
Hierarchical Matrices

Steffen Börm Lars Grasedyck Wolfgang Hackbusch

April 21, 2005

2

Contents

1 Introductory Example (BEM) 9

1.1 Model Problem . 9

1.2 Taylor Expansion of the Kernel . 10

1.3 Low Rank Approximation of Matrix Blocks . 12

1.4 Cluster Tree TI . 13

1.5 Block Cluster Tree TI×I . 14

1.6 Assembly, Storage and Matrix-Vector Multiplication . 16

1.6.1 Inadmissible Leaves . 16

1.6.2 Admissible Leaves . 17

1.6.3 Hierarchical Matrix Representation . 18

1.7 Exercises . 19

1.7.1 Theory . 19

1.7.2 Practice . 20

2 Multi-dimensional Construction 23

2.1 Multi-dimensional cluster tree . 23

2.1.1 Definition . 23

2.1.2 Geometric bisection . 25

2.1.3 Regular subdivision . 26

2.1.4 Implementation . 26

2.2 Multi-dimensional block cluster tree . 32

2.2.1 Definition . 32

2.2.2 Admissibility . 32

2.2.3 Bounding boxes . 33

2.2.4 Implementation . 34

2.3 Construction of an admissible supermatrix structure . 37

2.4 Exercises . 38

2.4.1 Theory . 38

2.4.2 Practice . 38

3

4 CONTENTS

3 Integral Equations 41

3.1 Galerkin discretization . 41

3.2 Interpolation . 42

3.2.1 Degenerate approximation . 42

3.2.2 Tensor-product interpolation on bounding boxes . 43

3.2.3 Construction of the low-rank approximation . 45

3.2.4 Interpolation error bound . 45

3.3 Example: Boundary Element Method in 2D . 47

3.3.1 Curve integrals . 47

3.3.2 Single layer potential . 48

3.3.3 Implementation . 49

3.4 Exercises . 50

3.4.1 Practice . 50

4 Elliptic Partial Differential Equations 53

4.1 One-Dimensional Model Problem . 53

4.1.1 Discretization . 53

4.1.2 The Stiffness Matrix in H-Matrix Format . 54

4.1.3 The Inverse to the Stiffness Matrix in H-matrix Format 55

4.2 Multi-dimensional Model Problem . 56

4.3 Approximation of the inverse of the stiffness matrix . 58

4.3.1 Notation of Finite Elements and Introduction into the Problem 58

4.3.2 Mass Matrices . 59

4.3.3 Connection between A−1 and B . 62

4.3.4 Green Functions . 63

4.3.5 FEM Matrices . 69

4.4 Implementation . 71

4.4.1 Sparse Matrices . 71

4.4.2 Assembly of Stiffness and Mass Matrices . 74

4.5 Exercises . 76

4.5.1 Theory . 76

4.5.2 Practice . 76

5 Arithmetics of Hierarchical Matrices 77

5.1 Arithmetics in the rkmatrix Representation . 77

5.1.1 Reduced Singular Value Decomposition (rSVD) . 78

5.1.2 Formatted rkmatrix Arithmetics . 80

5.2 Arithmetics in the H-Matrix Format . 82

CONTENTS 5

5.2.1 Addition and Multiplication . 82

5.2.2 Inversion . 87

5.2.3 Cholesky and LU Decomposition . 88

5.3 Exercises . 90

5.3.1 Theory . 90

5.3.2 Practice . 90

6 Complexity Estimates 93

6.1 Arithmetics in the rkmatrix Representation . 93

6.1.1 Reduced Singular Value Decomposition (rSVD) . 93

6.1.2 Formatted rkmatrix Arithmetics . 94

6.2 Arithmetics in the H-Matrix Format . 94

6.2.1 Truncation . 96

6.2.2 Addition . 97

6.2.3 Multiplication . 97

6.2.4 Inversion . 101

6.3 Sparsity and Idempotency of the Block Cluster Tree TI×I . 102

6.3.1 Construction of the Cluster Tree TI . 102

6.3.2 Construction of the Block Cluster Tree TI×I . 103

6.4 Exercises . 105

6.4.1 Theory . 105

7 H2-matrices 107

7.1 Motivation . 107

7.2 H2-matrices . 108

7.2.1 Uniform H-matrices . 108

7.2.2 Nested cluster bases . 110

7.2.3 Implementation . 112

7.3 Orthogonal cluster bases . 114

7.4 Adaptive cluster bases . 115

7.4.1 Matrix error bounds . 115

7.4.2 Construction of a cluster basis for one cluster . 116

7.4.3 Construction of a nested basis . 117

7.4.4 Efficient conversion of H-matrices . 119

7.5 Implementation . 119

7.6 Exercises . 120

7.6.1 Theory . 120

7.6.2 Practice . 120

6 CONTENTS

8 Matrix Equations 123

8.1 Motivation . 123

8.2 Existence of Low Rank Solutions . 123

8.3 Existence of H-matrix Solutions . 124

8.4 Computing the solutions . 125

8.5 High-dimensional Problems . 127

9 Outlook 129

9.1 Adaptive Arithmetics and Adaptive Refinement . 129

9.1.1 Rank-adaptive Truncation . 129

9.1.2 Adaptive Grid-Refinement . 129

9.2 Other Hierarchical Matrix Formats . 130

9.3 Applications of Hierarchical Matrices . 130

9.3.1 Partial Differential Equations . 130

9.3.2 Matrix Functions . 130

Index 133

Preface

A major aim of the H-matrix technique is to enable matrix operations of almost linear complexity. Therefore,
the notation and importance of linear complexity is discussed in the following.

Linear Complexity

Let φ : Xn → Ym be any function to be evaluated, where n is the number of input data and m is the number
of output data. The cost of a computation is at least O(N) with N := max{n, m}, provided that φ is a
nontrivial mapping (i.e., it is not independent of some of the input data and the output cannot equivalently
be described by less than m data). If the cost (or storage) depends linearly on the data size N, we speak
about linear complexity. The observation from above shows that linear complexity is the optimal one with
respect to the order.

Given a class of problems it is essential how the size N of the data behaves. The term “large scale computa-
tion” expresses that the desired problem size is as large as possible, which of course depends on the actual
available computer capacity. Therefore, the size N from above is time-dependent and increases according to
the development of the computer technology.

The computer capacity is characterised by two different features: the available storage and the speed of
computing. Up to the present time, these quantities increase proportionally, and the same is expected for
the future. Under this assumption one can conclude that large scale computations require linear
complexity algorithms.

