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Introduction

To get a complete understanding of the subject, it is aesthetically alluring to trace back a little
bit of history behind it. Of course, this is not supposed to be a long stroll through mathematical
history and in course of it, significant contributions of many mathematicians for more than a couple
of decades can hardly be touched. Sincere apologies are offered to them.

Having undergone sparkling mathematical research spanning more than two decades in the
realm of stochastic processes by means of devicing their construction and unraveling their path prop-
erties, many better minds of the probability world started investigating questions of “intersection”
nature. Needless to say, Brownian motion, perhaps the most appealing of all random processes, was of
interest. For example, starting with two independent Brownian motions, can one expect them to meet
at some point in the future? However, answering those apparently simple looking questions turned
out to be harder than expected. In a paper ([DE00a] and also in the subsequent ones, [DE00b] and
[DE00c]) by Dvoretzky, Erdös, Kakutani and Taylor during the 1950’s, it was shown that arbitrarily
many Brownian motions intersect with positive probability in dimension two whereas in three
dimension, at most two motions meet each other. In higher dimensions, no non-trivial intersection
is possible. These classical results tempted the mathematicians to dive deeper into the realm of
this subject although it turned out that the intersection set is of extremely high complexity and
understanding the geometry or the topology of this set was far from obvious. However, subsequent
research due to Taylor (see [Ta64]) and Fristedt (see [Fr67]) led to many interesting facts about the
size of the intersection set and its Hausdorff dimension. The real upsurge in such activities came
when it was possible to define a natural measure supported on the intersection set which somehow
computed the “amount of intersection” of the Brownian paths. This random measure was referred
to as the “Brownian intersection local time”. Historically, the notion of this object was motivated
by problems of physics. However, in appendix to a paper by Symanzik ([Sy69]), Varadhan gave a
construction of a similar object for the case of planar Brownian bridge. Later, Dynkin ([Dy81]) gave
a general construction of additive functionals of Markov processes which included the special case
of intersection local time. The precise construction and the properties of this measure was derived
by Geman, Horowitz and Rosen ([GHR84]) using the Gaussian character of Brownian motion and
results on potential theory. But it was Le Gall around 1986 ([LG86]) who first propounded the idea
of considering intersections of “Wiener Sausages” and taking the asymptotic limit of the normalized
Lebesgue measure on that to get a random limiting measure. Couple of years later, it was again
Le Gall who found out a correct gauge function giving rise to a natural Hausdorff measure on the
intersection set. Remarkably, the confluence of these apparently three disparate approaches led to
the same notion of Brownian intersection local time. Further research was motivated by problems
from geometric measure theory and in particular, understanding the behavior of random fractals.
Many long standing open problems were addressed (and also solved) by work of Dembo, Peres,
Rosen and Zeitouni (see [DP00a] for results on occupation measure for Brownian paths in dimension
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exceeding two and [DP00b] for dimension two and also [DP00d] for intersections of paths in the
plane) in connection to the so called “thick points” for the Brownian motion, which are the random
regions of the ambient space where the mass of intersection local time is locally extremely dense
with probability one. Recent work of König and Mörters ([KM02] and [KM05]) studied the upper
tails of the intersection local time in terms of a large deviation principle which pushed the research a
bit further by realizing the “size” of the set of thick points in terms of its Hausdorff dimension spectrum.

Of course, this was not entirely an aimless pursuit as quantum physics had always been a
steady source of problems of “intersection” nature owing to the overwhelming flow of ideas from the
intersection properties of random processes and those of more complicated models in non-equilibrium
statistical mechanics. There seems to be a plethora of proposals on the way to pursue research in this
branch. Some trends can be found in the penultimate section of this thesis.

Now we will take a quick glance on the contents of each section in this write-up. In section
1, we introduce the Brownian intersection set and recall some properties of that. In section 2, we
briefly review how one can think of the intersection local time as a Lebesgue density of the occupation
measure for the so called “confluent” Brownian motion. In section 3, we entirely dedicate ourselves
to Le Gall’s construction of intersection local time via Wiener sausages. Here we are rather precise
in spelling out all the details scrupulously since this approach seems to be spearheading the trend of
modern research. In section 3, we again briefly review the Hausdorff measure construction due to Le
Gall. In section 4, we study the upper tail asymptotic result by König and Mörters. Section 5, 6 and
7 are essentially devoted to the proof of the above mentioned result and in the process, based on a
result by Trashorras, we find out a simpler proof of the same result. Section 8 is an informal cruise
through the set of open problems in this premises. In section 9, we append some basic facts about
large deviations, Hausdorff measures and Sobolev spaces useful for the beginners in the subject.

Finally, one confession should be made. This write-up is a brief overview of the existing
work carried out by some mathematicians and inspite of the staggering number of articles in this area,
only the tip of the iceberg can be seen. However, an attempt has been made to provide this thesis
with copious number of references and hopefully it would account for the lack of exhaustiveness.
One important final remark before we start striding the mountains: this whole text is redolent of an
ambient probability space hanging around behind the screen.
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1. Brownian Intersections

Let us consider p independent Brownian motions W1,W2, ...,Wp running in R
d where d ≥ 2 until their

first exit times T1, T2, ..., Tp from a fixed open ball B(0, R), or in the transient case, until infinity (i.e.
R = ∞). We are interested in the random set of points in the space where the paths of these motions
intersect. More precisely, we focus on the set

S =

p⋂

i=1

{x ∈ R
d|x = Wi(ti) for some ti ∈ [0, Ti)}. (1.1)

In other words, S is the intersection of the Brownian paths, the set of space points that are hit by all
the motions before their individual exit time. S is a random set with extremely high complexity and
was the object of study of many mathematicians. One of the classical results concerning this set is
due to Dvoretzky, Erdös, Kakutani and Taylor (see [DE00a], [DE00b] and [DE00c]) which says that
with probability one, S has points different from the starting point if and only if

p <
d

d− 2
.

In other words, the intersection set is non-trivial if and only if either d = 2, p ∈ N, or d = 3, p = 2.
Since having only one point (namely, the starting point of all the motions) in S is not interesting
for our purpose, we will restrict our discussion to the above two cases, i.e. we will consider either
arbitrarily many motions in R

2 or only two motions in R
3. At times, we might also refer to the case

of only one motion running in any dimension d ≥ 2.

Subsequent research due to Taylor (see [Ta64]) and Fristedt (see [Fr67]) showed that

• S is a set of Lebesgue measure zero in d ≥ 2 almost surely.
•

dim(S) =






2 for d = 2 and p ∈ N

1 for d = 3 and p = 2

2 for d ≥ 2 and p = 1.

(1.2)

Although the result in the last case is quite well-known (the Hausdorff dimension of the image of the
Brownian curve in any dimension is 2), we include it for completeness.

Remarks :

• Heuristically thinking, these results are not incredibly hard to believe. We know that a
Brownian curve in the plane almost fills out the space since it has Hausdorff dimension 2.
Therefore it can be roughly thought of as a plane in any dimension. Now even if we have
arbirarily many planes in the two dimensional space, they are likely to intersect and if that
is the case, they intersect again along a plane, which is of dimension two. Again, in the three
dimensional case, two planes are more likely to have an intersection compared to three planes
and again if two planes meet in the space, they do so along a line, which is of dimension one.
Therefore, although the proofs of these results are technically hard, they are not intuitively
abstruse.

• As we mentioned earlier, understanding the topology of the set S is quite non-trivial. For an
example, it is intuitively easy to conjecture that S is totally disconnected. However, proving
this fact still remains to be an open.
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There are many more finer results pertaining to the path of a single Brownian motion. But that would
be outside the purview of our discussion as we have an “intersecting” epithet in our title. Hence we
turn to our object of interest, namely, the Brownian intersection local times.

2. Confluent Brownian motion and intersection local time

As asserted in the introduction, we want to construct a measure on S which in some sense computes the
amount of intersection of the Brownian paths. By work of Geman, Horowitz and Rosen (see [GHR84]),
the random set S can be equipped with a natural finite measure ℓ, the (projected) intersection local
time, which can be symbolically described by the formula

ℓ(A) =

∫

A
dy

p∏

j=1

∫ Tj

0
ds δy(Wj(s)) for every A ⊂ R

d Borel.

It is clear from the above formula that ℓ can be thought of as a ‘uniform’ measure on S which gives the
’spatial’ amount of intersection of the paths in a given set. Of course, this formula has to be justified

since the map y 7→
∫ Ti

0 dsδy(Wj(s)) is not well-defined (we know that the Brownian occupation
measure does not have a density). Now we briefly review this approach of Geman, Horowitz and
Rosen.

We know that the Brownian occupation measure does not possess a Lebesgue density in d ≥ 2 (that
is, it is not absolutely continuous with respect to the Lebesgue measure). But it turns out that the so
called confluent Brownian motion whose zero set, by definition, corresponds to the time points where
the confluences take place, has a Lebesgue density. Keeping up with the notion of a local time, this
(projected) density is called Brownian intersection local time. To outline the complete picture, we
start of with the definition of a local time.

Let us fix two natural numbers N and D. Let X : R
N
+ → R

D be a Borel function. Fix a Borel set A

in R
N
+ . Then we can define the occupation measure of X relative to A by

µA(B) = λN (A ∩X−1(B)) ∀B ∈ B(RD).

If µA ≪ λd, we write

α(y,A) =
dµA
dλD

(y) ∀y ∈ R
D.

for the corresponding Radon-Nikodym derivative. This function α(y,A) is called the
occupation density or the local time on A with respect to the Borel function X. If there is
an occupation density for each A then we may choose α(y,A) to be a kernel (i.e., measurable in y and
a finite measure in A).

Now the above general set up can be applied to a particular situation, namely, the
confluent Brownian motion W : R

p
+ → R

d(p−1) which is defined by

W (s1, s2, ..., sp) =
(
W1(s1) −W2(s2),W2(s2) −W3(s3), ...,Wp−1(sp−1) −Wp(sp)

)
. (2.1)

Now we know that the occupation measure of a single Brownian path in d ≥ 2 does not have a
density. But it was proved by the authors that the occupation measure corresponding to the confluent
Brownian motions does have a density. In other words, with probabiltity one, the occupation density
α(y,A) for the confluent Brownian motion process W exists for every Borel set A in R

p
+ and may be

chosen so that (y, t) 7→ α(y,Qt) is jointly continuous, where Qt =
∏p
i=1[0, ti].
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This implies that, with probability one, there is a family {µy : y ∈ (Rd(p−1))} of finite measures on∏p
i=1[0, Ti) such that

(i) The mapping y 7→ µy is continuous with respect to the vague topology on the space M(Rp)
of locally finite measures on R

p.
(ii) For all Borel functions g : R

d(p−1) → [0,∞] and f : Πp
i=1[0, Ti) → [0,∞]

∫
g(y)〈f, µy〉 dy =

∫

Qp
i=1[0,Ti)

f · g(W ) dsp...ds1.

It follows from the above two properties that, for each y, the measure µy is supported by the level set

My = {(s1, s2, ..., sp) ∈
p∏

i=1

[0, Ti) : W (s1, s2, ..., sp) = y}.

Note that M0 is the set of time vectors at which the p motions coincide, which is the set we are
interested in. Now we consider the mapping T :

∏p
i=1[0, Ti) → R

d defined by T (t1, t2, ..., tp) = W1(t1).
Then

T (M0) = S.

Now for every Borel set B in S, define

ℓ(B) = µ0(T
−1(B)),

i.e., ℓ is the image measure of µ0 under T . The measure ℓ on S defined above is called the
Brownian intersection local time of the p Brownian motions.
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3. Wiener Sausages and intersection local time.

A much simpler and nicer construction of the intersection local time was carried out by Le Gall (see
[LG86]) using Wiener sausages, which by definition, is a tubular neighborhood around the Brownian
path (as the name suggests). Then we look at the renormalized Lebesgue measure on the intersection
of the independent sausages and then let the intersection of the sausages shrink to the intersection of
the paths. The random limit thus obtained coincides with the object named as Brownian intersection
local times by Geman, Horowitz and Rosen.
We formulate the above heuristic discussion in a precise form. For every ǫ > 0, we define the
Wiener sausage around each Wi by

Siǫ = {x ∈ R
d : there is t ∈ [0, Ti) with |x−Wi(t)| < ǫ} for i = 1..., p

and take their intersection

Sǫ =

p⋂

i=1

Siǫ.

We observe that S =
⋂
ǫ>0 Sǫ. Now, for every ǫ > 0, we define the normalised Lebesgue measure ℓǫ

on R
d by

dℓǫ(y) = sd(ǫ) · 1Sǫ(y) dy

where

sd(ǫ) =






π−p logp(1
ǫ ) if d = 2

(2πǫ)−2 if d = 3 and p = 2
2

ωd(d−2) ǫ
2−d if d ≥ 3 and p = 1.

Then it turns out that the limit ǫ ↓ 0 yields the Brownian intersection local time. More precisely,
For every A ⊂ R

d that is almost surely an ℓ-continuity set,

lim
ǫ→0

ℓǫ(A) = ℓ(A) in Lq(P) for any q ∈ [1,∞), (3.1)

where ℓ is the (projected) intersection local time measure defined in the previous approach of Geman,
Horowitz and Rosen.

Example : Let us pause here for a moment and analyse the above result with the help of a
simpler example. Suppose we have a smooth curve γ : [0, 1] → R

2. An elementary result in analysis
says that

lim
ǫ→0

λ(γǫ)

2ǫ
= L(γ) (3.2)

where,
γǫ = {y ∈ R

2 : |y − γ(t)| ≤ ǫ for some t ∈ [0, 1]}
That is γǫ is the tubular ǫ-neighborhood of the image of the curve and L(γ) is the length of the curve.

We compare the above fact with the one obtained by Le Gall. For simplicity, we take d = 2
and p = 1. Then 3.1 says that

lim
ǫ→0

λ(Sǫ ∩A)

( π
log ǫ)

= ℓ(A). (3.3)

A glance on 3.2 and 3.3 implies that ℓ can be thought of as the “size” of the Brownian curve (note that
the only difference in the above two results is made by the normalizing constants). In other words,
the intersection local time is nothing but a mesaure of the intersection of the Brownian paths.
The reasons behind getting a rather simple looking normalizing constant in the first case than the
second one can be explained on a heuristic level as follows.
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• The first curve is differentiable everywhere and the second one is not differentiable anywhere
• The co-dimension of the image of the first curve is (2− 1) = 1 which appears as the exponent

of ǫ in the denomenator. Whereas, in the second case, the co-dimension of the Brownian
curve is (2 − 2) = 0.

