ3 Η1 Η2D + ep@tΖ2 Ζ3, t-2 Ζ1 Η2 Η3D -

ep@tΖ2 Η2, t-2 Ζ1 Ζ3 Η3D + ep@tΖ2 Η3, t-2 Ζ1 Ζ3 Η2D + ep@tΖ3 Η2, t-2 Ζ1 Ζ2 Η3D -

ep@tΖ3 Η3, t-2 Ζ1 Ζ2 Η2D + ep@tΗ2 Η3, t-2 Ζ1 Ζ2 Ζ3D - ep@Ζ1 Ζ2 Ζ3 Η1, t-2 Ζ1 Η2 Η3D +

ep@Ζ1 Ζ2 Ζ3 Η2, t-1 Η3D + ep@Ζ1 Ζ2 Ζ3 Η2, t-2 Ζ1 Η1 Η3D - ep@Ζ1 Ζ2 Ζ3 Η3, t-1 Η2D -

ep@Ζ1 Ζ2 Ζ3 Η3, t-2 Ζ1 Η1 Η2D - ep@Ζ1 Ζ2 Η1 Η2, t-2 Ζ1 Ζ3 Η3D +

ep@Ζ1 Ζ2 Η1 Η3, t-2 Ζ1 Ζ3 Η2D + ep@Ζ1 Ζ2 Η2 Η3, t-1 Ζ3D - ep@Ζ1 Ζ2 Η2 Η3, t-2 Ζ1 Ζ3 Η1D +

ep@Ζ1 Ζ3 Η1 Η2, t-2 Ζ1 Ζ2 Η3D - ep@Ζ1 Ζ3 Η1 Η3, t-2 Ζ1 Ζ2 Η2D - ep@Ζ1 Ζ3 Η2 Η3, t-1 Ζ2D +

ep@Ζ1 Ζ3 Η2 Η3, t-2 Ζ1 Ζ2 Η1D - ep@Ζ1 Η1 Η2 Η3, t-2 Ζ1 Ζ2 Ζ3D + ep@Ζ2 Ζ3 Η2 Η3, t-1 Ζ1D

VBasis@%D ��. x_ep ¦ Grade@x@@1DDD

84, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4<

Kb@t-1 Ζ1  Ζ2  Ζ3, casD �� VNormal
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ep@tΖ1 Ζ2, t-3 Ζ1 Ζ2 Ζ3 Η1 Η2D + ep@tΖ1 Ζ3, t-3 Ζ1 Ζ2 Ζ3 Η1 Η3D +

ep@tΖ2 Ζ3, t-3 Ζ1 Ζ2 Ζ3 Η2 Η3D + ep@Ζ1 Ζ2 Ζ3 Η1, t-2 Ζ1 Ζ2 Η2D + ep@Ζ1 Ζ2 Ζ3 Η1, t-2 Ζ1 Ζ3 Η3D +

ep@Ζ1 Ζ2 Ζ3 Η1, t-3 Ζ1 Ζ2 Ζ3 Η2 Η3D - ep@Ζ1 Ζ2 Ζ3 Η2, t-2 Ζ1 Ζ2 Η1D + ep@Ζ1 Ζ2 Ζ3 Η2, t-2 Ζ2 Ζ3 Η3D -

ep@Ζ1 Ζ2 Ζ3 Η2, t-3 Ζ1 Ζ2 Ζ3 Η1 Η3D - ep@Ζ1 Ζ2 Ζ3 Η3, t-2 Ζ1 Ζ3 Η1D - ep@Ζ1 Ζ2 Ζ3 Η3, t-2 Ζ2 Ζ3 Η2D +

ep@Ζ1 Ζ2 Ζ3 Η3, t-3 Ζ1 Ζ2 Ζ3 Η1 Η2D + ep@Ζ1 Ζ2 Η1 Η2, t-2 Ζ1 Ζ2 Ζ3D + ep@Ζ1 Ζ3 Η1 Η3, t-2 Ζ1 Ζ2 Ζ3D +

ep@Ζ2 Ζ3 Η2 Η3, t-2 Ζ1 Ζ2 Ζ3D + 2ep@t-1 Ζ1 Ζ2 Ζ3 Η1 Η2 Η3, t-2 Ζ1 Ζ2 Ζ3D

VBasis@%D ��. x_ep ¦ Grade@x@@1DDD

84, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4<

So we have tested all the generators and c2 is indeed invariant.
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ab3 , 87
act, 47
Act, 47
Action, 20, 22
action on modules, 4
AddHead, 115
Additive, 47
AdditiveRule, 47
AddSplit, 47
ag