For a proof consider a polynomial complexity: Let the arithmetical costs be bounded by CN σ for some
σ ≥ 1. By the definition of a large scale computation, N = Nt should be the maximal size suited for
computers at time t. There is a time difference ∆t so that at time t + ∆t the characteristic quantities are
doubled: Nt+∆t = 2Nt and speed t+∆t = 2speed t. At time t + ∆t, problems with Nt+∆t data are to be
computed involving CNσ

t+∆t = C2σNσ
t operations. Although the number of operations has increased by 2σ,

the improvement concerning the speed leads to an increase of the computer by the factor 2σ/2 = 2σ−1. If
σ > 1 we have the inconvenient situation that the better the computers are, the longer are the running times.
Therefore, the only stable situation arises when σ = 1, which is the case of linear complexity algorithms.

Often, a complexity O(N logq N) for some q > 0 appears. We name this “almost linear complexity”. Since
the logarithm increases so slowly, O(N logq N) and O(N) are quite similar from a practical point of view.
If the constant C1 in O(N) is much larger than the constant C2 in O(N logq N), it needs a very big Nt such
that C2Nt logq Nt ≥ C1N, i.e., in the next future O(N logq N) and O(N) are not distinguishable.

Linear Complexity in Linear Algebra

Linear algebra problems are basic problems which are part of almost all large scale computations, in particu-
lar, when they involve partial differential equations. Therefore, it is interesting to check what linear algebra
tasks can be performed with linear complexity.

The vector operations (vector sum x+y, scalar multiplication λx, scalar product 〈x, y〉) are obvious candidates

7

8 CONTENTS

for linear complexity.

However, whenever matrices are involved, the situation becomes worse. The operations Ax, A + B, A ∗ B,
A−1, etc. require O(N2) or O(N3) operations. The O(N2)-case can be interpreted as linear complexity,
since an N × N -matrix contains N2 data. However, it is unsatisfactory that one does not know whether a
(general) linear system Ax = b (A regular) can be solved by an O(N 2)-algorithm.

Usually, one is working with special subsets of matrices. An ideal family of matrices are the diagonal ones.
Obviously, their storage is O(N) and the standard operations Dx, D + D′, D ∗ D′, D−1 require O(N)
operations. Diagonal matrices allow even to evaluate general functions: f(D) = diag{f(di) : 1 ≤ i ≤ N}.
The class of diagonal matrices might look rather trivial, but is the basis of many FFT applications. If,
e.g., C is circulant (i.e., Cij = Ci′ ,j′ for all i − j ≡ i′ − j′ mod N), the Fourier transform by F leads to
a diagonalisation: F−1CF = D. This allows to inherit all operations mentioned for the diagonal case to
the set of circulant matrices. Since the computation of Fx and F−1x by the fast Fourier transform needs
O(N log N), these operations are of almost linear complexity.

It is interesting to notice that F =
(
ωi+j

)
i,j=1,...,N

with ω = exp (2πi/N) is neither stored nor used (i.e., no

entries of F are called), when Fx is performed by FFT.

Diagonalisation by other matrices than F is hard to realise. As soon as the transformation T to diagonal form
is a full matrix and Tx must be performed in the standard way, the complexity is too high. Furthermore,
the possibility of cheap matrix operations is restricted to the subclass of matrices which are simultaneously
diagonalised by the transformation.

The class of matrices which is most often used, are the sparse matrices, i.e., #{(i, j) : Aij 6= 0} = O(N).
Then, obviously, the storage and the matrix-vector multiplication Ax and the matrix addition (in the same
pattern) are of linear complexity. However, already A ∗ B is less sparse, the LU-decomposition A = LU
fills the factors L and U, and the inverse A−1 is usually dense. Whether Ax = b can be solved in O(N)
operations or not, is not known. The fact that Ax requires only linear complexity is the basis of most of the
iterative schemes for solving Ax = b.

A subset of the sparse matrices are band matrices, at least when the band width ω is O(1). Here, LU-
decomposition costs O(ω2N) operations, while the band structure of A is inherited by the LU-factors. The
disadvantages are similar to those of sparse matrices: A ∗B has the enlarged band width ωA + ωB and A−1

is dense.

The conclusion is as follows:

• As long as the matrix-vector multiplication x 7→ Ax is the only desired operation, the sparse matrix
format is ideal. This explains the success of the finite element method together with the iterative
solution methods.

• Except the diagonal matrices (or diagonal after a certain cheap transformation), there is no class of
matrices which allow the standard matrix operations

Ax, A + B, A ∗ B, A−1

in O(N) operations.

Chapter 1

Introductory Example (BEM)

In this very first section we introduce the hierarchical matrix structure by a simple one-dimensional model
problem. This introduction is along the lines of [23], but here we fix a concrete example that allows us to
compute everything explicitly.

1.1 Model Problem

Example 1.1 (One-Dimensional Integral Equation) We consider the integral equation

∫ 1

0

log |x − y| U(y)dy = F(x), x ∈ [0, 1], (1.1)

for a suitable right-hand side F : [0, 1] → R and seek the solution U : [0, 1] → R. The kernel g(x, y) =
log |x − y| in [0, 1]2 has a singularity on the diagonal (x = y) and is plotted in Figure 1.1.

Figure 1.1: The function log |x − y| in [0, 1] × [0, 1] and a cut along the line x + y = 1.

A standard discretisation scheme is Galerkin’s method where we solve equation (1.1) projected onto the
(n-dimensional) space Vn := span{ϕ0, . . . , ϕn−1},

∫ 1

0

∫ 1

0

ϕi(x) log |x − y| U(y)dydx =

∫ 1

0

ϕi(x)F(x)dx 0 ≤ i < n,

9

10 CHAPTER 1. INTRODUCTORY EXAMPLE (BEM)

and seek the discrete solution Un in the same space Vn, i.e., Un =
∑n−1

j=0 ujϕj such that the coefficient vector
u is the solution of the linear system

Gu = f, Gij :=

∫ 1

0

∫ 1

0

ϕi(x) log |x − y|ϕj(y)dydx, fi :=

∫ 1

0

ϕi(x)F(x)dx.

In this introductory example we choose piecewise constant basis functions

ϕi(x) =

{
1 if i

n ≤ x ≤ i+1
n

0 otherwise
(1.2)

on a uniform grid of [0, 1]:

1

0

φ
2

10

The matrix G is dense in the sense that all entries are nonzero. Our aim is to approximate G by a matrix
G̃ which can be stored in a data-sparse (not necessarily sparse) format. The idea is to replace the kernel
g(x, y) = log |x − y| by a degenerate kernel

g̃(x, y) =
k−1∑

ν=0

gν(x)hν(y)

such that the integration with respect to the x-variable is separated from the one with respect to the y-
variable. However, the kernel function g(x, y) = log |x − y| cannot be approximated by a degenerate kernel
in the whole domain [0, 1] × [0, 1] (unless k is rather large). Instead, we construct local approximations for
subdomains of [0, 1] × [0, 1] where g is smooth (see Figure 1.2).