As proposed, we go through the proof of the above construction of the intersection local time as this
approach turns out to be most useful for our purpose. We need some results on the hitting time of a
Brownian motion. We state and prove them step by step.

First, let us start with a Brownian motion B with values in R
d. Let ζ be an exponential ran-

dom time with parameter λ > 0 . We assume that ζ is independent of B. We are interested to work
with the process B killed at time ζ , which is a symmetric Markov process with Green′s function

defined as:

Gλ(x, y) =

∫ ∞

0
e−λsps(x, y) ds for each x and y in R

d (3.4)

where the Brownian transition probability function is defined as

ps(x, y) = (2πs)−
d
2 e−

|x−y|2

2s .

We observe that, Gλ(x, y) = ∞ if x = y (since d ≥ 2) and Gλ(x, y) <∞ otherwise. Moreover, Gλ(x, y)
is bounded away from 0 on compact sets. We can also easily find out the asymptotic behavior of the
Green’s function as x comes closer to y. More precisely:

as |y − x| → 0

{
Gλ(x, y) ∼ Cd |y − x|2−d if d ≥ 3

Gλ(x, y) ∼ 1
π log 1

|y−x| if d = 2
(3.5)

where Cd is the volume of the d- dimensional unit ball.

Now, for y ∈ R
d and ǫ > 0 , we set :

Tǫ(y) = inf{t : |Bt − y| ≤ ǫ}.
In other words, Tǫ(y) is the random time when the Brownian motion hits the ball of radius ǫ around
y for the first time.

Lemma 3.1. (i) For every y 6= 0 we have,
{

limǫ→0 (log 1
ǫ ) P[Tǫ(y) < ζ] = π Gλ(0, y) for d = 2

limǫ→0 ǫ
2−d

P[Tǫ(y) < ζ] =
(
d
2 − 1

)
Cd Gλ(0, y) for d ≥ 3

(3.6)

where Cd is the volume of the d-dimensional unit ball.
(ii) There exists a constant Cλ,d such that, for any ǫ ∈ (0, 1

2) and y ∈ R
2, we have:

P [Tǫ(y) < ζ] ≤
{
Cλ,d Gλ(0,

y
2 ) × log

(
1
ǫ

)−1
for d = 2

Cλ,d Gλ(0,
y
2 ) × ǫd−2 for d ≥ 3

(3.7)

Proof : We will prove the above lemma for the case d = 2 only (since the proof is same for the case
d ≥ 3). Now we observe that

E

[∫ ζ

0
1(|Bs−y|≤ǫ) ds

]
=

∫ ∞

0
ds e−λs

∫

|z−y|≤ǫ
dz ps(0, z)

ǫ→0∼ π ǫ2 Gλ(0, y). (3.8)
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The last asymptotic limit results from the dominated convergence theorem.
On the other hand, assuming that |y| ≥ ǫ we get :

E

[∫ ζ

0
1(|Bs−y|≤ǫ) ds

]
= Eζ ⊗ EB

[∫ ζ

0
1Bs∈Kǫ(y) ds

]

= Eζ ⊗ EB

[∫ ζ

Tǫ(y)
1Bs∈Kǫ(y) ds · 1Tǫ(y)<ζ

]

= EB

[

Eζ2

[∫ ζ2

Tǫ(y)
1Bs∈Kǫ(y) ds

∣∣∣Tǫ(y) < ζ2

]

Pζ1 [Tǫ(y) < ζ1]

]

= EB

[

Eζ2

[∫ Tǫ(y)+ζ2

Tǫ(y)
1Bs∈Kǫ(y) ds

]

Pζ1 [Tǫ(y) < ζ1]

]

= Pζ [Tǫ(y) < ζ] · EB
[

Eζ

[∫ Tǫ(y)+ζ

Tǫ(y)
1Bs∈Kǫ(y) ds

]]

= Pζ [Tǫ(y) < ζ] · Eζ
[

EB

[∫ Tǫ(y)+ζ

Tǫ(y)
1Bs∈Kǫ(y) ds

]]

= Pζ [Tǫ(y) < ζ] · Eζ
[
E
yǫ

B

[∫ ζ

0
1Bs∈Kǫ(y) ds

]]
,

where |yǫ− y| = ǫ. The third equality follows from Fubini’s theorem. The fourth one is a consequence
of the fact that D(ζ) = D(ζ − t|ζ > t) for all t > 0, where for a random variable X, D(X) denotes its
distribution. The fifth one results from the strong Markov property at time Tǫ(y) which enforces the
independence of ζ and B. The sixth equality again follows from Fubini’s theorem and the last one is
obtained by using the strong Markov property of B at time Tǫ(y). Now:

Eζ ⊗ E
yǫ

B

[∫ ζ

0
1Bs∈Kǫ(y) ds

]
= E

yǫ

B ⊗ Eζ

[∫ ζ

0
1Bs∈Kǫ(y) ds

]

=

∫ ∞

0
ds e−λs P

yǫ

B (Bs ∈ Kǫ(y))

=

∫

|z−y|≤ǫ
dz Gλ(yǫ, z)

ǫ→0∼ ǫ2 log
1

ǫ
.

(3.9)

We combine the above equation with (3.8) to conclude the proof of the lemma. �.

Lemma 3.2. Let t > 0 and y 6= 0. Then:

(i) for d = 2 :

lim
ǫ→0

(
log

1

ǫ

)
P [Tǫ(y) ≤ t] = π

∫ t

0
ps(0, y) ds

(ii) for d ≥ 3

lim
ǫ→0

(
log

1

ǫ

)
P [Tǫ(y) ≤ t] =

(
d

2
− 1

)
Cd

∫ t

0
ps(0, y) ds
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Proof : Let us again prove this lemma only for the case d = 2 (since the other case can be similarly
treated). We denote by γǫ( ds) the law of Tǫ(y). By Lemma 3.1,

lim
ǫ→0

(
log

1

ǫ

) ∫ ∞

0
e−λs γǫ( ds) = π Gλ(0, y) = π

∫ ∞

0
e−λs ps(0, y) ds. (3.10)

Now the above result holds for every λ > 0. In other words, the Laplace transform of the measures
| log 1

ǫ |γǫ( ds) converges to the Laplace transform of the measure π ps(0, y) ds . Hence it follows that

the measures
∣∣∣ log 1

ǫ

∣∣∣γǫ( ds) converge weakly to the measure π ps(0, y) ds . In particular,

lim
ǫ→0

(
log

1

ǫ

)
γǫ ([0, t]) = π

∫ t

0
ps(0, y) ds. � (3.11)

Remark : It is worth making a comment that all the above facts also hold true in a more
general set up. To be more explicit, in the above two lemmas our general idea was to compute the
expected time spent in the closed ball of radius ǫ around y, namely Kǫ(y) = y − ǫK1(0) where
K1(0) is the closed unit ball of R

d. Now, similar statements (like that of Lemma 3.1 and Lemma 3.2)
can be made if the closed unit ball K1(0) is replaced by an arbitrary non-polar compact subset K of
R
d. The idea of the proof comes from basic results of probabilistic potential theory which gives the

hitting probability of K for the process B killed at time ζ :

Py [TK < ζ] =

∫

K
Gλ(y, z) µ

λ
K( dz) (3.12)

where TK = inf{t : Bt ∈ K} and µλK( dz) is a finite measure supported on K, the λ −
equilibrium measure of K. The total mass of µλK( dz) is denoted by Cλ(K) and called the λ−capacity
of K. The non-polarity of K is equivalent to the fact that Cλ(K) > 0. Again, a basic formula of
probabilistic potential theory gives :

Cλ(K) =

[
inf{

∫

K
µ( dy)µ( dz) Gλ(y, z) : µ ∈ M1(K)}

]−1

(3.13)

where M1(K) denotes the set of all probability measures supported on K. However, for our purpose,
it is not necessary to implement the sophisticated tools of potential theory for arbitrary non-polar
compact subset of R

d. Looking at the closed unit ball suffices to derive the construction of our object
of study, the intersection local time.

Let us now turn to the first step of the construction of intersection local time via Wiener Sausages.

Let p ≥ 2 be an integer and B1, ..., Bp denote p independent Brownian motions running in R
2

starting at x1, ..., xp respectively. We recall from the previous construction of Geman, Horowitz and
Rosen that the intersection local time α( ds1, ..., dsp) is a random measure on (R+)p supported on
{(t1, ..., tp) ∈ R

p
+ : B1

t1 = B2
t2 = ... = Bp

tp} and it is symbolically given by:

α( ds1... dsp) = δ0
(
B1
s1 − B2

s2

)
...δ0

(
Bp−1
sp−1

− Bp
sp

)
ds1.... dsp (3.14)

where δ0 denotes the Dirac measure at 0. Equivalently,

α( ds1... dsp) =

∫

R2

δy
(
B1
s1

)
...δy

(
Bp
sp

)
ds1.... dsp. (3.15)
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The idea of this approach is to replace the Dirac measure at y in the latter symbolical expression by
a suitable approximation. We set:

δǫ(y)(z) = (πǫ2)−1 1Kǫ(y)(z) (3.16)

and

φǫ(z1, ..., zp) =

∫

R2

p∏

j=1

δǫ(y)(zj) dy (3.17)

and

αǫ( ds1... dsp) = φǫ

(
B1
s1, ..., B

p
sp

)
ds1... dsp (3.18)

Note that φǫ is translation invariant i.e. φǫ(z1, ..., zp) = φǫ(z1 + x, ..., zp + x) for every x ∈ R
2 (since

Lebesgue measure is translation invariant).

Proposition 3.3. With probability one, there exists a random measure α( ds1, ..., dsp) on (R+)p such
that for any bounded Borel sets A1, . . . , Ap of (R+) ,

(i)

lim
ǫ→0

αǫ(A
1 × ...×Ap) = α(A1 × ...×Ap)

in the Ln-norm, for any n <∞.

(ii) the measure α(·) is almost surely supported by

{(s1, ..., sp) : B1
s1 = ... = Bp

sp
}.

(iii) With probability one, for any 1 ≤ j ≤ p and any t ≥ 0 ,

α ({sj = t}) = 0.

(iv) (Le Gall′s moment formula) Finally, for every n ∈ N and every A1, . . . , Ap, we have:

E
[
α
(
A1 × · · · ×Ap

)n]
=

∫

(R2)n

dy1 . . . dyn

×
p∏

j=1

[∫

(Aj)n
<

ds1 . . . dsn
∑

σ∈Σn

(
ps1(x

j , yσ(1)) ×
n∏

k=2

psk−sk−1
(yσ(k−1), yσ(k))

)]

(3.19)
where Σn is the symmetric group of permutations of {1, . . . n} and

(Aj)n< = {(s1, . . . , sn) ∈ (Aj)n : 0 ≤ s1 < · · · < sn}.

Proof : We shall prove the above proposition in several steps.

Step 1 : We first check the L2 convergence of αǫ(A
1 × · · · × Ap). For that, it suffices to prove

that

lim
ǫ,ǫ′→0

E
[
αǫ(A

1 × · · · ×Ap) α′
ǫ(A

1 × · · · ×Ap)
]

(3.20)
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exists and is finite. Now, we have

E
[
αǫ(A

1 × · · · ×Ap) α′
ǫ(A

1 × · · · ×Ap)
]

=

∫

R2

∫

R2

dy dy′
p∏

j=1

(∫

(Aj)2
ds ds′ E

[
δǫ(y)(B

j
s) δ

ǫ′

(y′)(B
j
s′)
])

=

∫

R2

∫

R2

dy dy′
p∏

j=1

∫

(Aj)2<

ds ds′

× E

[
δǫ(y)(B

j
s) δ

ǫ′

(y′)(B
j
s′) + δǫ

′

(y′)(B
j
s) δ

ǫ
(y)(B

j
s′)
]
.

Here the first equality follows from Fubini’s theorem.
Now we claim that, for (s, s′) ∈ (Aj)2<,

lim
ǫ,ǫ′→0

E

[
δǫ(y)(B

j
s) δ

ǫ′

(y′)(B
j
s′)
]

= ps(x
j , y) ps′−s(y, y

′).

To see this, we observe:

lim
ǫ,ǫ′→0

E

[
δǫ(y)(B

j
s) δ

ǫ′

(y′)(B
j
s′)
]

= lim
ǫ,ǫ′→0

1

πǫ2
1

πǫ′2
P
[
Bs ∈ Kǫ(y), Bs′−s ∈ Kǫ′(y

′ − y)
]

= lim
ǫ,ǫ′→0

1

πǫ2
1

πǫ′2

∫

Kǫ(y)
ps(x

j , z) dz

∫

Kǫ′(y
′−y)

ps′−s(0, y
′ − y) dz

=
1

πǫ2

∫

Kǫ(y)
ps(x

j , y) dz
1

πǫ′2

∫

Kǫ′(y
′−y)

ps′−s(0, y
′ − y) dz

= ps(x
j, y) ps′−s(y, y

′).

The first equality follows from the Markov property and the rest is routine.
Now we want to use the dominated convergence theorem. For that, we will find a function φ(y, y′, s, s′)
such that for every M > 0,

∫

R2

∫

R2

dy dy′

(∫

[0,M ]2<

ds ds′ φ(y, y′, s, s′)

)p
<∞ (3.21)

and for any y, y′ ∈ R
2, 0 < s < s′ <∞ , ǫ, ǫ′ ∈ (0, 1) ,

E

[
δǫ(y)(B

j
s) δ

ǫ′

(y′)(B
j
s′)
]
≤ φ(y − xj, y′, s, s′). (3.22)

The existence of such a function justifies the passage to the limit under the integral sign.
Without entailing any loss of generality, we assume that all the Brownian motions start from the
origin, which means xj = 0 and drop the superscript j henceforth. We have two cases. When |y| ≥ 2ǫ,
then:

E[δ(y)
ǫ(Bs)] =

1

πǫ2
P[ Bs ∈ Kǫ(y)]

=
1

πǫ2

∫

|z−y|≤ǫ

1√
2πs

e−
|z|2

2 dz

≤ 1

πǫ2
1√
2πs

∫

Kǫ(y)
e−

y2

4 dz

= ps(0,
y

2
).