2
H1L , 88

ag
2

, 87, 120

Algebra, 48
AlgebraDecomposition, 48
Algebras, 18
algebras with Cartan matrix, 88
AntiSkewSymmetric, 48
AntiSkewSymmetricQ, 48
AntiSkewSymmetricRule, 48
AntiSymmetric, 48
AntiSymmetricQ, 48
AntiSymmetricRule, 48
ApplySplit, 48
ArgForm, 49
as , 87
Auto, 49
AutoRule, 115
 
b , 92
bΛ , 93
Basis, 18
Basis, 49
BasisPattern, 49
bb, 49
Bb, 49
Bracket, 4
bracket, 49
Bracket, 49
BracketMode, 49
Buttin algebra, 92|93
ButtinAlgebra, 50
 
CancelProperty, 113
Cartan matrix, 88, 120
CartanMatrixAlgebra, 50
CartanTriade, 50

Casimir elements, 146
CircleTimes, 50
ClearDef, 113
CleardSymbol, 50
ClearFormat, 116
Coefficients in the adjoint module, 144
Cohomology, 128
CoLeft, 50
CommutativeLieAlgebra, 50
CompList, 50
Components, 51
Compound, 116
Conditions and iterations, 5
CondOp, 51
Constructor options, 3
Contact algebra, 92
ContactAlgebra, 51
ContactK, 51
CoRight, 51
CTimes, 51
 

dHΑLH1L , 89, 121
DateString, 52
Declaring vectors and scalars, 1
Decomposition of the tensor square, 144
DecompositionList, 52
DecompositionRule, 52
Define, 113
Defining relations, 120|121, 124|125
deformation, 93
DefSubAlgebra, 52
Deg, 52
DegreeBasis, 52
DegTimes, 52
DeleteSame, 117
Delta, 52
Der0, 53
der, 53
Der, 53
diff(1), 125
DiffAlgebra, 53
Dim, 53
Dimension, 3, 18, 21
Div, 53
DLeft, 54



dNormal, 54
Domain, 114
DPrint, 54
DRight, 54
dSortRule, 54
dSymbol, 54
d(Α), 86
 
Engel Algebra, 99
EnvelopingOperation, 54
EnvelopingSymbol, 55
EnvNormal, 55
EnvSortRule, 55
EulerOp, 55
Examples, 120
Exceptional algebras, 94
Exceptional finite dimensional algebras, 86
ExpandOp, 55
ExpandOpRule, 55
expressions, 28
ExteriorAlgebra, 55
 
Fast Introduction, 1
FDim, 55
FilterBasis, 56
Format options, 3
ForSplit, 56
FreeLieAlgebra, 56
Functions and evaluation rules for vector expressions, 2
Functions and operators on vector spaces, 4
Functions on vector spaces, 27
 
GenBasis, 56
GeneralBasis, 56
GeneralPreImage, 56
GeneralReduce, 56
GeneralSolve, 56
GeneralSum, 57
GeneralZero, 57
generators, 3
Generators, 19, 22
GenRel, 57
gl, 84
glHΛL , 124
glAlgebra, 57
GList, 57
gl(Λ), 99
GPlus, 57
GPower, 57
Grade, 57
GradeBasis, 58
Graded, 58
GradedKerSpace, 58
GradedQ, 58
grading, 3, 19
Grading, 21
GRange, 58
GTimes, 58
 
h, 92
h0 H0 È nL , 128, 130
h(2|1), 122
h(4|0), 123
Hamilton algebra, 92
HamiltonianH, 58
Homogen, 58
HomogenRule, 59
HWModule, 59
 