Figure 1.2: The function log |x − y| in subdomains of [0, 1]× [0, 1].

1.2 Taylor Expansion of the Kernel

Let τ := [a, b], σ := [c, d], τ × σ ⊂ [0, 1] × [0, 1] be a subdomain with the property b < c such that the
intervals are disjoint: τ ∩ σ = ∅. Then the kernel function is nonsingular in τ × σ. Basic calculus reveals

1.2. TAYLOR EXPANSION OF THE KERNEL 11

Lemma 1.2 (Derivatives of log |x − y|) The derivatives of g(x, y) = log |x − y| for x 6= y and ν ∈ N are

∂ν
xg(x, y) = (−1)ν−1(ν − 1)!(x − y)−ν

∂ν
y g(x, y) = (ν − 1)!(x − y)−ν .

The Taylor series of x 7→ g(x, y) in x0 := (a + b)/2 converges in the whole interval τ , and the remainder of
the truncated Taylor series can be estimated as follows.

Lemma 1.3 (Taylor series of log |x − y|) For each k ∈ N the function (truncated Taylor series)

g̃(x, y) :=

k−1∑

ν=0

1

ν!
∂ν

xg(x0, y)(x − x0)
ν (1.3)

approximates the kernel g(x, y) = log |x − y| with an error

|g(x, y) − g̃(x, y)| ≤ |x0 − a|
|c − b|

(
1 +

|c − b|
|x0 − a|

)−k

.

Proof: Let x ∈ [a, b], a < b, and y ∈ [c, d]. In the radius of convergence (which we will determine later) the
Taylor series of the kernel g(x, y) in x0 fulfils

g(x, y) =

∞∑

ν=0

1

ν!
∂ν

xg(x0, y)(x − x0)
ν .

The remainder g(x, y) − g̃(x, y) =
∑∞

ν=k
1
ν!∂

ν
xg(x0, y)(x − x0)

ν can be estimated by

∣∣∣
∞∑

ν=k

1

ν!
∂ν

xg(x0, y)(x − x0)
ν
∣∣∣ =

∣∣∣
∞∑

ν=k

(−1)ν−1 (ν − 1)!

ν!

(
x − x0

x0 − y

)ν ∣∣∣

≤
∞∑

ν=k

∣∣∣x − x0

x0 − y

∣∣∣
ν

≤
∞∑

ν=k

(|x0 − a|
|x0 − a| + |c − b|

)ν

=

(
1 +

|x0 − a|
|c − b|

) (
1 +

|c − b|
|x0 − a|

)−k

.

Since 1 + |c−b|
|x0−a| > 1, the radius of convergence covers the whole interval [a, b].

If c → b then the estimate for the remainder tends to infinity and the approximation can be arbitrarily
bad. However, if we replace the condition b < c, i.e., the disjointness of the intervals, by the stronger
admissibility condition

diam

τ σ

dist

0 1 diam(τ) ≤ dist(τ, σ) (1.4)

then the approximation error can be estimated by

|g(x, y) − g̃(x, y)| ≤ 3

2
(1 +

2

1
)−k ≤ 3

2
3−k. (1.5)

This means we get a uniform bound for the approximation error independently of the intervals as long as
the admissibility condition is fulfilled. The error decays exponentially with respect to the order k.

12 CHAPTER 1. INTRODUCTORY EXAMPLE (BEM)

1.3 Low Rank Approximation of Matrix Blocks

The index set I := {0, . . . , n − 1} contains the indices of the basis functions ϕi used in the Galerkin
discretisation. We fix two subsets t and s of the index set I and define the corresponding domains as the
union of the supports of the basis functions:

τ :=
⋃

i∈t

supp ϕi, σ :=
⋃

i∈s

supp ϕi.

If τ × σ is admissible with respect to (1.4), then we can approximate the kernel g in this subdomain by the
truncated Taylor series g̃ from (1.3) and replace the matrix entries

Gij =

∫ 1

0

∫ 1

0

ϕi(x)g(x, y)ϕj (y)dydx

by use of the degenerate kernel g̃ =
∑k−1

ν=0 gν(x)hν(y) for the indices (i, j) ∈ t × s:

G̃ij :=

∫ 1

0

∫ 1

0

ϕi(x)g̃(x, y)ϕj(y)dydx.

The benefit is twofold. First, the double integral is separated in two single integrals:

G̃ij =

∫ 1

0

∫ 1

0

ϕi(x)

k−1∑

ν=0

gν(x)hν(y)ϕj(y)dydx

=

k−1∑

ν=0

(∫ 1

0

ϕi(x)gν(x)dx

)(∫ 1

0

ϕj(y)hν(y)dy

)
.

Second, the submatrix G|t×s can be represented in factorised form

G|t×s = ABT , A ∈ Rt×{0,...,k−1}, B ∈ Rs×{0,...,k−1},

A B
T

where the entries of the factors A and B are

Aiν :=

∫ 1

0

ϕi(x)gν(x)dx, Bjν :=

∫ 1

0

ϕj(y)hν(y)dy.

The rank of the matrix ABT is at most k independently of the cardinality of t and s. The approximation
error of the matrix block is estimated in the next lemma.

Definition 1.4 (Admissible Blocks) A block t × s ⊂ I × I of indices is called admissible if the corre-
sponding domain τ × σ with τ := ∪i∈tsuppϕi, σ := ∪i∈ssupp ϕi is admissible in the sense of (1.4).

Lemma 1.5 (Local Matrix Approximation Error) The elementwise error for the matrix entries Gij

approximated by the degenerate kernel g̃ in the admissible block t × s (and g in the other blocks) is bounded
by

|Gij − G̃ij | ≤
3

2
n−23−k.

1.4. CLUSTER TREE TI 13

Proof:

|Gij − G̃ij | =
∣∣∣
∫ 1

0

∫ 1

0

ϕi(x)(g(x, y) − g̃(x, y))ϕj(y)dydx
∣∣∣

(1.5)

≤
∫ 1

0

∫ 1

0

|ϕi(x)|3−k|ϕj(y)|dydx

=
3

2
3−k

∫ 1

0

ϕi(x)dx

∫ 1

0

ϕj(y)dy

=
3

2
n−23−k.

Let us assume that we have partitioned the index set I × I for the matrix G into admissible blocks, where
the low rank approximation is applicable, and inadmissible blocks, where we use the matrix entries from G
(in the next two subsections we will present a constructive method for the partitioning):

I × I =
⋃̇

ν=1,...,b

tν × sν .