(3.23)

For deriving the third inequality in the above expression we have used the fact that the map |z| 7→ e−
|z|2

2

is decreasing.
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Now when |y| < 2ǫ , then of course,

E[δǫ(y)(Bs)] ≤ (πǫ2)−1 ∨ (2πs)−1 ≤ 4(|y|−2 ∧ s−1).

Therefore:

E[δǫ(y)(Bs)] ≤ ψ(y, s)

where

ψ(y, s) = 4 1(|y|<2ǫ) [|y|−2 ∧ s−1] + ps

(
0,
y

2

)

We note that: ∫ M

0
ψ(y, s) ds ≤ CM G1(0, y) (3.24)

where

G1(0, y) =

∫ ∞

0
e−s ps(x, y) ds.

We now bound E

[
δǫ(y)(B

j
s) δǫ

′

(y′)(B
j
s′)
]

. The easy case is when |y − y′| ≥ 2(ǫ + ǫ′). Then the strong

Markov property at time s gives :

E

[
δǫ(y)(B

j
s) δ

ǫ′

(y′)(B
j
s′)
]
≤ E

[
δǫ(y)(Bs)

]
ps′−s(0,

y′ − y

2
) ≤ ψ(y, s) ps′−s(0,

y′ − y

2
).

Suppose now that |y′ − y| < 2(ǫ+ ǫ′) ≤ 4. If ǫ ≤ ǫ′, then again the Markov property gives:

E

[
δǫ(y)(B

j
s) δ

ǫ′

(y′)(B
j
s′)
]
≤ E

[
δǫ(y)(Bs)

] (
(πǫ2)−1 ∧ (2π(s′ − s))−1

)

≤ 16 ψ(y, s)( |y′ − y|−2 ∧ (s′s)−1).

If ǫ′ < ǫ , then we have to consider each of the cases s′ − s > |y′ − y|2 and s′ − s ≤ |y′ − y|2. For
the first case, we have:

E

[
δǫ(y)(B

j
s) δǫ

′

(y′)(B
j
s′)
]

≤ E

[
δǫ(y)(Bs)

]
(2π(s′ − s))−1 ≤ ψ(y, s) (|y′ − y|−2 ∧ (s′ − s)−1).

Secondly, if s′ − s ≤ |y′ − y|2 and ǫ′ < ǫ , then :

E

[
δǫ(y)(B

j
s) δ

ǫ′

(y′)(Bs′)
]

≤ (πǫ2)−1
E

[
δǫ

′

(y′)(Bs′)
]

≤ 16 |y − y′|−2 ψ(y′, s′)

≤ 16
(
|y′ − y|−2 ∧ (s′ − s)−1

)
ψ(y′, s′).

We combine all the previous estimates to obtain:

E

[
δǫ(y)(Bs) δ

ǫ′

(y′)(Bs′)
]
≤ φ(y, y′, s, s′)

with

φ(y, y′, s, s′) =
(
ψ(y, s) + ψ(y′, s′)

)(
ps′−s(0,

y′ − y

2
) + 16(|y′ − y|−2 ∧ (s′ − s)−1)

)
.

we note that:
∫

[0,M ]2<

ds ds′φ(y, y′, s, s′) ≤ C ′
M

(
G1(0,

y

2
) +G1(0,

y′

2
)

)
G1(0,

y′ − y

2
).
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Now we know that the function y 7→ G1(0, y) is in Lp for all p < ∞. Therefore we can use the
dominated convergence theorem to get the desired result. Summarizing we write:

α̃(A1 × · · · ×Ap) = lim
ǫ→0

α(A1 × · · · ×Ap)

in L2. Note that α̃ a priori depends on A1, . . . , Ap.

Step 2 : Now we have to check that the convergence holds in Ln for every n ∈ N and that
the n-th moment of α̃(A1 × · · · × Ap) is the right hand side of (3.19). For that, we check the
convergence of :

E
[
α (A1 × · · · ×Ap)

]
=

∫

R2

dy1 . . . dyn

p∏

j=1

(∫

(Aj)n

ds1 . . . dsnE

[
n∏

k=1

δǫ(yk)(B
j
sk

)

])

=

∫

R2

dy1 . . . dyn

p∏

j=1

(
∑

σ∈Σn

(

∫

(Aj)n
<

ds1 . . . dsnE

[
n∏

k=1

δǫyσ(k)
(Bj

sk
)

])

.

(3.25)
Now we again use the same arguments used in Step-1 to obtain:

lim
ǫ→0

E




p∏

j=1

δ(yσ(k))(B
j
sk

)



 = ps1(x
j , yσ(1))

n∏

k=2

psk−sk−1
(yσ(k−1), yσ(k)).

Again, like the previous step, we have to use the dominated convergence theorem and we use
the same techniques used before. We consider separately the cases |yσ(k) − yσ(k−1)| ≥ 4ǫ and
|yσ(k) − yσ(k−1)| < 4ǫ and use the Markov property at times sn−1, sn−2, . . . , s1 to obtain :

E




p∏

j=1

δ(yσ(k))(B
j
sk

)



 ≤ 4 ψ(yσ(1) − xj , s1) × · · · × 4ψ(yσ(n) − yσ(n−1), sn − sn−1)

where the function ψ is the same one defined in the previous step. Then the bound of (3.24) justifies
the passage to the limit in the right hand side of (3.25).

Step 3 : Now we will construct a random measure α(.) such that for any A1, . . . , Ap , we have
α(A1, . . . , Ap) = α̃(A1, . . . Ap) almost surely. We first consider the case when Aj = [aj , bj ] where
aj ≤ bj ≤ M . Now, by the previous step, we know that E

[
α̃(A1, . . . , Ap)n

]
is the right hand side of

(3.19). Then we apply generalized Hölder’s inequality to the right hand side of (3.19) to obtain:

E [α̃(A1 × . . . Ap)
n] ≤ (n!)p

p∏

j=1

(∫

(R2)n

dy1 . . . dyn

(∫

(Aj)n
<

ds1 . . . dsn ps1(x
j , y1)

n∏

k=2

psk−sk−1
(yk−1, yk)

)p) 1
p

≤ (n!)p
p∏

j=1

(∫

(R2)n

dy1 . . . dynG
aj ,bj (xj, y1)

p
n∏

k=2

G0,bj−aj (yk−1, yk)
p

) 1
p

where

Gu,v(x, y) =

∫ v

u
ds ps(x, y) for all x, y, v, u ∈ R.
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Now we use Jensen’s inequality to check that
∫

dy Gu,v(x, y)p ≤ Cp(v − u)

for some constant Cp. We conclude that

E
[
α̃(A1 × · · · ×Ap)

]
≤ (Cp)

n (n!)p
p∏

j=1

(bj − aj)
n
p .

It follows from the above inequality and the multidimensional version of the Kolmogorov-Chentsov
theorem that the mapping

(a1, b1, a2, b2, . . . , ap, bp) 7→ α̃ ([a1, b1] × · · · × [ap, bp])

has a continuous version, denoted by α([a1, b1] × · · · × [ap, bp]). It easily follows by the definition
of α̃ that α([a1, b1] × · · · × [ap, bp]) is a finitely additive function of [a1, b1] × · · · × [ap, bp] (First we
consider the case when aj , bj are rationals and then generalize it to obtain finite additivity) But the
family of sets of the form [a1, b1]× · · · × [ap, bp] with aj , bj ≥ 0 form a semi-algebra of sets and hence,
by Kolmogorov’s extension theorem, the finitely additive set function α can be extended to a Radon
measure on the σ-algebra generated by the semi-algebra.

But now, we want to extend our result to arbitrary Borel sets Ai of R+ so that α and α̃
agree on the product A1 × · · · ×Ap.

Suppose we have a sequence of sets A(n) = A
(n)
1 × A

(n)
2 · · · × A

(n)
p which increase (or respec-

tively decrease) to the set A = A1 ×A2 × · · · ×Ap , then we have the following two facts:

(i) By (3.19), α̃(A(n)) converges in L2 to α̃(A).

(ii) α being almost surely a Radon measure, α(A(n)) converges to α(A) with probability one.

The above two facts and the Monotone class theorem implies that

α(A1 × · · · ×Ap) = α̃(A1 × · · · ×Ap) (3.26)

for every bounded Borel subset Ai of R+.

Step 4 : It remains to show that the measure α has the desired properties.

Now the fact that for every t ≥ 0, α(sj = t) = 0 is trivial by the continuity of the mapping
(a1, b1, a2, b2, . . . , ap, bp) 7→ α ([a1, b1] × · · · × [ap, bp]).

Finally, if A = [a1, b1] × · · · × [ap, bp] is a closed rectangle with rational co-ordinates and
C = { ω : A ∩ {(s1, . . . sp) : B1

s1(ω) = · · · = Bp
sp(ω)} = ∅} then it follows that αǫ(A) = 0 for small ǫ

on C and hence α(A) = 0 almost surely on C. Since this is true with probability one for all rectangles
with rational co-ordinates, it follows that

supp(α) = {(s1, . . . sp) : B1
s1 = · · · = Bp

sp
}. (3.27)

The proof of the proposition is now complete. �
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Remarks

• Although we have restricted our discussion to the two dimensional case (the intersection of
arbitrarily many Brownian motions in R

2), it is quite evident that a similar result (with
exactly the same proof) can be stated in three or even higher dimensional cases by setting

δǫ(y)(z) = [
π

d
2

Γ(d2 + 1)
ǫd]−11D(y,ǫ)(z).

But then of course, we have to restrict our discussion to at most two motions in R
3 or only

one motion in higher dimension, in order to get a non-trivial intersection set.

• It was convenient in the previous proof to assume that the starting point of each of the motions
is non-random. However, it is clear that the proposition still holds in more general situation
where the initial points are non-deterministic. The right hand side of (3.19) should then be
integrated with respect to µ1( dx1), . . . , µ

p( dxp) where µj denotes the initial distribution of
Bj .

Corollary 3.4. Suppose that B1
0 = · · · = Bp

0 . Then for any t ≥ 0 and λ > 0, we have

α([0, λt]p) =(d) λ α([0, t]p)

where for two random variables X and Y , the notation X =(d) Y means X and Y have the same
distribution.

Proof : Without loss of generality, we may assume that B1
0 = · · · = Bp

0 = 0. We shall use a scaling
argument. Set:

B̃j
t = λ−

1
2Bj

λt.

. Then (
˜
Bj
t )t≥0 has the same distribution as (Bj

t )t≥0. Furthermore, for any ǫ > 0, we have:

α̃ǫ([0, t]
p) :=

∫

[0,t]p




∫

R2

p∏

j=1

(πǫ2)−1 1D(y,ǫ)(B̃
j
sj

)



 ds1 . . . dsp = λ−1α
λ

1
2 ǫ

([0, λt]p)

where K(y, ǫ) is the disc of radius ǫ around y and αǫ and α̃ǫ is defined as in (3.18). Also note that αǫ
and α̃ǫ are same in distribution. It follows that:

α̃([0, t]p) = λ−1α([0, λt]p) a.s . �

Corollary 3.5. If B1
0 = · · · = Bp

0 , then for every t > 0, α([0, t]p) > 0 almost surely.

Proof : Note that the events {α([0, t]p) > 0} decrease as t decreases. It follows from the previous
corollary that

P [α([0, 1]p) > 0] = P [α([0, t]p) > 0]

= P

[
⋂

s>0

{α([0, s]p) > 0}
]

.

Since E [α([0, 1]p)] > 0 (by the moment formula (3.19)), it follows that

P [α([0, 1]p) > 0] > 0.
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The Kolmogorov 0-1 law gives

P [α([0, 1]p) > 0] = 1 �

Now we can recover the celebrated old result (see [DE00a], [DE00b] and [DE00c]) about the existence
of intersection points:

Corollary 3.6. The paths of B1, . . . , Bp have a common point different from their starting point.

Proof : The previous corollary and the fact that α is supported on {B1
s1 = · · · = Bp

sp} implies that,

provided B1
0 = · · · = Bp

0 , for any ǫ > 0, there exists t1, . . . , tp ∈ (0, ǫ) such that B1
t1 = · · · = Bp

tp . �

So far, we have described the Brownian intersection local time as a uniform measure supported
on the intersection of the Brownian paths. Now we provide an alternative characterization of the
intersection local time via approximation of the renormalized Lebesgue measure on the intersection
of the Wiener sausages.

Theorem 3.7. We have:

lim
ǫ→0

(
log

1

ǫ

)p
λ

(
p⋂

i=1

Siǫ(0, t)

)
= πp α([0, t]p) (3.28)

in the L2-norm, where:

Siǫ(0, t) = {x ∈ R
d : |x−Bi

s| < ǫ for some s ∈ (0, t)}. (3.29)

In other words, Siǫ(0, t) is the ǫ-sausage around the i-th Brownian path observed from time 0 upto time
t.

Remark: The convergence in the above theorem is true in Ln for any n < ∞. However, we restrict
our attention only to the L2 convergence.

Proof : For simplicity, we again assume that the starting points of B1
0 = x1, B2

0 = x2, . . . , Bp
0 = xp

are all non-random. we fix t > 0.
Then

αǫ([0, t]
p) =

∫

[0,t]p




∫

R2

p∏

j=1

δǫ(y)(B
j
sj

) dy



 ds1 . . . dsp =

∫

R2




p∏

j=1

∫ t

0
δǫ(y)(B

j
s) ds



 dy

=

∫

R2

p∏

j=1

Xj
ǫ (y) dy

(3.30)

where

Xj
ǫ (y) =

∫ t

0
δǫ(y)(B

j
s) ds
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and

Xǫ(y) =

p∏

j=1

Xj
ǫ (y).

Similarly, we can write:

π−p
(

log
1

ǫ

)p
λ

(
p⋂

i=1

Siǫ(0, t)

)
=

∫

R2

p∏

j=1

Y j
ǫ (y) dy

where

Y j
ǫ (y) = π−1

(
log

1

ǫ

)
I(y ∈ Sjǫ (0, t))

and

Yǫ(y) =

p∏

j=1

Y j
ǫ (y).

Hence the assertion of the theorem is equivalent to

lim
ǫ→0

E

[(∫

R2

dy(Xǫ(y) − Yǫ(y))

)2
]

= 0. (3.31)

We have:

E

[(∫

R2

dy(Xǫ(y) − Yǫ(y))

)2
]

=

∫

R2

∫

R2

dy dz




p∏

j=1

E[Xj
ǫ (y)X

j
ǫ (z)] − 2

p∏

j=1

E[Xj
ǫ (y)Y

j
ǫ (z)] +

p∏

j=1

E[Y j
ǫ (y)Y j

ǫ (z)]



 .