Ideal, 59
Image, 59
InfixFormat, 115
InSpace, 59
Introduction to SuperLie, 33
 

Jacobi, 60
JacobiRule, 60
JoinSplit, 60
 
k, 92
k
L H1 È 6L , 146
kM , 98
kas, 94
kb, 60
Kb, 60
KerSpace, 60
KeyValue, 117
ksle, 95
 
lb, 60
Lb, 60
LDer, 61
le , 94
Leibniz, 61
LeibnizRule, 61
Leites algebras, 94
LieAlgebra, 61
Linear, 61
Linear expressions with indefinite coefficients, 5
LinearChange, 61
LinearCollectRule, 61
Linearity and other properties, 9
LinearRule, 62
List of symbols, 47
LogPower, 62
LogPowerPule, 62
 
m , 93
Manipulation with vector expressions, 28
Mapping, 62
MappingRule, 62
Maps, 5
MapSplit, 62
MatchList, 62
Matrix algebras, 2, 84
mb, 96
mb, 63
Mb, 62
Merge, 116
MergeSplit, 63
Mixed, 63
MLeft, 63
modules, 3
Modules, 18
Moebius Contact (Ramond) algebra, 98
MoebiusAlgebra, 63
Moebius|Poisson Algebra, 98
MRight, 63
 
NameSuffix, 115
NewBrace, 63
NewBracket, 63
NewDomain, 114
NewList, 113
NewOverscript, 63
NewPower, 64
NewProperty, 114
NewRelative, 64
NewSuperscript, 64
NewValue, 114
NGen, 64
Normalization, 5
 
ob, 64
Ob, 64
Odd contact algebra, 93
OKAlgebra, 64
Operation, 114
Operator, 64
OpSymbol, 64
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optional arguments, 21
OrderedKeysQ, 116
OrderKeys, 116
osp, 85
ospH4 È 2LH2L , 88
ospH4 È 2; ΑLH1L , 89
osp(4|2;Α), 86
Output, 65
Output format, 22
 
P, 65
parity, 21
Parity, 19
Parity, 65
PartSplit, 65
pb, 65
Pb, 65
PDim, 65
PiLeft, 65
PiRight, 66
PList, 66
Plus2, 66
PlusOp, 66
Plus$, 66
po, 90
Poisson algebra, 90
PoissonAlgebra, 66
PolyGrade, 67
polynomials, 3
Polynomials, 5
PowerOp, 67
Power$, 67
PrefixName, 115
PreSL, 67
Programming, 6
properties, 18, 21
Properties of vector functions, 14
psl, 85

pslH3 È 3LH4L , 89
pslAlgebra, 67
psqH3LH2L , 89
psqH4LH2L , 89
psq2Algebra, 68
psqAlgebra, 68
 
q2Algebra, 68
qAlgebra, 68
QuotientModule, 68
 
RamondAlgebra, 68
RamondD, 68
RamondK, 68
Rank, 68
rb, 69
Rb, 69
Reference Manual, 8
ReGrade, 69
Regrading, 21
Regular, 69
Relation options, 3
relations, 19
RemoveOverscript, 69
RemovePower, 69
RemoveSuperscript, 69
RestrictModule, 69
 
SamedKeysQ, 116
Scalar, 69
Scalar functions, 4
ScalarEquation, 70
ScalarQ, 70
scalars, 8, 10
SeqForm, 70
SetFormat, 116
SetProperty, 113