Then the global approximation error is estimated in the Frobenius norm ‖M‖2
F :=

∑
M2

ij :

Lemma 1.6 (Matrix Approximation Error) The approximation error ‖G− G̃‖F in the Frobenius norm
for the matrix G̃ built by the degenerate kernel g̃ in the admissible blocks tν × sν and by g in the inadmissible
blocks is bounded by

‖G − G̃‖F ≤ 3

2
n−13−k.

Proof: Apply Lemma 1.5.

The question remains, how we want to partition the product index set I×I into admissible and inadmissible
blocks. A trivial partition would be P := {(i, j) | i ∈ I, j ∈ I} where only 1 × 1 blocks of rank 1 appear.
In this case the matrix G̃ is identical to G, but we do not exploit the option to approximate the matrix in
large subblocks by matrices of low rank.

The number of possible partitions of I × I is rather large (even the number of partitions of I is so). In
subsequent chapters we will present general strategies for the construction of suitable partitions, but here
we only give an exemplary construction.

1.4 Cluster Tree TI

The candidates t, s ⊂ I for the construction of the partition of I ×I will be stored in a so-called cluster tree

TI . The root of the tree TI is the index set I(0)
1 := {0, . . . , n − 1}. For ease of presentation we assume the

number n of basis functions to be a power of two:

n = 2p.

The two successors of I(0)
1 are I(1)

1 := {0, . . . , n
2 − 1} and I(1)

2 := {n
2 , . . . , n − 1}.

The two successors of I(1)
1 are I(2)

1 := {0, . . . , n
4 − 1} and I(2)

2 := {n
4 , . . . , n

2 − 1}.

The two successors of I(1)
2 are I(2)

3 := {n
2 , . . . , 3n

4 − 1} and I(2)
4 := {3n

4 , . . . , n − 1}.
Each subsequent node t with more than nmin indices has exactly two successors: the first contains the
first half of its indices, the second one the second half. Nodes with not more than nmin indices are leaves.

14 CHAPTER 1. INTRODUCTORY EXAMPLE (BEM)

I
(0)
1 = I
��� HHj

I
(1)
1

��	 @@R

I
(1)
2

��	 @@R

I
(2)
1

�
��

A
AU

I
(2)
2

�
��

A
AU

I
(2)
3

�
��

A
AU

I
(2)
4

�
��

A
AU

I
(3)
1 I

(3)
2 I

(3)
3 I

(3)
4 I

(3)
5 I

(3)
6 I

(3)
7 I

(3)
8

{0, . . . , 7}
��� HHj

{0, . . . , 3}

��	 @@R

{4, . . . , 7}

��	 @@R

{0, 1}

�
��

A
AU

{2, 3}

�
��

A
AU

{4, 5}

�
��

A
AU

{6, 7}

�
��

A
AU

{0} {1} {2} {3} {4} {5} {6} {7}

Figure 1.3: The cluster tree TI for p = 3, on the left abstract and on the right concrete.

The parameter nmin controls the depth of the tree. For nmin = 1 we get the maximal depth. However, for
practical purposes (e.g., if the rank k is larger) we might want to set nmin = 2k or nmin = 16.

Remark 1.7 (Properties of TI) For nmin = 1 the tree TI is a binary tree of depth p (see Figure 1.3). It
contains subsets of the index set I of different size. The first level consists of the root I = {0, . . . , n−1} with
n indices, the second level contains two nodes with n/2 indices each and so forth, i.e., the tree is cardinality
balanced. The number of nodes in the cardinality balanced binary tree TI (for nmin = 1) is #TI = 2n− 1.

1.5 Block Cluster Tree TI×I

The number of possible blocks t × s with nodes t, s from the tree TI is (#TI)2 = (2n − 1)2 = O(n2).
This implies that we cannot test all possible combinations (our aim is to reduce the quadratic cost for the
assembly of the matrix).

One possible method is to test blocks level by level starting with the root I of the tree TI and descending in
the tree. The tested blocks are stored in a so-called block cluster tree TI×I whose leaves form a partition of
the index set I×I. The algorithm is given as follows and called with parameters BuildBlockClusterTree(I,I).

Algorithm 1 Construction of the block cluster tree TI×I
procedure BuildBlockClusterTree(cluster t, s)
if (t, s) is admissible then

S(t × s) := ∅
else

S(t × s) := {t′ × s′ | t′ ∈ S(t) and s′ ∈ S(s)}
for t′ ∈ S(t) and s′ ∈ S(s) do

BuildBlockClusterTree(t′, s′)
end for

end if

The tree TI×I is a quadtree, but there are leaves on different levels of the tree which is not the case for the
binary tree TI .

Example 1.8 (Block cluster tree, p = 3) We consider the example tree from Figure 1.3. The root of the
tree is

1.5. BLOCK CLUSTER TREE TI×I 15

{0, . . . , 7} × {0, . . . , 7}

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

which is not admissible because the corresponding domain to the index set {0, . . . , 7} is the interval [0, 1] and

diam([0, 1]) = 1 6≤ 0 = dist([0, 1], [0, 1]).

The four successors of the root in the tree TI×I are

{0, 1, 2, 3}× {0, 1, 2, 3}, {0, 1, 2, 3}× {4, 5, 6, 7},
{4, 5, 6, 7}× {0, 1, 2, 3}, {4, 5, 6, 7}× {4, 5, 6, 7}.

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

Again, none of these is admissible, and they are further subdivided into

{0, 1} × {0, 1}, {0, 1}× {2, 3}, {0, 1} × {4, 5}, {0, 1}× {6, 7},
{2, 3} × {0, 1}, {2, 3}× {2, 3}, {2, 3} × {4, 5}, {2, 3}× {6, 7},
{4, 5} × {0, 1}, {4, 5}× {2, 3}, {4, 5} × {4, 5}, {4, 5}× {6, 7},
{6, 7} × {0, 1}, {6, 7}× {2, 3}, {6, 7} × {4, 5}, {6, 7}× {6, 7}.

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

Now some of the nodes are admissible, e.g., the node {0, 1} × {4, 5} because the corresponding domain is
[0, 1

4] × [12 , 3
4]:

diam

([
0,

1

4

])
=

1

4
= dist

([
0,

1

4

]
,

[
1

2
,
3

4

])
.

The nodes on the diagonal are not admissible (the distance of the corresponding domain to itself is zero) and
also some nodes off the diagonal, e.g., {0, 1}× {2, 3}, are not admissible. The successors of these nodes are
the singletons {(i, j)} for indices i, j. The final structure of the partition looks as follows:

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

For p = 4 and p = 5 the structure of the partition is similar:

16 CHAPTER 1. INTRODUCTORY EXAMPLE (BEM)

1.6 Assembly, Storage and Matrix-Vector Multiplication

The product index set I×I resolves into admissible and inadmissible leaves of the tree TI×I. The assembly,
storage and matrix-vector multiplication differs for the corresponding two classes of submatrices.