(3.32)
Now we shall investigate the limiting behavior of each term of the right hand side in the above equation.
Henceforth we assume that y 6= z and y, z 6= xj. Then we have:

lim
ǫ→0

E[Xj
ǫ (y) X

j
ǫ (z)] = lim

ǫ→0
E

[∫ t

0
dsδǫ(y)(B

j
s)

]

= lim
ǫ→0

E

[∫ t

0
ds(

∫ t

s
δǫ(y)(B

j
s′) δ

ǫ
(z)(B

j
s′) ds

′)

]

=

∫ t

0
ds

∫ t

s
ds′ [ps(x

j , y)ps′−s(y, z) + ps(x
j , z)ps′−s(z, y)]

=: Ft(x
j , y, z).

(3.33)

The passage to the limit of the third equality is justified by the same reasoning used in proving the
Step 1 of Proposition 3.3. Moreover, the upper bounds obtained in the Step-1 of Proposition 3.3 give

E[Xj
ǫ (y) X

j
ǫ (z)] ≤ C

(
G1(0,

y

2
) + G1(0,

z

2
)
)
G1

(
0,

(z − y)

2

)
. (3.34)

Next we have:

E
[
Xj
ǫ (y)Y

j
ǫ (z)

]
= E

[∫ t

0
dsδǫ(y)(B

j
s). π

−1(log
1

ǫ
)I(z ∈ Sjǫ (0, t))

]

= π−2ǫ−2(log
1

ǫ
)E

[(∫ t

0
ds 1K(y,ǫ)(B

j
s)

)
I(z ∈ Sjǫ (0, t))

]
.

Now define

T jǫ (z) = inf{t ≥ 0 : Bj
t ∈ Kǫ(z)}.
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Then, we have

E

[
I(z ∈ Sjǫ (0, t))

∫ t

0
ds 1D(y,ǫ)(B

j
s)

]
= E

[

I(T jǫ (z) ≤ t)

∫ t

T j
ǫ (z)

1D(y,ǫ)(B
j
s) ds

]

+ E

[∫ t

0
1D(y,ǫ)(B

j
s) I[s < T jǫ (z) ≤ t]

]
.

Now we apply the strong Markov property at time T jǫ (z) and then pass to the limit as ǫ→ 0 and use
Lemma 3.2 to obtain:

lim
ǫ→0

E

[
π−1(log(

1

ǫ
))I(T jǫ (z) ≤ t) π−1ǫ

−2

∫ t

T j
ǫ (z)

1D(y,ǫ)(B
j
s) ds

]
=

∫ t

0
ds′ ps′(x

j , z)

∫ t

s′
ds ps′−s(z, y).

Now :

E

[
I(T jǫ (z) ≤ t)

∫ t

T j
ǫ (z)

1D(y,ǫ)(B
j
s) ds

]
= E

[∫ t

0
ds 1D(y,ǫ)(B

j
s) I(z ∈ Sjǫ (s, t))

]

− E

[∫ t

0
ds 1D(y,ǫ)(B

j
s) I(z ∈ Sjǫ (0, s) ∩ Sjǫ (s, t))

]
.

Now, by the result of Lemma (3.2), we have:

lim
ǫ→0

π−2ǫ−2(log
1

ǫ
) E

[∫ t

0
ds 1D(y,ǫ)(B

j
s) I(z ∈ Sjǫ (s, t))

]
=

∫ t

0
(π−1ǫ−2) lim

ǫ→0

∫

D(y,ǫ)
ps(x

j, y′) dy′

× lim
ǫ→0

π−1

(
log

1

ǫ

) [
I(z ∈ Sjǫ (s, t))

]

=

∫ t

0
ds ps(x

j, y)

∫ t

s
ds′ ps′−s(y, z).

Again the strong Markov property at time Tǫ(z) and the bounds of the third part of the Lemma 3.1
give

ǫ−2(log
1

ǫ
)E

[∫ t

0
ds 1D(y,ǫ)(B

j
s) I(z ∈ Sjǫ (0, s) ∩ Sjǫ (s, t))

]
= o

(
(log

1

ǫ
)−1

)

as ǫ goes to 0. Then, we see that

lim
ǫ→0

[
Xj
ǫ (y)Y

j
ǫ (z)

]
=

∫ t

0
ds′ p′s(x

j , z)

∫ ′t

s
ds ps′−s(z, y) +

∫ t

0
dsps(x

j , y)

∫ t

s
ps′−s(y, z) − 0

= Ft(x
j, y, z).

(3.35)

Moreover, Lemma 3.1 and the previous arguments show that E

[
Xj
ǫ (y)Y

j
ǫ (z)

]
satisfies the same upper

bound as E

[
Xj
ǫ (y)X

j
ǫ (z)

]
.

Finally, we consider,

[
Y j
ǫ (y)Y j

ǫ (z)
]

= π−2

(
log

1

ǫ

)2

P
[
T jǫ (y) ≤ t, T jǫ (z) ≤ t

]
.

Now we observe that:

P
[
T jǫ (y) ≤ t, T jǫ (z) ≤ t

]
≤ P

[
T jǫ (y) ≤ t, z ∈ Sjǫ (T

j
ǫ (y), t)

]

+ P
[
T jǫ (z) ≤ t, y ∈ Sjǫ (T

j
ǫ (z), t)

]
.
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It follows that E[Y j
ǫ (y)Y j

ǫ (z)] has the same upper bound as E

[
Xj
ǫ (y)X

j
ǫ (z)

]
.

Again, we use the strong Markov property and Lemma 3.2 (same arguments as before) to conclude
that

lim sup
ǫ→0

E
[
Y j
ǫ (y)Y j

ǫ (z)
]
≤ Ft(x

j , y, z). (3.36)

Now passage to the limit in the right hand side of (3.32) is justified by (3.33) , (3.35), (3.36) and
the subsequent use of the dominated convergence theorem with the help of (3.34) (and the corre-
sponding upper bounds for the other terms too) and the fact that y 7→ G1(0, y) is in Ln for any n <∞.

It follows that

lim sup
ǫ→0

E

[(∫

R2

dy (Xǫ(y) − Yǫ(z))

)2
]

≤ 0.

This completes the proof of 3.31 and hence the proof of the theorem. �

Remark : Although we have dealt with the two dimensional case so far, it is not difficult to see that
a similar result with the same proof can be obtained for higher dimensional cases. For example, the
intersection local time of two Brownian motions moving in R

3 can be approximated in the same manner
by the renormalized Lebesgue measure on the intersection of the corresponding Wiener sausages. More
precisely,

lim
ǫ→0

(2πǫ)−2 λ
(
S1
ǫ (0, t) ∩ S2

ǫ (0, t)
)

= α([0, t]2).

We note the difference of the normalizing constants. For dimensions d > 3 and only one motion, we
have:

lim
ǫ→0

(
ǫ2−d Γ

(
d

2

)
1

d− 2
π−

d
2

)
λ (Sǫ(0, t)) = α([0, t]).

4. Brownian intersection local time as a Hausdorff measure:

The third construction of the intersection local time was also carried out by Le Gall (see [LG87]). It
turned out that this measure coincides with a constant multiple of a Hausdorff measure induced by
a suitable gauge function. Look at the appendix (subsection 10.2) for the definition and examples of
Hausdorff measure and dimension.
This approach was motivated by a problem concerning the size of the Brownian intersection set.
Recall that the Hausdorff dimension of the intersection of any number of motions in R

2 is 2. But
it is intuitively clear that the size of the intersection of p motions should be bigger than that of
p + 1 motions. This heuristic observation leads to the consideration of a Hausdorff measure on the
intersection set induced by a suitable gauge function. More precisely if gr(x) = x2(log 1

x)
r for any

r ∈ R , then in d = 2 we have

µgr(S) =

{
0 if r < p

∞ if r > p
(4.1)

where µgr is the gr- Hausdorff measure. This result was conjectured by Taylor in [?] and proved by Le

Gall in [LG86]. The techniques used in [LG86] yields a similar result in d = 3. If fr(x) = x
(
log 1

x

)r
,
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then

µfr
(S) =

{
0 if r ≤ 0

∞ if r > 0.
(4.2)

It is worth making a comment about the case p = 1 . The Hausdorff measure of the image of a single
Brownian path was studied by many authors, including Levy (see [Le53]) and Ray (see [Ra63]). But
the correct gauge function was determined by Ciesielski and Taylor (see see [CT62]) for d ≥ 3 and
Taylor (see [Ta66]) for d = 2. The function is given by:

h(x) =

{
x2
(
log 1

x log log log 1
x

)
if d = 2

x2
(
log log 1

x

)
if d ≥ 3.

However, we shall focus on the case of more than one motion in appropriate dimension. The results
(4.1) and (4.2) were improved by the same author in [LG87] by computing a “correct” gauge function
g such that the g-measure of S is positive and the measure is σ-finite. In fact, it was proved that for
some positive constants C and C ′

C ℓ(A) ≤ µgp (A ∩ S) ≤ C ′ ℓ(A) (4.3)

where

gp(x) =

{
x2
(
log log log log 1

x

)p
if d = 2 , p ∈ N

x
(
log log 1

x

)2
if d = 3, p = 2

and ℓ is the (projected) intersection local time of the Brownian paths.

The key argument leading to the above result is Le Gall’s moment formula (3.19) and the
existence of two postive constants M and M ′ (depending only on the d and p) such that for d = 2,

Mk (logR)pk (k!)p ≤ E

[
(ℓ(B(0; 1)))k

]
≤M ′k (logR)pk (k!)p for k ∈ N

where it is assumed that the Brownian motions run until their first individual exit time from a fixed
ball of radius R with 2 ≤ R <∞. For d = 3 and p = 2,

Mk(k!)2 m ≤ E

[
(ℓ(B(0; 1)))k

]
≤ M ′k(k!)2 fork ∈ N.

The above result was farther sharpened by the same author in [LG87(II)] by showing that with
probability one, the intersection local time ℓ is exactly equal to a constant multiple of the gp-Hausdorff
measure on S:

ℓ(A) = Cp µgp (A ∩ S) for every A ∈ B(R2)

for some constant Cp.

Remarks :

• From the above result it follows that the Hausdorff dimension of S is 2 for d = 2 and p ∈ N

since the exponent of x in the gauge function gp is also 2 (of course, it contains some log
terms too, but they do not influence the dimension). The same argument accounts for a
similar result in the three dimensional case with two motions.

• It is worth observing that ℓ is a random object which is equal to a Hausdorff measure induced
by a suitable gauge function. Remarkably, the gauge function is non-random and depends on
p and d in a rather simple manner.
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5. Upper tail asymptotics

Let us turn to the following question : What is the behavior of the Brownian paths if they are forced
to produce an extremely large amount of intersection with each other? More precisely, we look at the
sample paths for which all the p motions have especially much interaction. This question concerns the
extremely “thick” parts of the space. Now ℓ being a measure of intersection of the Brownian paths,
the above question boils down to studying the random regions of the space where the mass of ℓ is
locally extremely dense with probability one. We would also like to ask “how many” such thick points
exist in the space. Ofcourse, the expression “how many” is a bit vague at the moment. But we shall
come back with a precise formulation of this question a bit later.

For answering these questions, it is necessary to understand the “upper tails” of the random variables
ℓ(U) for compact sets U , say, for balls U ⊂ R

d. In other words, we study the logarithmic decay rate
of the probability of the event {ℓ(U) > a} as a→ ∞. This work has been done by König and Mörters
in 2002 (see [KM02]) and was refined by the same authors in 2005 (see [KM05]). In this section we
describe that result briefly. First, we need some technical stuff.

Let B ⊂ R
d be the domain of the Brownian motions (i.e we let the motions run until their first

individual exit time from the ball B). We assume that B is an open ball, possibly equal to R
d for

d ≥ 3 and for d = 2 we assume that B is bounded (Recall that a Brownian motion is recurrent in
d ≤ 2 and transient in higher dimensions). The following function space is the buliding block for our
analysis:

D(B) =

{
H1

0 (B) if B is bounded

D1(Rd) if B = R
d

(5.1)

Where

D1(Rd) = {f ∈ L1
loc(R

d) : f vanishes at infinity and the distributional gradient of f is in L2(Rd)}.

Now we fix an open bounded set U in R
d such that U is compactly contained in B (i.e., U ⊂ B ).

Then the upper tails of ℓ(U) are identified as follows:

Theorem 5.1. (König/Mörters’2002)

lim
a→∞

1

a
log P [ℓ(U) > ap] = −Θ(U) (5.2)

where
Θ(U) = inf{p

2
||∇ψ||22 : ψ ∈ D(B), ||1Uψ||22p = 1}. (5.3)

Remarks

• Minimizer of of the variational formula : The minimizer ψ in the variational formula
(5.3) exists and it is a solution to the following Euler-Lagrange equation for the Laplace
operator in U :

△ψ(x) = −2

p
Θ(U)ψ2p−1(x) 1U (x) for x ∈ B\∂U (5.4)

It is worth noting that the minimizing functions ψ are harmonic outside U . Moreover, for
p = 1, the above equation is a linear eigenvalue problem and its uniqueness properties are
known. However, for p ≥ 2, the non-linearity triggers off a chain of problems. For example,
in these non-linear cases, it is not known how many minimizers there are for the variational
formula, to the best of our knowledge.
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• Exponential moments From the above theorem, one easily defers a necessary and sufficient

condition for the integrability of the random variable exp(cℓ(U)
1
p ) for any c > 0. More

precisely,
∫

Ω
eℓ(U)

1
p
dP

{
<∞ if Θ(U) > 1

= ∞ if Θ(U) < 1.

To see this, put g = ℓ(U)
1
p . Then (5.2) says that

P[g > a] ≃ e−aΘ(U)

Again, ∫

Ω
eg >

∫

g>a
eg > eaP[g > a] ≃ ea(1−Θ(U))

Which implies that
∫
Ω eg = ∞ if Θ(U) < 1.

However, if Θ(U) > 1, then
∫

Ω
eg ≤

∫ ∞

0
P(g > b)eb db ≃

∫ ∞

0
e−bΘ(U)eb db =

∫ ∞

0
eb(1−Θ(U)) db <∞.