SetToTag, 116
SimplifySign, 70
SimplifySignRule, 70
SkewSymmetric, 70
SkewSymmetricQ, 70
SkewSymmetricRule, 70
SkipVal, 70
sl, 84
sl (4|n), 132

slH2 È 4LH2L , 89

slH3 È 3LH4L , 88
sl(1|1), 144
slAlgebra, 71
sle , 94
sleo , 94
Solving vector equations, 6, 29
SortKeys, 116
space constructors, 23
Space constructors, 2, 10
Space properties, 3
SpacePlus, 71
Spaces−relatives, 20, 22
Split, 71
SplitList, 71
SplitSum, 71
SPrint, 115
sqAlgebra, 71
Standard, 72
StopUseAsSymbol, 72
Stringy algebras, 98
Sub− and quotientspaces, 3
SubAlgebra, 72
SubModule, 72
SubSpace, 72
SUGRA, 132
SumOp, 73
svAct, 109
svBranch, 110
svCart, 108
svCheckRL, 108
svDefEq, 109
svect, 90
svect0 (1|n), 90
svect~ (0|n), 90
svectΑ

L H1 È 2L , 88
svEq, 109
svExcl, 110
SVExpandRule, 73
SVFactorRule, 73
svH, 109
svHiCf, 110
svImg, 110
svLess, 108
SVNormalRule, 73
svRep, 110
svResult, 110
svScalars, 108
svSetAlg, 108
SVSimplifyRule, 73
svSolve, 109
SVSolve, 73
svSp, 109
svSub, 110
svVerma, 108
svZ, 109
sv$a, 110
sv$c, 111
sv$d, 111
sv$g, 110
sv$h, 111
sv$l, 111
sv$m, 111
sv$n, 110
sv$p, 110
sv$r, 111
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sv$v, 111
sv$x, 111
sv$y, 111
sv$z, 111
sv$Λ, 111
Symbolic operators, 5
Symmetric, 73
SymmetricNormal, 73
SymmetricQ, 73
SymmetricRule, 73
 
Tabular, 74
Tag, 115
Target, 115
TCollect, 74
Tensor, 19
TensorSpace, 74
TestFirst, 74
TestFirstRule, 74
TeX, 74
TheAlgebra, 74
TheModule, 74
TheSpace, 74
ThreadGraded, 75
ThreadGradedRule, 75
Times2, 75
TimeString, 75
Times$, 75
Tools, 4, 10, 28
Tp, 75
tPower, 75
Traditional, 75
Trivial coefficients, 128
TrivialSpace, 76
 
UnAdditive, 76
UnAntiSkewSymmetric, 76
UnAntiSymmetric, 76
UnAutoRule, 115
UnDegTimes, 76
UnGraded, 76
UnHomogen, 76
Union, 116
UnionKeys, 116
UniqueCounters, 76
UnJacobi, 76
UnLeibniz, 77
UnLinear, 77
UnLogPower, 77
UnOutput, 77
UnSkewSymmetric, 77
UnStandard, 77
UnSymmetric, 77
UnTestFirst, 77
UnTeX, 77
UnThreadGraded, 78
UnTraditional, 78
UnVector, 77|78
UnZeroArg, 78
UpToDegreeBasis, 78
UseAsSymbol, 78
 
vas, 97
VBasis, 78
VCollect, 78
vect, 90
vect(2|1), 121
Vector, 79
vector equations, 6, 29
vector expressions, 28
vector fields, 90, 121
Vector operations, 1, 9, 12
Vector spaces, 18
vectorial algebras, 121
Vectorial algebras, 90

VectorLieAlgebra, 79
VectorQ, 79
Vectors, 8, 10
VectorSpace, 79
VExpand, 79
VExpandRule, 79
VIf, 79
vle, 97
VNormal, 80
VOrder, 80
VOrderQ, 80
VPlus, 80
VPower, 80
VSameQ, 80
VSolve, 80
VSort, 80
VSum, 81
VTimes, 81
 
wedge, 81
Wedge, 81
weight, 19
Weight, 21
Weight, 81
WeightMark, 81
WithoutPreSL, 81
WithUnique, 82
 
ZeroArg, 82
ZeroArgRule, 82
ZId, 82
ZLDer, 82
ZRamondD, 82
 
D, 51
 
$DPrint, 82
$DPrintLabel, 82
$EnvLess, 83
$SNormal, 83
$Solve, 83
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