1.6.1 Inadmissible Leaves

In the inadmissible (but small !) blocks t × s ⊂ I × I we compute the entries (i, j) as usual:

G̃ij :=

∫ 1

0

∫ 1

0

ϕi(x) log |x − y|ϕj(y)dydx

=

∫ (i+1)/n

i/n

∫ (j+1)/n

j/n

log |x − y|dydx.

Definition 1.9 (fullmatrix Representation) An n × m matrix M is said to be stored in fullmatrix

representation if the entries Mij are stored as real numbers (double) in an array of length nm in the order

M11, . . . , Mn1, M12, . . . , Mn2, . . . , M1m, . . . , Mnm (column-wise).

Implementation 1.10 (fullmatrix) The fullmatrix representation in the C programming language
might look as follows:

typedef struct _fullmatrix fullmatrix;

typedef fullmatrix *pfullmatrix;

struct _fullmatrix {

int rows;

int cols;

double* e;

};

The array e has to be allocated and deallocated dynamically in the constructor and destructor:

pfullmatrix

new_fullmatrix(int rows, int cols){

pfullmatrix f = (pfullmatrix) malloc(sizeof(fullmatrix));

f->rows = rows;

f->cols = cols;

f->e = (double*) malloc(rows*cols*sizeof(double));

for(i=0; i<rows*cols; i++) f->e[i] = 0.0;

1.6. ASSEMBLY, STORAGE AND MATRIX-VECTOR MULTIPLICATION 17

return f;

}

void

del_fullmatrix(pfullmatrix f){

if(f->e) free(f->e);

free(f);

f = 0x0;

}

The ordering of the matrix entries in the fullmatrix representation is the same ordering that is used in
standard linear algebra packages (BLAS, LAPACK, MATLAB, etc.). Therefore, procedures from these
libraries can be called without complications, e.g., the matrix-vector multiplication can be performed by
calling the standard BLAS subroutine dgemv.

1.6.2 Admissible Leaves

In the admissible blocks t × s ⊂ I × I with corresponding domains [a, b] × [c, d] and x0 := (a + b)/2 we
compute the submatrix in factorised form

G̃|t×s := ABT ,

Aiν :=

∫ (i+1)/n

i/n

(x − x0)
νdx,

Bjν :=

{
(−1)ν+1ν−1

∫ (j+1)/n

j/n
(x0 − y)−νdy if ν > 0

∫ (j+1)/n

j/n
log |x0 − y|dy if ν = 0.

A suitable representation for the submatrix G̃|t×s is the rkmatrix format defined next.

Definition 1.11 (rkmatrix Representation) An n × m matrix M of rank at most k is said to be stored
in rkmatrix representation if it is stored in factorised form M = ABT where the two matrices A ∈ Rn×k

and B ∈ Rm×k are both stored as an array (column-wise).

Implementation 1.12 (rkmatrix) The rkmatrix representation is implemented in the C programming
language as follows:

typedef struct _rkmatrix rkmatrix;

typedef rkmatrix *prkmatrix;

struct _rkmatrix {

int k;

int rows;

int cols;

double* a;

double* b;

};

The arrays a and b have to be allocated and deallocated dynamically in the constructor and destructor:

prkmatrix

new_rkmatrix(int k, int rows, int cols){

18 CHAPTER 1. INTRODUCTORY EXAMPLE (BEM)

int i;

prkmatrix r = (prkmatrix) malloc(sizeof(rkmatrix));

r->k = k;

r->rows = rows;

r->cols = cols;

r->a = 0x0;

r->b = 0x0;

if(k>0){

r->a = (double*) malloc(k*rows*sizeof(double));

for(i=0; i<rows*k; i++) r->a[i] = 0.0;

r->b = (double*) malloc(k*cols*sizeof(double));

for(i=0; i<cols*k; i++) r->b[i] = 0.0;

}

return r;

}

void

del_rkmatrix(prkmatrix r){

free(r->a);

free(r->b);

free(r);

}

The implementation of the fullmatrix representation for the factors A and B in the implementation of the
rkmatrix representation differs from the one in Implementation 1.10: the information about the size of the
two factors is stored in the rkmatrix structure and the two matrices A and B are stored as two arrays.

1.6.3 Hierarchical Matrix Representation

Definition 1.13 (H-matrix) Let TI×I be a block cluster tree for the index set I. We define the set of
H-matrices as

H(TI×I, k) :=
{
M ∈ RI×I | rank(M |t×s) ≤ k for all admissible leaves t × s of TI×I

}
.

Definition 1.14 (H-matrix Representation) Let TI×I be a block cluster tree for the index set I. A
matrix M ∈ H(TI×I, k) is said to be stored in H-matrix representation if the submatrices corresponding to
inadmissible leaves are stored in fullmatrix representation and those corresponding to admissible leaves are
stored in rkmatrix representation.

One possible implementation for a matrix in H-matrix representation would be to store the admissible and
inadmissible matrix blocks in a list. The assembly and matrix-vector multiplication can be done for each
block separately. However, we choose a different implementation that is guided by the block tree TI×I (not
only the leaves) and stores the matrix in a more “structured” way.

Each block t × s in the tree TI×I can be

• a leaf - then the corresponding matrix block is represented by a fullmatrix or rkmatrix;

• not a leaf - then the block t × s is decomposed into its sons t′ × s′ with t′ ∈ S(t) and s′ ∈ S(s). This
means that the matrix corresponding to the block t × s is a supermatrix that consists of submatrices
corresponding to t′ × s′:

1.7. EXERCISES 19

t s
t’ s’

Implementation 1.15 (supermatrix) The supermatrix structure in the C programming language is im-
plemented as follows:

typedef struct _supermatrix supermatrix;

typedef supermatrix *psupermatrix;

struct _supermatrix {

int rows;

int cols;

int block_rows;

int block_cols;

prkmatrix r;

pfullmatrix f;

psupermatrix* s;

};

A supermatrix M consists of block_rows × block_cols submatrices. The size of the matrix is rows×cols,
i.e., M ∈ Rrows×cols. The matrix can be

• an rkmatrix - then r 6= 0x0, f = 0x0 and s = 0x0:
the matrix r is the rkmatrix representation of M ;

• a fullmatrix - then f 6= 0x0, r = 0x0 and s = 0x0:
the matrix f is the fullmatrix representation of M ;

• a supermatrix - then s 6= 0x0, f = 0x0 and r = 0x0:
the array s contains the pointers to the submatrices Mi,j of

M =




M1,1 · · · M1,blockcols

...
. . .