This question was first answered for the case p = 1 by Pinsky ( see [Pi86]) and was left open
there for p ≥ 2. However, this result was generalized by König and Mörters (see [KM05])
where the existence of exponential moments for the intersection local time was investigated
and it was proved that , if φ1, . . . , φn are bounded non-negative Borel functions with compact
support in B and if

Θ(φ1, . . . , φn) = inf{p
2
||∇ψ||22 : ψ ∈ D(B), Σn

i=1||φiψ||22p = 1}.

Then,

E

[
exp

(
Σn
i=1 〈φ2p

i , ℓ〉
1
p

)]{<∞ if Θ(φ) > 1

= ∞ if Θ(φ) < 1
(5.5)

Furthermore, (5.2) was extended to show that

lim
a→∞

1

a
log P

[
Σn
i=1〈φ2p

i , ℓ〉
1
p > a

]
= −Θ(φ1, . . . , φn) (5.6)

where for a function f and a measure µ, 〈f, µ〉 denotes the integral
∫
f dµ.

• Dimension spectrum for thick points : As proposed at the beginning of this section, the
aymptotic limit in the Theorem 5.1 determines the behavior of the Brownian sample paths
where they produce a large amount of intersection and this is carried out by determining
the size of the “thick points” of the space. More explicitly, the idea is to focus on those
points which have a neighbourhood around which the mass of ℓ is untypically large. The key
argument leading to this result is is to find a gauge function φ such that the upper Hausdorff
density of the intersecion local time is bounded. Formally :

0 < sup
x∈s

lim sup
r↓0

ℓ(B(x; r))

φ(r)
< ∞.

Having found such a function φ, a point x ∈ S is called thick , if

lim sup
r↓0

ℓ(B(x; r))

φ(r)
> 0.
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Now the question concerning the size of the set of thick points in answered neatly by the
Hausdorff dimension spectrum of the set which is defined as the function :

f(a) = dim{x ∈ S : lim sup
r↓0

ℓ(B(x; r))

φ(r)
= a}.

for each a > 0. It was shown by the authors (see [KM02]) that for d = 3 and p = 2,
(i)

sup
x∈R3

lim sup
r↓0

ℓ(B(x; r))

r(log 1
r )

2
=

1

Θ(U)2

(ii)

dim{x ∈ S : lim sup
r↓0

ℓ(B(x; r))

r(log 1
r )

2
= a} = 1 −√

aΘ(U).

6. Upper tail asymptotics from moment asymptotics

The goal of this section is to provide a sketchy proof of Theorem 5.1 via several steps. Needless to
say, we shall not go into mounds of technical details of the stuff. Instead, we focus our attention on
the main idea.

It turns out that the integer moments of the random variables ℓ(U) are more feasible to work with
rather than the probability of the event {ℓ(U) > a}. This statement provokes a natural appeal to Le
Gall’s moment formula (3.19). We restate it here in a different form which would turn out to be more
useful for our purpose.

Lemma 6.1.

E

[
ℓ(U)k

]
=

∫

U
dy1 . . .

∫

U
dyk

k∏

j=1

Σσ∈SK
G(xj , yσ(1))

k∏

i=2

G(yσ(i−1), yσ(i)).

Although we have provided a rigorous proof of the above lemma, it is possible to derive it from the
symbolical formula (2) on a heuristical level as follows:

E

[
ℓ(U)k

]
= E








∫

U
dy

p∏

j=1

∫ Tj

0
ds δy(Wj(s))




k




=

∫

U
dy1 . . .

∫

U
dyk

p∏

j=1

Exj




∑

σ∈Sk

∫

0≤s1≤···≤sk≤Tj

. . .

∫ k∏

i=1

δyσ(i)(Wj(si)) dsi





=

∫

U
dy1 . . .

∫

U
dyk

p∏

j=1

∑

σ∈Sk

ps1(x
j, yσ(1))

k∏

i=2

psk
(yσ(k−1), yσ(k)) dsi . . . ds1

=

∫

U
dy1 . . .

∫

U
dyk

k∏

j=1

∑

σ∈SK

G(xj , yσ(1))
k∏

i=2

G(yσ(i−1), yσ(i)).
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6.1 Green’s Operator Recall that in course of describing the Wiener sausage construction of the
intersection local time, we have already introduced the Green’s function together with the exponential
random time ζ. Here we write it for the Brownian motion killed at the exit time from B(0, R):

G(x, y) =

∫ ∞

0
ps(x, y) ds

Note that this function depends on the dimension d of the ambient space and on the way we stop
the Brownian motion on it’s exit from the fixed open ball. But it does neither depend on the domain
U nor on the number p of motions. This function can also be computed explicitly as follows (see
[PS78,p.114]), if d = 2

G(x, y) =

{
1
π

[
log
∣∣∣ x|x|R− |x| yR

∣∣∣− log |x− y|
]

if x 6= 0,

logR− log |y| if x = 0.

and if d ≥ 3 and R <∞ , then

G(x, y) =

{
cd

[
|x− y|2−d − | x|x|R− |x| yR |2−d

]
if x 6= 0,

cd
[
|y|2−d −R2−d

]
if x = 0.

and if d ≥ 3 and R = ∞ , then

G(x, y) =
cd

|x− y|d−2
. (6.1)

We note that

G(x, y) = G(y, x) (6.2)

and if p < d
d−2 , then the function Gp(0, .) is integrable in a neighbourhood of the origin.

Now, let U be an open, bounded set in R
d such that the closure of U is contained in B(0, R) .Then

we define the Green′s operator T : L
2p

2p−1 (U) → L2p(U) such that

T (f(x)) =

∫

U
G(x, y)f(y) dy. (6.3)

We note that T is a symmetric operator (which follows from Fubini’s theorem and the fact that
G is symmetric ) and also T is continuous (which follows from Hölder’s inequality). Moreover, its
restriction T : L∞(U) → L∞(U) is symmetric, positive and compact with norm

∫
U

∫
U G(x, y) dx dy

6.2 Variational Characterization In this subsection, we introduce the variational formula
which turns out to feature the moment asymptotics of the ℓ(U) and describe the relationship of upper
tail asymptotics and moment asymptotics on the platform of variational representation. First, we
need to introduce some notation.

For any probability measure µ and a finite measure µ̃ given on the same measurable space,
the relative entropy is defined as

H(µ|µ̃) =

{∫
log(dµdµ̃(x)) d(µ(x)) if µ≪ µ̃

∞ else.
(6.4)

We note that, if µ̃ is also a probability measure, then by Jensen’s inequality we always have H(µ|µ̃) ≥
0 and the equality holds if and only if µ = µ̃.

More specifically, we fix U ⊂ R
d an open bounded set and let M1(U) denote the space of all

probability measures. Naturally, M1(U) is equipped with the weak topology. The ambient space
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U being a separable subspace of R
d, M1(U) is a weakly separable and metrizable space (an easy

consequence of Urysohn’s metrization theorem). For any µ ∈ M1(U), we define

I(µ) = H(µ|λ) (6.5)

to be the relative entropy of µ with respect to the Lebesgue measure λ on U . Note that I(µ) ≥
− log λ(U) and the equality holds if and only if µ is the normalized Lebesgue measure on U . Moreover,
I is a convex and lower semicontinuos function. Now we denote by

M∗
1(U) = {ν ∈ M1(U

2) : ν(A× U) = ν(U ×A) for all Borel setA ⊂ U}
the set of all probability measures ν in U2 which has the same marginals ν1(A) = ν(A × U) and
ν2(A) = ν(U ×A). Now, for ν ∈ M∗

1(U), we know that the function

I2
µ(ν) =

{
H(ν|ν1 ⊗ µ) ν ∈ M∗

1(U)

∞ else

is the large deviation rate function for the pair empirical measures of an i.i.d sequence with marginal
distribution µ (see Appendix, Theorem 10.2). In particular, I2

µ is lower semicontinuos and convex.
Next, we define a function G : M1(U) → R by

G(µ) = inf
ν∈M1(U2)

{I2
µ(ν) − 〈ν, logG〉} (6.6)

where we extend the notation 〈, 〉 to integrals on U2. Observe that it suffices to take the infimum over
measures ν satisfying ν ≪ µ ⊗ µ. We can replace I2

µ(ν) in the definition of G by either the relative
entropy H(ν|µ⊗ µ) or the mutual information H(ν|ν1 ⊗ ν2). We write:

k∗ = inf
µ∈M1(U)

{I(µ) + pG(µ)}. (6.7)

Having introduced the necessary notations, we are all set to state the main result which is in some
sense the cornerstone of the link between a maximizing problem of the Green’s operator and the large
deviation rate function we described above.

Proposition 6.2. For every postive integer p < d
d−2 , we have:

sup{〈g2p−1,T g2p−1〉 : g ∈ L2p(U) with ||g||2p = 1} = exp

(
−1

p
inf

µ∈M1(U)
{I(µ) + pG(µ)}

)
. (6.8)

Moreover, g is a maximizer of the left hand side if and only if the measure d(µx) = g2p(x)dx is a
minimizer on the right hand side of (6.2). Every minimizing sequence of the variational problem on
the right hand side of (6.2) has a subsequence converging weakly to a minimizer.

We shall come back with a sketchy proof of the above proposition a bit later.

6.3 Tails from moments

As we asserted before, we deal with the moment asymptotics of the intersection local time instead of
the tail asymptotics. The following result opens up the gate for us:

Proposition 6.3.

lim
k↑∞

1

k
log E

[
ℓ(U)k

(k!)p

]
= − inf

µ∈M1(U)
{I(µ) + pG(µ)}. (6.9)

In order to derive the upper tail asymptotics from the above proposition, we need the following
Tauberian theorem.
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Lemma 6.4. Let X be any non-negative random variable and fix p ∈ N. Then for any x ∈ R , the
following two implications hold:

(i)

lim sup
k↑∞

1

k
log E

[
Xk

k!p

]
≤ −x ⇒ lim sup

a↑∞
a−

1
p log P [X > a] ≤ −pe

x
p . (6.10)

(ii)

lim sup
k↑∞

1

k
log E

[
Xk

k!p

]
= −x ⇒ lim sup

a↑∞
a−

1
p log P [X > a] = −pe

x
p (6.11)

PROOF : The proof of (i) is easy and based on the substitution ak = e−κkp, Markov’s inequality,
and Stirling’s formula as follows.

lim sup
k↑∞

a
−1/p
k logP{X > ak} = eκ/p lim sup

k↑∞

1

k
logP

{
Xk > e−kκkkp

}

≤ eκ/p lim sup
k↑∞

1

k
logE

[ Xk

e−kκkkp

]
= eκ/p lim sup

k↑∞

(1

k
logE

[ Xk

(k!)p

]
+ κ− p

)

≤ −peκ/p .

(6.12)

Since a
−1/p
k+1 /a

−1/p
k → 1 as k ↑ ∞, we see that it is sufficient to consider the subsequence ak rather than

an arbitrary sequence tending to infinity.

The proof of (ii) is based on the construction of the transformed measure

dP̂ k(X) =
Xk

E[Xk]
dP (X), for k ∈ N,

and the fact that the random variable

Yk = log
( X

e−κkp

)

satisfies, for every ε > 0,

lim
k↑∞

P̂ k{|Yk| ≤ ε} = 1. (6.13)

To prove this, fix an arbitrary ε > 0 and pick some small number α > 0. Then, by the Markov
inequality, we may estimate

P̂ k{Yk ≥ ε} = P̂ k{Xkα ≥ e(ε−κ)kαkpkα} ≤ e−εkαeκkαk−pkαÊk[Xkα],

where Êk denotes expectation with respect to P̂ k. Note that Êk[Xkα] = E[Xk(1+α)]/E[Xk ]. Using
our assumption and Stirling’s formula, we see that the quotient has the asymptotic behaviour
e−(κ+p)kαkpkα(1 + α)kp(1+α)eo(k) as k ↑ ∞. Inserting this in the right hand side above, we get

P̂ k{Yk ≥ ε} ≤ exp

(
pkα

(
−ε
p
− 1 +

1 + α

α
log(1 + α) + o(1)

))
, as k ↑ ∞.

If α > 0 is chosen small enough, then the expression between the inner brackets is negative and

bounded away from zero, such that we obtain that limk↑∞ P̂ k{Yk ≥ ε} = 0. Analogously one shows

that limk↑∞ P̂ k{Yk ≤ −ε} = 0, and this implies (6.13).
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In order to finish the proof of the lower bound, we keep ε > 0 arbitrarily fixed and substitute this
time a = e−κkpe−ε. It is again clear that the consideration of this subsequence suffices. Note that
{X > a} = {Yk > −ε} ⊃ {|Yk| ≤ ε}. This implies that

a−1/p logP{X > a} ≥ eκ/peε/p
1

k
logP{|Yk| ≤ ε}.

Note that P{|Yk| ≤ ε} = Êk[X−k
1{|Yk|≤ε}]E[Xk] and that we may estimate X−k ≥ ek(−ε+κ)k−pk on

{|Yk| ≤ ε}. Using this estimate, our assumption on the asymptotics of E[Xk] and Stirling’s formula,
we obtain

lim inf
a↑∞

a−1/p logP{X > a} ≥ eκ/peε/p
(
−ε− p+ lim inf

k↑∞

1

k
log P̂ k{|Yk| ≤ ε}

)
.

Because of (6.13), the latter limit inferior is equal to zero. After letting ε ↓ 0, we get the assertion.
�

Proposition 6.2 combined with Proposition 6.3 and the second part of Lemma 6.4 gives the following
result which is not far from Theorem 5.1 :

Theorem 6.5.

lim
a→∞

1

a
1
p

log P [ℓ(U) > a] = − p

ρ∗
(6.14)

where

ρ∗ = sup{〈g2p−1,T g2p−1〉 : g ∈ L2p(U) with ‖g‖2p = 1} (6.15)

Remark : In the special case p = 1, the famous Rayleigh-Ritz formula describes the right hand side
in the formula (6.15) as the principal eigenvalue of the compact symmetric operator T on L2(U).
Hence, existence, uniqueness and many more properties of the maximizer are known. However, for the
general case p ≥ 2, alredy the uniqueness seems to be an open problem, apart from the special case
of the unit ball on R

3 which has been carried out by König an Mörters (see Theorem 1.3 in [KM02]).