...
Mblockrows,1 · · · Mblockrows,blockcols




in the order

M1,1, . . . , Mblockrows,1, M1,2, . . . , Mblockrows,2, . . . , M1,blockcols, . . . , Mblockrows,blockcols.

The implementation of an H-matrix is a tree with nodes implemented as supermatrix. Additionally, the
structure coincides with the structure given by the block cluster tree TI×I (successors ≡ submatrices) and
the submatrices corresponding to admissible or inadmissible leaves are stored in the rkmatrix or fullmatrix
format.

1.7 Exercises

1.7.1 Theory

Exercise 1 (Cardinality of the Cluster Tree TI) Let p ∈ N0 and n := 2p.

20 CHAPTER 1. INTRODUCTORY EXAMPLE (BEM)

1. Prove that for nmin := 1 the cardinality of the tree TI is #TI = 2n− 1.

2. What is the cardinality of TI in the general case nmin > 1 ?

Exercise 2 (Exact Integration of the Kernel) The integration in the admissible and inadmissible
blocks can be performed analytically (because the domain of integration and the kernel are both simple).

• Compute the integrals for the entries Aiν , Bjν in the admissible blocks analytically.

Hint: split the integration and use
∫

log(x) = x log(x) − x

Exercise 3 (rkmatrix Representation) Let M ∈ Rn×m be a matrix and k ∈ N0. Prove the following two
statements.

1. If M = ABT for matrices A ∈ Rn×k and B ∈ Rm×k then the rank of M is at most k.

2. If the rank of M is at most k then there exist two matrices A ∈ Rn×k and B ∈ Rm×k such that
M = ABT .

What are the storage requirements (number of doubles to be stored) for an n×m matrix stored in rkmatrix

representation ?

1.7.2 Practice

Exercise 4 (Assembly of the Matrix Entries) Write a procedure that allocates and fills a rows×cols

rkmatrix block with the respective entries from Subsection 1.6.2:

prkmatrix

fill_rkmatrix(int n, int k, int rows, int cols,

int start_row, int start_col);

The number of basis functions is n, the size of the matrix to be allocated is
rows × cols, the indices in this block are {start_row , . . . , start_row +
rows −1} for the rows and {start_col , . . . , start_col + cols −1} for
the columns.

cols

ro
w

s

start_row

start_col

n

Exercise 5 (Matrix-Vector Multiplication) Implement the matrix-vector multiplication w := Mv for
the fullmatrix, rkmatrix and supermatrix format:

void

eval_fullmatrix(pfullmatrix f, double* v, double* w);

void

eval_rkmatrix(prkmatrix r, double* v, double* w);

void

eval_supermatrix(psupermatrix s, double* v, double* w);

For an n × m matrix the fullmatrix version should have a complexity of O(nm) while this reduces to
O((n + m)k) for the rkmatrix format. The procedure for the supermatrix format has to call the matrix-
vector multiplication for the submatrices (s 6= 0x0), for the rkmatrix (r 6= 0x0) or for the fullmatrix (f
6= 0x0).

1.7. EXERCISES 21

Hint: It is advisable to first implement the respective addeval counterparts v 7→ w + Mv and use them to
define the eval functions.

Exercise 6 (Numerical Test) The C-file example_1d.c contains the main program which invokes the
matrix assembly and solves the discrete linear system by the conjugate gradient method (only matrix-vector
multiplications are needed) for the two right hand sides fi. The matrix structure is written to “matrix.ps”,
the right hand side to “rhs.ps” and the solution to “solution.ps”. Compile the object files for

fullmatrix.c

rkmatrix.c

supermatrix.c

ie1d.c

solver.c

graphics.c

example_1d.c

by “gcc -c -Wall -pedantic *.c” and link the main program by

gcc -o example_1d -Wall -pedantic *.o -lm

1. Invoke the program example_1d to test your implementation of the fullmatrix assembly and
fullmatrix-vector multiplication (choose n = 5 and k = 5 for the right-hand side number 1 such that
only one fullmatrix block appears). The matrix structure (matrix.ps) and solution (solution.ps)
should look as follows:

0.0 1.0
1.00000

1.00000

2. Invoke the program example_1d to test your implementation of the rkmatrix assembly. Choose the
parameters n = 8, k = 1, right-hand side 1. The output should report

r->a[0] = 0.125

r->b[0] = -0.0470093

r->a[1] = 0.125

r->b[1] = -0.0260784

Afterwards, test your implementation of the matrix-vector multiplication (choose n = 10 and k = 1 for
the right-hand side number 2). The matrix structure (matrix.ps) and solution (solution.ps) should
look as follows:

22 CHAPTER 1. INTRODUCTORY EXAMPLE (BEM)

0.0 1.0
-0.15508

0.94210

3. Look at the (discrete) solutions uj to the right hand sides fj for j ∈ {1, 2} and larger n (100, 200, 500,
1000). Try to guess what the continuous solutions Uj corresponding to the right-hand sides Fj might
be.

Chapter 2

Multi-dimensional Construction

In order to apply hierarchical matrices to problems in more than one space dimension, we have to introduce
multi-dimensional counterparts of the cluster tree and the block cluster tree.

2.1 Multi-dimensional cluster tree

In the one-dimensional case, the clusters are organized in a balanced binary tree. For multi-dimensional
problems, we need a generalized structure.

2.1.1 Definition

Before we can define cluster trees, we have to define trees.

Definition 2.1 (Tree) Let N 6= ∅ be a finite set, let r ∈ N and let S : N → P(N) be a mapping from
N into subsets of N . For t ∈ N , a sequence t0, . . . , tm ∈ N with t0 = r, tm = t and ti+1 ∈ S(ti) for all
i ∈ {0, . . . , m − 1} is called sequence of ancestors of t.

T := (N, r, S) is called a tree if there is exactly one sequence of ancestors for each t ∈ N .

If T is a tree, the elements of N are called nodes, the element r is called the root node or root and denoted
by root(T), and the set sons(T, t) := S(t) is called the set of sons.

Lemma 2.2 (Properties of trees) Let T = (N, r, S) be a tree.

1. Let t ∈ N , and let t0, . . . , tm ∈ N be its sequence of ancestors. For all i, j ∈ {0, . . . , m} with i 6= j, we
have ti 6= tj .

2. There is no t ∈ N with r ∈ sons(t).

3. For each t ∈ N \ {r}, there is a unique t+ ∈ N with t ∈ sons(t+).

Proof: Let i, j ∈ {0, . . . , m} with ti = tj . Then both t0, . . . , ti and t0, . . . , tj are sequences of ancestors for
ti = tj . Since these sequences are unique, we conclude i = j.

Let t ∈ N with sons(T, t) 6= ∅, and let s ∈ sons(T, t). Let t0, . . . , tm be the sequence of ancestors of t. Then
t0, . . . , tm, s is a sequence of ancestors of s, and by definition it is the only one. This implies r = t0 6= s.

Let t ∈ N \ {r}, and let t0, . . . , tm be its sequence of ancestors. Due to t 6= t0 = r, we have m > 0 and find
t = tm ∈ sons(T, tm−1). Therefore we can conclude by setting t+ := tm−1.

23

24 CHAPTER 2. MULTI-DIMENSIONAL CONSTRUCTION

Definition 2.3 (Tree level) Let T = (N, r, S) be a tree. Let t ∈ N , and let t0, . . . , tm ∈ N be its sequence
of ancestors. The number m ∈ N0 is called the level of t an denoted by level(T, t).

We will use the short notations t ∈ T instead of t ∈ N , sons(t) instead of sons(T, t) and level(t) instead of
level(T, t) if this does not lead to confusion.

Definition 2.4 (Labeled tree) Let N, L 6= ∅ be a finite sets, let r ∈ N , let S : N → P(N) and m : N → L
be mapping. T := (N, r, S, m, L) is a labeled tree if (N, r, S) is a tree.

The notations for a tree carry over to a labeled tree. In addition, for each t ∈ N , m(t) ∈ L is called the label
of t and denoted by t̂.

2 4

3 6

1

5 7

Tree in standard notation

The maximal level is called the depth of T and denoted by

depth(T) := max{level(t) : t ∈ N}.

Due to Lemma 2.2, for each t ∈ N \ {r}, there is a t+ ∈ N with t ∈ sons(t+). This node is called the father
of t and denoted by father(t) = t+. Obviously, we have level(t) = 0 if and only for t = root(T). A vertex
t ∈ N is a leaf if sons(t) = ∅ holds and we define the set of leaves

L(T) := {t ∈ N : sons(t) = ∅}.

Now we can generalize the structure introduced in the previous chapter: we organize subsets of the index
set I in a cluster tree. The cluster tree supplies us with candidates that can be checked for admissibility. If
they are not admissible, we split them and repeat the procedure. This suggests the following definition:

Definition 2.5 (Cluster tree) A labeled tree T = (N, r, S, m, L) is a cluster tree for an index set I if the
following conditions hold:

• ̂root(T) = I.

• For each vertex t ∈ N , we have

s1, s2 ∈ sons(T, t), s1 6= s2 ⇒ ŝ1 ∩ ŝ2 = ∅ and sons(t) 6= ∅ ⇒ t̂ =
⋃

s∈sons(t)

ŝ.

The vertices t ∈ N of a cluster tree are called clusters.

A cluster tree for I is usually denoted by TI. We will use the abbreviation t ∈ TI for t ∈ N .

The implementation of the tree structure is straightforward:

2.1. MULTI-DIMENSIONAL CLUSTER TREE 25

Implementation 2.6 (cluster) The cluster structure is defined as follows:

typedef struct _cluster cluster;

typedef cluster *pcluster;

struct _cluster {

int start;

int size;

int sons;

pcluster *son;

};

The fields start and size describe t̂: they give us the number of the first index of t̂ and the number of
indices. The meaning of these indices will become clear later.

The field sons contains the number of sons, i.e., the cardinality of the set sons(t), while the array son is
filled with the pointers to these sons.

Lemma 2.7 For any cluster tree TI there holds I = ∪̇v∈L(TI)v̂.

Now that we know what a general cluster tree is, we have to find a suitable method for constructing a good
cluster tree for a given set of basis functions. In the following, we will describe two simple algorithms that
build cluster trees in a relatively general setting.

2.1.2 Geometric bisection

The complexity of arithmetic operations for a hierarchical matrix is directly linked to the number of leaves
of a block cluster tree, so a good cluster tree should make sure that blocks become admissible as soon as
possible. The admissibility of a block depends on the diameters of the supports of the involved basis functions
and on their distance. We cannot do much about the distance of the supports, but we can try to choose the
cluster tree in such a way that the diameters shrink quickly.

For each i ∈ I, we denote the support of the corresponding basis function ϕi by Ωi := supp(ϕi). Since dealing
directly with the supports will be too complicated, we choose a point xi ∈ Ωi for each index i ∈ I and work
with these points instead of the supports. This simplification will not significantly harm the performance of
the algorithm, since the supports of typical finite element basis functions are small.

Our construction starts with the full index set I, which is the root of the cluster tree by definition. Then,
we apply a suitable technique to find a disjoint partition of the index set and use this partition to create son
clusters. We apply the procedure recursively to the sons until the index sets are small enough.

Let us first consider the one-dimensional case: We want to split the index set t̂ ⊂ I corresponding to a
cluster t into two parts. Each index i ∈ t̂ corresponds to a point xi ∈ R, so we can set a := min{xi : i ∈ t̂},
b := max{xi : i ∈ t̂} and find {xi : i ∈ t̂} ⊆ [a, b]. Now the solution is clear: We set c := (a + b)/2 and
split the interval [a, b] into [a, c] and]c, b]. This gives rise to the partition {t̂0, t̂1} of t̂ with

t̂0 := {i ∈ t̂ : xi ≤ c}, t̂1 := {i ∈ t̂ : xi > c}.
Obviously, we have

diam{xi : i ∈ t̂0}
diam{xi : i ∈ t̂1}

}
≤ b − a

2
=

diam{xi : i ∈ t̂}
2

,

so our choice is optimal.

a
c

b

26 CHAPTER 2. MULTI-DIMENSIONAL CONSTRUCTION

In the multi-dimensional setting, we can generalize this approach: We set

al := min{(xi)l : i ∈ t̂} and bl := max{(xi)l : i ∈ t̂}

for all l ∈ {1, . . . , d}, therefore all points are contained in the axis-parallel box [a1, b1] × · · · × [ad, bd]. Now
we are faced with a choice: We can split the box in all coordinate directions simultaneously and get 2d

subdomains, or we can choose the coordinate direction of maximal extent and split the box perpendicular
to this direction into two subdomains.

The first approach guarantees that the diameters of the subdomains are halved, but creates only a small
number of clusters, so we will have only a small number of candidates to choose from in the construction of
the block partition.

The second approach leads to a tree with a large number of clusters, but it also has the disadvantage that
the diameters of the clusters will decrease only by a factor of

√
1 − 3/(4d) during one step of the procedure,

while performing d steps will still give us 2d clusters with halved diameters, just as in the first approach.