6.4 Large moment asymptotics In this subsection, we present a sketchy proof of the Proposition
6.3. The proof of this result obtained by the authors in [KM02] involve rather hard combinatorial tools
using discretization of the integrals by finite partitioning of the domain U . Instead of going through
the intricate technical details, we appeal to a result obtained by Trashorras (see [Tr06]) concerning the
large deviation rate function for the symmetrised empirical pair measures. Thus, Le Gall’s moment
formula coupled with the above mentioned result, Varadhan’s lemma and Sanov’s theorem filters out
the desired large deviation rate function.
Without entailing any loss of generality, we assume that the Brownian motions start from the same

point (since different starting points make no difference other than complicating our calculations).
Thus Le Gall’s moment formula Lemma 6.1 boils down to the following form:

E

[
ℓ(U)k

]
=

∫

U
dy1 . . .

∫

U
dyk




∑

σ∈Sk

k∏

i=1

G(yσ(i−1), yσ(i))




p

. (6.16)

Let

Φk(y) =
∑

σ∈Sk

1

k!

k∏

i=1

G(yσ(i−1), yσ(i)) for y = (y1, . . . , yk) ∈ Uk.

Now, note that, Φk(y) does not depend on the vector y = (y1, . . . , yk), but only on the set {y1, . . . , yk}.
In other words, Φk(y) is permutation invariant. Formally, Φk(y) = Φk(yσ) for any σ ∈ Sk, where we
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put yσ = (yσ(1), . . . , yσ(k)). Therefore, to prove Proposition 6.3, it suffices to show that

lim
k↑∞

1

k
log

∫

Uk

dy (Φk(y))
p = − inf

µ∈M1(U)
{I(µ) + pG(µ)} (6.17)

Now, note that

Φk(y) = Eσ̃

[
ek.

1
k

Pk
i=1 log G(yσ(i−1),yσ(i))

]

where σ̃ is the uniform probability measure on the symmetric group Sk. In other words,

σ̃(σ) =
1

k!
∀σ ∈ Sk.

Let µyk = 1
k

∑k
i=1 δyi

∈ M1(U) be the empirical measures. Formally, for every A ⊂ U ,

µyk(A) =
1

k

k∑

i=1

δyi
(A)

To this end, we emphasize that Φy
k is not a function of the vector y = (y1, . . . , yk), but the empirical

measures µyk.
Again, the symmetrised empirical pair measures are defined as

Lyk,σ =
1

k

k∑

i=1

δ(yσ(i−1),yσ(i)) ∈ M1(U
2).

Note that the map Lyk,. : (Sk, 2
Sk , σ̃) → M1(U

2) defined by σ 7→ Lyk,σ is a random variable.
Now, we can write:

1

k

k∑

i=1

log G(yσ(i−1), yσ(i)) = 〈logG,Lyk,σ〉

where 〈f, µ〉 stands for the integral
∫
f dµ.

Now (6.16) can be further simplified as :

E

[
ℓ(U)k

]
= λ(U)k EU

[(
Eσ̃(e

k〈logG,Ly
k,σ

〉)
)p]

(6.18)

where y = (y1, . . . , yk) is random vector consisting of independent and uniformly distributed random
variables on U (in principle, we should have introduced a different notation for the random y to
distinguish it from the non-random y we had used before. But it is conceptually clear and harmlessly
convenient to use the same notation as before).
Now an obstacle pops up from the unboundedness of the Green’s function. However, this technical
issue can be taken care of by cutting off the function at a large level and restoring the exponential
rate of Φk(y) asymptotically as the truncation level approaches infinity. This result already exists in
the literature (see Lemma 3.3 in [KM02]) and we only recall the statement without stepping into the
details.
For M > 0, the cut-off Green’s function is defined as GM = G ∧M and we denote

Φk,M(y) =
1

k!

∑

σ∈Sk

k∏

i=1

GM (yσ(i−1), yσ(i)).

Then we have
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Lemma 6.6. There is C0 > 0 and, for all sufficiently large M > 1 and small η ∈ (0, 1), there are
constants CM > 0 and εη > 0 such that, for any k ∈ N,

∫

Uk

dy (Φj
k(y))

p ≤ 2ppk(2C0)
kCηkM + 2p(1 + εη)

kp

k∑

m=⌈k(1−pη)⌉

∫

Um

dy
(
Φj
m,M (y)

)p
, (6.19)

where limM↑∞CM = limη↓0 εη = 0.

Now we come back to the main proof. Using the notation introduced above, we can write
∫

Uk

dy (Φk,M(y))p = EU

[(
Eσ̃(e

k〈logGM ,Ly
k,σ

〉)
)p]

λ(U)k.

To this end, we write:

Eσ̃(e
k〈logGM ,Ly

k,σ
〉)p = ep.k.

1
k

log Eσ̃(e
k〈log GM ,L

y
k,σ

〉
)

Let us denote 1
k log Eσ̃(e

k〈logGM ,Ly
k,σ

〉) by Fk(µyk) (we again point out that 1
k log Eσ̃(e

k〈logGM ,Ly
k,σ

〉)
depends on the set {y1, . . . , yk} via the empirical measures µyk).
Now, the result due to Trashorras (see Theorem 1, [Tr06]) says if µyk ⇒ µ, the sequence Lyk,σ satisfies

a large deviation principle on M1(U
2) (more precisely, the pull-back measures σ̃(Lyk,.)−1 satisfies a

LDP in M1(U
2)) with a good rate function

J (ν) =

{
H(ν|µ⊗ µ) if ν ∈ M∗

1(U
2)

∞ else

where H stands for the relative entropy defined in subsection 6.2 and “⇒” denotes the weak conver-
gence on the space of probability measures M1(U). Now we want to apply Varadhan’s lemma (see
Appendix, Theorem 10.4) to the above large deviation rate function H for the continuous bounded
mapping

ψ : M1(U
2) → R with ν 7→

∫

U2

logGM dν

in the weak topology (note that GM is bounded and bounded away from 0 and this is the reason
why we introduced the cut-off function). But a new problem pops up here from the fact that the
measures Lyk,. depends also on the set {y1, y2, . . . , yk} in terms of the point measures and hence the

usual statement of Varadhan’s lemma can not be applied directly. However, it follows from the above
result of Trashorras and usual Varadhan’s lemma that if µyk ⇒ µ, then

Fk(µyk) → −GM (µ) (6.20)

where GM is defined by (6.6) with G being replaced by GM . In order to get rid of the above mentioned
obstacle, we define a map Hk : M1(U) → [−∞,∞) by

Hk(µ) =

{
Fk(µyk) if there exist y1, . . . , yk in U with µyk = µ

−∞ else

In other words, Hk and Fk coincide on the subset of the point measures. As we said, we need some
small technical refinement in the proof of the version of Vardhan’s lemma we are interested in and
this gets us rid of the y-dependence of the measures Lyk,.. We highlight the particular step in the

upper bound part which needs to be taken care of. The rest is the standard continuation of the proof
available in the literature.
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To this end, note that for any sequence of measures (µk)k∈N (which are not necessarily empirical
measures) in M1(U), with µk ⇒ µ, it follows from the dichotomous definition of Hk and (6.20) that

lim sup
k→∞

Hk(µk) ≤ −GM(µ).

This means ∀ǫ > 0 and every µ ∈ M1(U), there is a δ > 0 and K ∈ N such that ∀k > K and
∀ν ∈ {ν ∈ M1(U) : d(ν, µ) < δ}, we have

Hk(ν) ≤ −GM (µ) + ǫ (6.21)

where d is a metric which induces the weak topology in M1(U). Then one can continue with the
standard upper bound proof of Varadhan’s lemma (see page 138-139 in [DZ98]) to infer that as
k → ∞, ∫

Uk

Φk,M(y)p dy ≤ λ(U)kEU

[
e−k[pGM (µy

k
)+o(1)]

]
.

Now by Sanov’s theorem (see Appendix, Theorem 10.1) we know that the empirical measures µyk satisfy
a large deviation principle in M1(U) with good rate function I (which is the relative entropy with
respect to the Lebesgue measure, look back at (6.5)). We again appeal to Varadhan’s lemma for the
rate function I and the continuous bounded function GM : M1(U) → R (infact, upper semicontinuity
(which is clear from the definition (6.6) with G replaced by GM ) is enough for the large deviation
upper bound and upper boundedness of GM essentially follows from (6.21)) to conclude that as k → ∞

∫

Uk

dy [Φk,M(y)]p ≤ λ(U)k e−k[infµ∈M1(U){I(µ)+pGM (µ)}+o(1)]. (6.22)

Now we complete the proof by sending M to infinity and we only prove the upper bound part (for
the lower bound, see [KM02]). For this, we use the cutting argument as follows. In (6.19), first we
take logarithms in both sides, divide by k and then let k → ∞. According to Lemma 6.6, after letting
M → ∞, we have

lim sup
k↑∞

1

k
log

∫

Uk

dyΦk(y)
p (6.23)

≤ log(1 + εη) + lim
M↑∞

lim sup
k↑∞

1

k
log

k∑

m=⌈k(1−pη)⌉

∫

Um

dyΦm,M(y)p.

Here we have used the simple fact that for any fixed positive integer N and aik > 0,

lim sup
k↑∞

1

k
log

(
N∑

i=1

aik

)

=
N

max
i=1

lim sup
k↑∞

1

k
log aik.

We again use this fact to estimate the last integral on the right hand side from above by the maximum
on m ∈ {⌈k(1 − pη)⌉, . . . , k} and then by 6.22, we have

lim sup
m↑∞

1

m
log

∫

Um

dyΦm,M (y)p ≤ − inf
µ∈M1(U)

{I(µ) + pGM (µ)}. (6.24)

Now we first send M ↑ ∞ and then η ↓ 0, to obtain

lim sup
k↑∞

1

k
log

∫

Uk

dyΦk(y)
p ≤ lim

η↓0
log(1 + εη) − lim

η↓0
(1 − pη) inf

µ∈M1(U)

{
I(µ) + pG(µ)

}

= − inf
µ∈M1(U)

{
I(µ) + pG(µ)

}
.

This finishes the proof of 6.17.
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7. Analysis of the variational formulae

The goal of this section is to go through a sketchy proof of the Proposition 6.2. It turns out that the
variational formula (6.15) is much easier to deal with rather than (6.7). In fact, in contrast to (6.7),
the continuity and compactness properties of the Green’s operator makes the analysis much easier by
getting hold of existence of maximizers, their positivity and Euler-Lagrange equations.
Before we go to the actual proof, it is necessary to discuss some general continuity properties of the
Green’s operator.

Lemma 7.1. (i) If d = 2 and q > 1, then T is a bounded linear map from Lq(U) into L∞(U).

(ii) If d ≥ 3 and 1 < q < d
2 , then T is a bounded linear map from Lq(U) into L

dq
d−2q (U).

Proof . The first statement follows easily from Hölder’s inequality using that in d = 2 we have
supx

∫
G(x, y)q dy <∞ for all q > 1.

If d ≥ 3 we recall, e.g. from [LL01], the Hardy-Littlewood-Sobolev inequality. For all s, r > 1,
0 < λ < d with 1/r + λ/d+ 1/s = 2 there is a constant C > 0 with

∣∣∣
∫

U

∫

U
f(x) |x− y|−λh(y) dx dy

∣∣∣ ≤ C ‖f‖s‖h‖r . (7.1)

Recall that G(x, y) ≤ cd|x − y|2−d and use the Hardy-Littlewood-Sobolev inequality with λ = d − 2
and s = q, r = dq/(dq+2q−d), which yields 〈h,T f〉 ≤ C‖f‖q ‖h‖r for any f ∈ Lq(U) and h ∈ Lr(U).

Hence T maps f continuously into the dual of Lr(U), which is L
dq

d−2q (U). This proves (ii). �

For our purposes, it is convenient to rewrite (6.15) as

̺∗ = sup
{
〈f,T f〉 : f ∈ L2p/(2p−1)(U) and ‖f‖2p/(2p−1) ≤ 1

}
. (7.2)

It is clear that the supremum in (7.2) may be restricted to positive normalized functions f ∈
L2p/(2p−1)(U). We start by showing that the operator T : L2p/(2p−1)(U) → L2p(U) is continuous,
and establish (6.2).

Lemma 7.2. Suppose p is a positive integer with p < d/(d− 2).

(i) T is a bounded linear map from L2p/(2p−1)(U) into L2p(U). In particular, ̺∗ ≤ ‖A‖.
(ii) For all µ ∈ M1(U) with g2p(x) dx = µ(dx) we have

exp
(
− 1

p

(
I(µ) + pG(µ)

))
≤ 〈g2p−1,T g2p−1〉 . (7.3)

(iii) Equality in (7.3) holds if and only if there is ̺ > 0 with the property

T g2p−1(x) = ̺g(x) for µ-almost every x ∈ U. (7.4)

Moreover, in this case I(µ) + pG(µ) = −p log ̺ and G(µ) = − log ̺− 2〈µ, log g〉 .

Sketch of Proof : To prove the first part, recall that for a finite measure µ, and 0 < s < s′ ≤ ∞,
Ls

′
(µ) is continuously embedded into Ls(µ) and apply the first part of Lemma 7.1 for d = 2.

For d ≥ 3, we can choose q in such a way that

• 1 < q < d
2

• dq
d−2q ≥ 2p

• q ≤ 2p
2p−1
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Then we apply the second part of Lemma 7.1 to finish the first part of this lemma.
Now we show (ii). We assume that I(µ) + pG(µ) < ∞ (otherwise, there is nothing to prove). We fix
δ > 0. By definition of G(µ), we can choose ν ∈ M∗

1(U) with both marginals being equal to µ such
that

G(µ) > I2
µ(ν) − 〈logG, ν〉 − δ

We claim that 〈logG, ν〉 is finite. For this, let us take f to be the Lebesgue density of ν. In other
words,

f(x, y) dx dy = ν( dx dy)

We take ǫ > 0 small enough so that

C = log sup
x∈U

∫

U
Gp+ǫ(x, y) dy <∞.

The above statement is true since Gp(0, .) is locally intergrable around a neighborhood of the origin.
Then, estimating pI2

µ(ν) ≥ I2
µ(ν), we obtain

∞ > I(µ) + I2
µ(ν) + ε〈logG, ν〉 − 〈logGp+ε, ν〉 = ε〈logG, ν〉 −

〈
f, log

(g2p ⊗ g2p)1/2Gp+ε

f

〉
. (7.5)

Now, the second term can be bounded above with a tricky application of Jensen’s inequality as follows:

〈
f, log

(g2p ⊗ g2p)1/2Gp+ε

f

〉
=

∫

U
dx g2p(x)

∫

U
dy

f(x, y)

g2p(x)
log

g2p(x)Gp+ε(x, y)

f(x, y)

≤
∫

U
dxg2p(x) log

∫

U
dy

f(x, y)

g2p(x)

g2p(x)Gp+ǫ(x, y)

f(x, y)

=

∫

U
dx g2p(x) log

( ∫

U
Gp+ε(x, y) dy

)
≤ C.

Note that we could use Jensen’s inequality since f(x,y)
g2p(x)

dy is a probability measure on U .

From this, we conclude that 〈logG, ν〉 is finite. Now we use the lower bound in a variational principle
for I2

µ, which we recall from [DZ98, 6.5.10]. For all measurable u : U2 → (0,∞) that are bounded
from 0 and infinity,

I2
µ(ν) ≥

∫

U2

ν(dx dy) log
( u(x, y)∫

u(y, z) dµ(z)

)
. (7.6)

For arbitrarily large M > 0 and small ε > 0 the function

u(x, y) =
G(x, y)

(g ∧M)(y) ∨ εG(x, y)
,

is admissible in (7.6), which yields

I2
µ(ν) ≥

∫
ν(dxdy) log

( G(x, y)

(g ∧M)(y) ∨ εG(x, y)

)
−
∫
µ(dy) log

(∫ G(y, z)µ(dz)

(g ∧M)(z) ∨ εG(y, z)

)
. (7.7)

Now we use the fact 〈logG, ν〉 < ∞ and
∫
ν(dxdy) log g(y) = 〈µ, log g〉 < ∞ and use dominated

convergence theorem for the first term in the right hand side of (7.6) as ǫ ↓ 0 and bounded convergence
theorem for the second term as M ↑ ∞. Therefore taking limits in (7.6) we obtain:

I2
µ(ν) ≥ 〈ν, logG〉 −

〈
µ, log(g · Ag2p−1)

〉
.

Recalling the choice of ν and letting δ ↓ 0, we obtain

G(µ) ≥ −〈µ, log(g.T g2p−1)〉 (7.8)
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We apply this and again a clever application of Jensen’s inequality implies

exp
(
− 1

p

(
I(µ) + pG(µ)

))
≤ exp

(
−1

p
〈µ, log g2p〉 +

〈
µ, log(gT g2p−1)

〉)

= exp
(〈
µ, log

T g2p−1

g

〉)
≤
〈
µ,

Ag2p−1

g

〉

= 〈g2p−1,T g2p−1〉.

(7.9)

Finally, to prove (iii), assume that we have equality everywhere in (7.9). By strict convexity of the
logarithm, equality in the second line implies that, for some constant ̺ > 0, we have Ag2p−1 = ̺g, for
µ-almost every x ∈ U . Together with equality in the first line of (7.9), which is equality in (7.8), this
yields that

G(µ) = −
〈
µ, log(g · Ag2p−1)

〉
= − log ̺− 2〈µ, log g〉.

Conversely, if (7.4) holds, we have equality in the second line of (7.9). To check equality in the first
line, we define a probability measure ν ∈ M∗(U) by

ν(dxdy) = h(x, y) dx dy =
1

̺
g2p−1(x)g2p−1(y)G(x, y) dx dy.

The measure ν is well-defined by (7.4) and plugging this into (6.6) yields

G(µ) ≤ −〈µ, log(̺g2)〉.
This means that equality holds in (7.8) and hence also in the first line of (7.9), completing the proof
of (iii). �

Completion of the proof

Now we give the main steps of the rest of the proof of Proposition 6.2 and hence we also prove
Proposition 5.1. The details can be found in [KM02].
First one needs to show the existence of maximizers in 7.2. We go through several steps.

Step 1 As a first step, we need to get convergence along subsequences with the help of a
standard Banach-Alaoglu argument. More precisely, we need to show that every maximizing sequence
for the variational problem in (7.2) has a subsequence which converges weakly in L1(U) towards some
maximizer of this problem. For this we consider the set K of all non-negative L1 functions f on U
such that ‖f‖ 2p

2p−1
≤ 1. We show that

(i) K is weakly compact in L1(U)
(ii) the mapping f 7→ 〈f,T f〉 is upper semicontinuous in the weak topology on L1(U).

To show the first part, we note that K being a uniform integrable family ( see [DZ98, C7]), it
is weakly relatively compact in L1(U). Therefore it suffices to show that K is weakly closed in
{f ∈ L1(U) : F ≥ 0}. We fix F ≥ 0 and ‖f‖ > 1 and set:

φn =

(
f ∧ n

‖f ∧ n‖

) 1
2p−1

∈ L∞(U)

and show that

• lim inf
∫
φnf ≥ ‖f‖ = 1

•
∫
φng ≤ 1 ∀g ∈ K .
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The above two statements imply that for n large enough, the function φ = φn ∈ L∞(U) = (L1(U)∗,
satisfies

lim sup
k↑∞

〈φ, gk〉 ≤ 1 ≤ 〈φ, f〉

for all sequences (gk) in K. This means that f is not in the weak L1 closure of K. Hence K must be
weakly closed.
For the second part, we show that lim supn→∞〈fn,T fn〉 ≤ 〈f,T f〉 for every sequnece {fn} and f in K
such that fn → f weakly in L1)(U). In order to encounter the unboundedness of the Green’s function,
we cut off the Green’s operator as T = (T − TM) + TM where TM is the same operator as T with G
being replaced by G 1G≤M for large M > 0. Next we show that limM→∞ supn∈N〈fn, (T −TM )fn〉 = 0.
This is easy to see by Hölder’s inequality in d = 2. In d ≥ 3 we use Hardy-Littlewood-Sobolev
inequality to see that it is enough to prove that as n→ ∞, 〈fn,TMfn〉 → 〈f,TMf〉 and then take the
limit as M → ∞. A standard monotone class arguemnt finishes the proof.

Step 2 Now we derive the Euler-Lagrange equation for the maximizer of the (7.2). More pre-
cisely, we show that,

• any non-negative maximizer of the variational problem (7.2) is essentially bounded away from
0.

• If this maximizer is written as g2p−1, the function g ∈ L2p(U) satisfies the Euler-Lagrange
equation (7.4) with soem constant ρ > 0.

For the first assertion, we let f ∈ L
2p

2p−1 (U) be a non-negative and normalized maximizer of the
variational problem (7.4) and we assume that f is not bounded away away from 0. In other words,
the set {f ≤ ǫ} has positive measure. We fix some constant c > 0 such that λ{f ≥ c} > 0. We define

a function f̃ : U → [0,∞) as follows

f̃(x) =






f(x) + a, if f(x) ≤ ε,
f(x) − b, if f(x) ≥ c,
f(x), otherwise.

Now, we can play around with a, b > 0 and choose ǫ > 0 so small that ‖f̃‖ 2p
2p−1

= 1, but 〈f̃ ,T f̃〉 >
〈f,T f〉, contradicting the maximality of f .
For the second part, we choose a perturbation φ : U → R bounded with

∫
φdx = 0. Note that, in the

Hilbert space L2(U), the set of all such φ is the orthogonal complement of the subspace spanned by
all constant functions. For small ǫ > 0, we have ‖f + ǫφ‖1 = 1 and f + ǫφ ≥ 0 on U . Now, f being a
maximizer, we have

0 =
∂

∂ε

∣∣∣
ε=0

〈
(f + εφ)

2p−1
2p ,T (f + ǫφ)

2p−1
2p
〉

= 2p−1
p

〈
ϕ, f

−1
2p T f

2p−1
2p
〉
.

We conclude that, in L2(U), the function f
−1
2p T

(
f

2p−1
2p

)
is orthogonal to the orthogonal complement

of the span of constants. Hence, there is a constant ρ, such that

ρf
1
2p (x) = T f

2p−1
2p (x) for λ− almost every x ∈ U

Now, f being essentially positive, we have ρ > 0. Writing now g2p−1 for f , we have verified (7.4).

Step 3 In this final step, we obtain the existence of the minimizers in (6.7) and the conver-
gence of minimizing sequences. We show that every minimizing sequence for this variational problem
has a subsequence converging weakly to some minimizer of this and moreover, if g2p denotes the
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Lebesgue density of the limiting minimizing measure, then g ∈ L2p(U). This is proved by combining
Lemma 7.2 with the previous two steps as follows. Let (µn)n∈N ⊂ M1(U) be a minimizing sequence
for the variational problem (6.7). We can assume that for large n, the measures µn have Lebesgue

densities (otherwise all I(µn) = ∞ and hence there is nothing to prove). Let g2p
n ∈ L

2p
2p−1 be the

corresponding densities. By the second part of Lemma 7.2, we can say that (g2p−1
n ) is a maximizing

sequence of the variational problem in (7.2). By Step 1, we can extract a subsequence converging

weakly to some g2p−1 ∈ L
2p

2p−1 (U) in L1(U). We define a new probability measure µ( dx) = g2p(x) dx
which is a minimizer of (6.7). Clearly, µ is the weak limit of the corresponding subsequence of (µn).
Thus, we have a minimizer µ( dx) = g2p(x) for (6.7) which satisfies the Euler-Lagrange equation in
(7.4) with ρ = ρ∗ defined via (6.15). Again g is a maximizer of (6.15) if and only if µ is a minimizer
of (6.7). Hence, we have proved Proposition 6.2 and hence of Proposition 6.14.

8. Identification of the main variational formula

In this section, we relate the two variational characterizations (6.15) and (5.3) with the help of a
simple formula. As usual, we do not spell out all the details. This is carried out via a two-step
mechanism. First, we prove that the minimizers exist in (5.3) and give their variational equations. In
the second step, we write down the explicit formula which bridges the gap between the two variational
representations.
Recall the definition of the function space D(B) in (5.1).

Lemma 8.1. There exists a function ψ ∈ D(B) which satisfies

Θ(U) =
p

2
‖∇ψ‖2

2 and‖ψ 1U‖2
2p = 1 (8.1)

and with h = ‖1Uψ‖2−2p
2p , we have

p

Θ(U)
ψ = T

(
ψ2p−1h

)
− p

2
△ψ = Θ(U)ψ2p−1h (8.2)

Proof. As a first step, we derive the existence of a minimiser in (5.3). Let (ψk : k ∈ N) be a
minimising sequence, that is, the functions ψk ∈ D(B) are nonnegative and satisfy ‖1Uψk‖2

2p = 1 for

any k ∈ N, and limk↑∞
1
2‖∇ψk‖2

2 = Θ(φ).

Let ψ∗ ∈ D(B) denote the weak limit of a subsequence in accordance with Lemma 10.6 By local
strong convergence in L2p(B), we also have ‖1Uψ∗‖2

2p = 1. By weak lower semicontinuity of the map

ψ 7→ ‖∇ψ‖2
2 (apply [LL01, Theorem 2.11]), we have that 1

2‖∇ψ∗‖2
2 ≤ lim infk↑∞

1
2‖∇ψk‖2

2 = Θ(φ).
Since ψ∗ is certainly nonnegative, it is a minimiser in (5.3).

The second step is the derivation of the variational equation in (8.2) for any minimiser ψ∗ in (5.3).
Since ‖∇|ψ|‖2

2 = ‖∇ψ‖2
2 for any ψ ∈ D(B) (see [LL01, Theorem 6.17]), and since ‖1Uψ‖2

2p is positive
homogeneous of order two in ψ, ψ∗ is also a minimiser in the variational problem

Θ(φ) = inf
ψ∈D(B)

p
2‖∇ψ‖2

2

‖1Uψ‖2
2p

. (8.3)
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Denote the quotient on the right hand side of (8.3) by F (ψ). Let ϕ ∈ C∞
c (B) be a smooth test

function, then the map ε 7→ F (ψ∗ + εϕ) can easily be differentiated at ε = 0. By minimality of ψ∗ for
F , this derivative is equal to zero. Recalling that ‖1Uψ∗‖2

2p = 1, this implies that

0 =
d

dε

∣∣∣
ε=0

∥∥∇(ψ∗ + εϕ)
∥∥2

2
−

n∑

i=1

‖∇ψ∗‖2
2

d

dε

∣∣∣
ε=0

‖φi(ψ∗ + εϕ)‖2
2p

= 2

∫

B
∇ψ∗ · ∇ϕ− 4

Θ(U)

p
‖1Uψ∗‖2−2p

2p

〈
ϕ, 1Uψ

2p−1
∗

〉

= −2
〈
ϕ,∆ψ∗ + 2

Θ(U)

p
ψ2p−1
∗ h

〉
,

(8.4)

where we used the definition of the distributional Laplacian in the last step, and h = ‖1Uψ∗‖2−2p
2p

as in (8.2). As (8.4) holds for any smooth test function ϕ, we infer that the function in the right

argument of the brackets on the right hand side is equal to zero, i.e., −1
2∆ψ∗ = Θ(U)

p ψ2p−1
∗ h, which

is the second identity in (8.2). By [LL01, Th. 6.21], the function ψ = Θ(U)
p T (ψ2p−1

∗ h) satisfies

−1
2∆ψ = Θ(U)

p ψ2p−1
∗ h. Hence, by [LL01, Th. 9.3], ψ differs from ψ∗ by a harmonic function in D(B),

which therefore vanishes. This ends the proof of (8.1). �

As proposed, now we give the explicit formula which relates the two variational problems (6.15) and
(5.3). Furthermore, the proof gives a one-to-one correspondence between the maximizers of (6.15)
and minimizers of (5.3).

Proposition 8.2.

max
{
〈g2p−1,T g2p−1〉 : g ∈ L2p(U), ‖g‖2p = 1

}−1

= min
{1

2
‖∇ψ‖2

2 : ψ ∈ D(B), ‖1Uψ‖2
2p = 1

}

(8.5)

Proof The idea of the proof goes as follows. For the proofs of both ‘≥’ and ‘≤’ in (8.5), we pick
the maximiser resp. the minimiser in one variational formula, construct admissible objects for the
other one, and show that the other functional attains the inverse of the value of the maximum resp.
minimum.

Let us begin with the proof of ‘≥’. Recall that, in view of the results of the previous section, we
know that the maximizers of the variational problem for ρ∗ exists and staisfy the corresponding Euler-
Lagrange equations. Theorefore, we can choose a maximizer g ∈ L2p(U) of the left hand side of (8.5).
We define

ψ =
1

ρ∗
T
(
g2p−1

)
. (8.6)

Since g satisfies the Euler-Lagrange equation ρ∗g = T
(
g2p−1

)
, we have ψ(x) = g(x) on U . Hence

‖1Uψ‖2
2p =

(∫
U g

2p(x) dx
)2

= 1. Then, clearly,

〈 1

ρ∗
g2p−1,T

(
1

ρ∗
g2p−1

)
〉 =

1

ρ∗
.

Now by Lemma 10.7, we have ψ ∈ D(B) and 1
2‖∇ψ‖2

2 = 1
ρ∗ . This implies ‘≥’.

To prove ‘≤’, we choose ψ as the minimiser of the problem on the right hand side of in (8.5), by
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Lemma 8.1. We define

g =
ψ

‖ψ‖2p
(8.7)

and note that ‖ψ‖2
2p = 1 and ‖g‖2p = 1. We plug this g into the left hand side of (8.5) and we use the

first equlity in (8.2) to obtain

〈g2p−1,T g2p−1〉 = 〈‖ψ‖2−2p
2p ψ2p−1,T

(
‖ψ‖2−2p

2p ψ2p−1
)
〉 =

p

Θ(U)
〈ψ2p−1‖ψ‖2−2p

2p , ψ〉 =
p

Θ(U)
.

This completes the proof of this proposition.

9. Outlook

We want to ask if the minimiser ψ in the variational formula for Θ(U) admits a probabilistic in-
terpretation. The answer to this question turns out to be affirmative with ψ2p roughly being the
density of the normalised version ℓ

ℓ(U) . This can be heuristically explained as follows. Recall that

Donsker-Varadhan large deviation principle says that the term 1
2‖∇ψ‖2

2 describes the asymptotics of

the normalised occupation measure of a single Brownian trajectory. In other words, the term ψ2

roughly describes the path “density” of each of the motions. Hence, the p-fold product, ψ2p should
describe the density of the normalised intersection local time.
To make the above discussion precise, we define arandom probability measure L on U as

L(A) =
ℓ(A)

ℓ(U)
forA ⊂ U Borel

Now we want to know how the above measure L distributes unit mass over the set U if we condition
the Brownian paths to have a large occupation measure ℓ(U). This has been partially answered by
the following result, due to König/Mörters, see [KM05, Theorem 1.4].

Theorem 9.1 (Law of large masses). Let d be a metric on U which induces weak topology on M1(U).
Let M ⊂ M1(U) be the set of probability measures

µ(dx) = ψ2p(x) dx (9.1)

on U with ψ a maximizer in the formula for Θ(U). Then for all ǫ > 0 ,

lim
a→∞

P[d(L,M) > ǫ|ℓ(U) > a] = 0. (9.2)

This makes precise the interpretation of ψ2p as the asymptotic density of L under {ℓ(U) > a} as

a → ∞. It is natural to conjecture that the above convergence is exponentially fast in a
1
p . But it

remains an open problem to determine the precise rate function in terms of a large deviation principle.
Deeper questions concern the joint behavior of the p single paths under P[·|ℓ(U) > a] in terms of
their occupation measures (more precisely, their restriction to the set S). Is it possible to understand
L jointly together with these p measures in terms of a large deviation principle? Furthermore, when
the domain of the motions is bounded, can we also put U equal to B and look at ℓ/ℓ(B) on the entire
set B? These problems are still open and may very well open up a new direction of research.



38 CHIRANJIB MUKHERJEE

10. Appendix

In this section, we state some rudimentary facts about the needed background material for readers
who have not been introduced to basic large deviation theory, some elementary notions of Hausdorff
measures and few relevant facts about the theory of Sobolev spaces.

10.1 An excursion to the theory of Large Deviations

Definition. Suppose we have a family of probability measures (µǫ)ǫ>0 on a topological space
X and suppose I : X → [0,∞] is a function such that I is lower-semicontinuous (which means that,
for every α ≥ 0, the level sets {I ≤ α} are closed). Then, we say that, the family (µǫ) satisfies a
Large Deviation Principle (abbreviated as LDP) with rate function I if for every measurable
set A in X, we have

− inf
x∈Ao

I(x) ≤ lim inf
ǫ→0

ǫ log µǫ(A) ≤ lim sup
ǫ→0

ǫ log µǫ(A) ≤ − inf
x∈A

I(x)

We say that I is a good rate function if the level sets of I are compact.

Theorem 10.1 (Sanov’s theorem). Suppose Σ be a complete separable metric space and Y1, y2, . . . , Yn
be a sequence of independent random variables, identically distributed according to µ ∈ M1(Σ). With
δy denoting the probability measure concentrated at y ∈ Σ, the empirical law of Y1, Y2, . . . Yn is defined
as

Ln =
1

n

n∑

i=1

δYi
∈ M1(Σ) (10.1)

Then, the emperical measures Ln satisfy a large deviation principle in M1(Σ) equipped with the weak
topology, with good, convex rate function H(.|µ), which is the relative entropy defined in (6.4).

Now we state a large deviation principle for pair emperical measures of Markov chains with finite state
space.

Theorem 10.2. Let Σ be a finite set and (Yn)n∈N be a Markov chain with state space Σ such that
transition matrix Π = (π(i, j)i,j∈Σ) is strictly positive. Then the pair empirical measures, which is
defined as

Ln,2(y) =
1

n

n∑

i=1

1y(Yi−1, Yi), y ∈ Σ2 (10.2)

satisfies a large deviation principle with rate function

I2(q) =






∑|Σ|
i=1 q1(i)

∑|Σ|
j=1

q(i,j)
q1(i)

log
q(i,j)
q1(i)

π(i,j) if q1 = q2

∞ else
(10.3)

for every q ∈ M1(Σ
2), where q1 and q2 are the marginals of q, namely

q1(i) =

|Σ|∑

j=1

q(i, j) and q2(i) =

|Σ|∑

j=1

q(j, i).

Now we state a very elementary but extremely powerful theorem regarding transformation of LDPs.
It says that the large deviation principle is preserved under continuous mappings.
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Theorem 10.3 (Contraction principle). Let X and Y be two Hausdorff topological spaces and f :
X → Y is a continuous map. Suppose (µǫ)ǫ>0 satisfies LDP in X with good rate function I, then
(µǫ ◦ f−1) satisfies LDP in Y with good rate function

J(y) = inf{I(x) : x ∈ f−1(y) for y ∈ Y } (10.4)

Remark As a corollary to the contraction principle, one can actually get hold of a large deviation
rate function for the emperical measures of a Markov chain from the one for pair emperical measures.
Indeed, for q ∈ M1(Σ

2), the mapping q 7→ q1 is continuous and hence by the contraction principle,
J(ν) = inf{I2(q) : q ∈ M1(Σ

2), q1 = ν} gives the large deviation rate function for the emperical
measure in (10.1) for a Markov chain Yn with an irreducible transition matrix.

We end our discussion on large deviations with an extremely powerful tool which could be
used as a cornerstone for the development of the main theory.

Theorem 10.4 (Varadhan’s integral lemma). Let {Zǫ} be a family of random variables taking values
in a regular topological space X and let µǫ be the corresponding laws. Suppose (µǫ) satisfies LDP in
X with a good rate function I. Let φ : X → R be any continuous function such that either of the
following conditions is satisfied.

lim
M→∞

lim sup
ǫ→0

ǫ log E

[
e

φ(Zǫ)
ǫ 1{φ(Zǫ)≥M}

]
= −∞. (10.5)

In other words, we have to blow up the expectation along the tail of the random variable φ(Zǫ).
Otherwise, we have to have an apriori moment condition saying that for some γ > 1,

lim sup
ǫ→0

ǫ log E

[
eγ

φ(Zǫ)
ǫ

]
<∞. (10.6)

Then, we have

lim
ǫ→0

ǫ log E

[
e

φ(Zǫ)
ǫ

]
= sup

x∈X
{φ(x) − I(x)} (10.7)

10.2 Hausdorff measures

In this section, we give the definitions and very basic examples of Hausdorff measures and
Hausdorff dimensions.

Definition Let h : [0, a] → [0,∞) be a right-continuous and non-decreasing function such
that h(0) = 0. Let X be a metric space and A be a measurable subset of X. For each δ > 0 with
δ < a, we set

µδh(A) = inf{
∞∑

j=1

h(rj) : A ⊂
∞⋃

j=1

B(xj , rj), rj < δ ∀j}

Note that as a function of δ, µδh(A) is non-decreasing. Hence, we set

µh(A) = lim
δ↓0

µδh(A) = sup
δ>0

µδh(A).

One can check that µh is a metric outer measure. The measure corresponding to µh is called the
h-Hausdorff measure on X.

Examples :
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• In the previous definition, take X = R and

h(t) =

{
0 if t = 0

1 if t > 0

Then, µh is the counting measure on R.
• Again if X = R, and h(t) = t, then µh is the one dimensional Lebesgue measure.
• Take X = R

2 and h(t) = πt2. Then µh is the two dimensional Lebesgue measure on R
2. It is

obvious that the π needs to be introduced since it also appears in the area of the 2-dimensional
balls.

Now, we look at a particular choice of h. Let, for d ≥ 0,

hd(t) = td.

We write µd for µhd
for notational convenience. Then the Hausdorff dimension of X is defined as

dim(X) = inf{d ≥ 0: µd(X) = 0}
We end the discussion on Hausdorff measures with an interesting example.

Example Let C be the cantor’s ternary set. Then, with a little bit of covering argument, it
is possible to show that

µα(C) = 0 if α >
log 2

log 3

µα(C) = ∞ if α <
log 2

log 3

The above two statements imply that dim(C) = log 2
log 3 .

10.3 Some technical facts about Sobolev spaces

We now recall the definition of the function space D(B) and state some properties of this space.
In the case of B bounded, D(B) is the classical Sobolev space H1

0 (B) which is defined as the closure

of C∞
c (B) in the sense of the Sobolev norm ψ 7→ (‖∇ψ‖2

2 + ‖ψ‖2
2)

1/2 in the Sobolev space H1(B). We
first give a relation between H1

0 (B) and H1(Rd) in the case of a C1-boundary.

Lemma 10.5. Let B ⊂ R
d be an open bounded set with C1-boundary. Let ψ ∈ H1(Rd) such that

ψ = 0 a.e. on Bc. Then the restriction of ψ to B lies in H1
0 (B).

In the case that B = R
d, the space D(Rd) = D1(Rd) is the space of functions f ∈ L1

loc(R
d), which

vanish at infinity, i.e., {x ∈ R
d : |f(x)| > a} has finite Lebesgue measure for any a > 0, and whose

distributional gradient is in L2(Rd). Now we collect some sequential compactness properties of the
space D(B).

Lemma 10.6. Suppose (ψk)k∈N is a sequence in D(B) such that (‖∇ψk‖2)k∈N is bounded. Fix any
q ∈ (1, 2d/(d − 2)) for d ≥ 3 and any q > 1 for d ≤ 2. Then there exists ψ ∈ D(B) and a subsequence
(ψkj

)j∈N such that ∇ψkj
→ ∇ψ weakly in L2(B) and ψkj

→ ψ locally strongly in Lq(B).

The following connection between the energy of functions in D(B) and the energy of measures is
important.
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Lemma 10.7. For any (positive) absolutely continuous measure µ ∈ M(B) whose support is a com-
pact subset of B and whose energy ‖µ‖2

E is finite, the function ψ = A(µ) lies in D(B) and satisfies
1
2‖∇ψ‖2

2 = ‖µ‖2
E.



42 CHIRANJIB MUKHERJEE

11. Acknowledgements

It is needless to say that this write-up would not exist without the inputs of many people. Above all,
I am substantially indebted to my advisor, Prof. Wolfgang König for introducing me to the subject
and guiding me through during variouos stages of the evolution of this thesis until it reached an equi-
librium! He has also been instrumental in helping me attend many summer schools and conferences
which have helped me peep into various brances of probability theory. He also went through this
thesis several times and provided me with useful comments which have augmented my feeling about
both thinking and writing mathematics.
I am also thankful to some of my friends, Jan Schlemmer and Biswajit Karmakar at the Max-Planck
Institute and Sylvia Schmidt, Patrick Schmid and Mathias Becker at the University of Leipzig for
many useful discussions we had on quite a few occasions. I would also like to thank Anirban Banerjee
at the Max-Planck Institute, Leipzig for helping me settle down in a foreign country and addressing
many of my academic and non-academic issues.
I express my heartfelt thanks to everyone at the Max-Planck Institute für Mathematik in den Natur-
wissenschaften, Leipzig, for providing me with an academic atmosphere congenial to studies.
To this end, let me thank two of my mathematical (and non-mathematical too) mentors, Mr. Swapan
Banerjee and Mr. Jiban Banerjee for inspiring me to dive deeper into the world of mathematics.
Finally, a very special thanks goes to my parents and sister (for reasons too numerous to go into here).

References

[Ba95] R.F. Bass. Probabilistic Techniques in Analysis. Springer, New York (1995).

[CT62] Z. Ciesielski, S. J. Taylor, First passage times and sojourn times for Brownian motion
in space and the exact Hausdorff measure of the sample path Tran. Amer. Math. Soc 103,
434-450 (1962)

[DE00a] A. Dvoretzky, P. Erdös and S. Kakutani. Double points of paths of Brownian
motion in n-space. Acta Sci. Math. (Szeged), 12, 64-81 (1950)

[DE00b] A. Dvoretzky, P. Erdös and S. Kakutani. Multiple points of Brownian motion in
the plane. Bull. Res. Council Isr., SEct. F3, 364-371 (1954)

[DE00c] A. Dvoretzky, P. Erdös , S. Kakutani and S.J. Taylor Triple points of Brownian
motion in 3-space. Proc. Camb. Phil. Soc, 53, 856-862 (1957)

[DP00a] A. Dembo, Y. Peres, J. Rosen and O. Zeitouni. Thick points for spatial Brownian
motion: multifractal analysis of occupation measure, Ann. Probab., 28:1, 1–35 (2000).

[DP00b] A. Dembo, Y. Peres, J. Rosen and O. Zeitouni. Thick points for planar Brownian
motion and the Erdös-Taylor conjecture on random walk, Acta Math., 186 no.2, 239-270,
(2001)

[DP00c] A. Dembo, Y. Peres, J. Rosen and O. Zeitouni. Thin points for Brownian motion.
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[LG87(II)] J.-F. Le Gall. The exact Hausdorff measure of Brownian multiple points II. In: Seminar
on Stochastic Processes 1988, 193–197, Birkhäuser, Boston (1989).
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