2.1.3 Regular subdivision

In some situations, we want to have a cluster structure that is more regular than the one resulting from
standard geometric bisection, e.g., for the theoretical treatment of cluster algorithms or in situations where
we want to use one cluster tree structure for different geometries.

As before, we construct the regular cluster tree by defining how a cluster t is split. We assume that a box
Bt = [a1, b1] × · · · × [ad, bd] with xi ∈ Bt for all i ∈ t̂ and a splitting direction jt ∈ {1, . . . , d} are given. We
construct new boxes Bt1 and Bt2 by setting cj := (aj + bj)/2 and

Bt1 := [a1, b1] × · · · × [aj , cj] × · · · × [ad, bd] and Bt2 := [a1, b1] × · · · × [cj , bj] × · · · × [ad, bd].

The index sets t̂1 and t̂2 are defined by

t̂1 := {i ∈ t̂ : xi ∈ Bt1} and t̂2 := I \ t̂2.

We set jt1 := jt2 := (jt mod d) + 1.

Since xi ∈ Bt1 for i ∈ t̂1 and xi ∈ Bt2 for i ∈ t̂2 hold by construction, we can now repeat the procedure for
t1 and t2.

Compared to the standard geometric bisection, the regular construction has a major disadvantage: One of
the son clusters t̂1 and t̂2 can be empty even if t̂ is not, so it is possible to have clusters with exactly one
son. But the regular construction also has a major advantage: All boxes on a level of the cluster tree have
exactly the same dimensions, i.e., they are identical up to translations.

2.1.4 Implementation

We will now demonstrate how the second approach can be implemented. Before we start, we have to
comment on a finer point of the implementation: In some applications, not all vertices appearing in a grid
correspond to degrees of freedom. An example is the standard finite element method, applied to a problem
with Dirichlet boundary conditions: the boundary vertices are present in the finite element grid, but they
are not degrees of freedom.

In order to handle this in an elegant fashion, we distinguish indices and degrees of freedom. The indices form
the contiguous subinterval {0, . . . , nidx − 1} of the set of integers, while the set I of degrees of freedom is an
arbitrary non-empty subset of the set of indices. In the finite element example, nidx would be the number
of all vertices, while I would be the subset containing non-boundary vertices.

Before we can give the complete algorithm, we first have to consider the necessary data structures: we need
a struct to store the array of points and some auxiliary data:

2.1. MULTI-DIMENSIONAL CLUSTER TREE 27

Implementation 2.8 (clusterfactory) The clusterfactory structure is defined as follows:

typedef struct _clusterfactory clusterfactory;

typedef clusterfactory *pclusterfactory;

struct _clusterfactory {

double **x;

int ndof;

int nidx;

int d;

double *vmin;

double *vmax;

double *blocks;

};

The field ndof contains the maximal number of degrees of freedom, the field nidx contains the maximal
number of points, while the field d gives us the spatial dimension of the underlying space.

The array x stores the coordinates of the points xi for each index i ∈ {0, . . . , nidx-1}: the entry x[i] is a
d-dimensional array containing the coordinates of the point xi.

The fields vmin and vmax will be used in our algorithms to store the minimal and maximal values corre-
sponding to each coordinate.

Since x is implemented as an array of length nidx containing pointers to double variables, we need something
these pointers can point to. Instead of allocating memory for each point individually, we allocated one block
of size nidx*d and distribute this memory among the pointers x[i]. The field blocks points to the large
block.

The algorithm for the creation of a cluster tree is based on sets of indices. Therefore we have to find a
suitable representation of sets and subsets in the C programming language.

We choose a simple approach: a set is an array of indices. The points are numbered by int quantities, so
we represent a set by an array of int variables: the array

int index[4] = { 7, 2, 5, 8 };

corresponds to the set {7, 2, 5, 8}, the points can be accessed by x[index[i]] for values of i between 0 and
3.

Obviously, the described set does not change if we rearrange the entries in the corresponding array:

int index2[4] = { 2, 5, 7, 8 };

describes exactly the same set as before. This fact can be used to treat subsets efficiently: if we want to split
the set {7, 2, 5, 8} into the subsets {2, 5} and {7, 8}, we find that both subsets are described by two-element
subarrays of index2, namely index2 and index2+2.

This means that a clustering algorithm will give us two results: The cluster tree, expressed in the cluster

structure, and an array index describing the mapping of degrees of freedom to indices. We collect these
objects in a new class:

Implementation 2.9 (clustertree) The clustertree structure is defined as follows:

28 CHAPTER 2. MULTI-DIMENSIONAL CONSTRUCTION

typedef struct _clustertree clustertree;

typedef clustertree *pclustertree;

struct _clustertree {

int ndof;

int nidx;

int *dof2idx;

int *idx2dof;

pcluster root;

};

The field ndof contains the maximal number of degrees of freedom, the field nidx contains the maximal
number of points.

The array dof2idx has ndof elements and corresponds to the array index described above, i.e., it translates
degrees of freedom into indices.

The array idx2dof has nidx elements and performs the inverse operation, i.e., it translates indices into
degrees of freedom. The entries of indices that do not correspond to degrees of freedom are set to -1.

The pointer root gives us the root cluster of the cluster tree.

Based on this representation of sets and cluster trees, the implementation of the geometric bisection clustering
algorithm is straightforward: we use a recursive function split_geometrically() that receives a pointer
factory to a clusterfactory structure containing the point coordinates, a pointer index to an int array
describing the subset we have to split, and an int size giving us the size of this array. The function
determines how to split the subset and rearranges the array index such that the first subset corresponds to
the first part of the array and the second subset corresponds to the rest, then calls itself recursively.

In order to be able to reconstruct the subsets corresponding to all clusters, not only the leaf clusters, we add
the additional int parameter start giving us the absolute starting index in the array describing the full
index set. For performance reasons, we may want to stop the splitting process before we have reached sets
containing only one element, so we also add an int parameter leafsize that tells us which sets are small
enough.

static pcluster

split_geometrically(pclusterfactory factory, int *index,

int start, int sz, int leafsize)

{

/* ... some initialization ... */

if(sz <= leafsize) /* Stop if small enough */

this = new_cluster(start, sz, 0);

else {

for(j=0; j<d; j++) { /* Determine bounding box */

vmin[j] = vmax[j] = x[index[0]][j];

for(i=1; i<sz; i++)

if(x[index[i]][j] < vmin[j])

vmin[j] = x[index[i]][j];

else if(vmax[j] < x[index[i]][j])

vmax[j] = x[index[i]][j];

}

jmax = 0; vdiff = vmax[0] - vmin[0]; /* Find maximal extent */

for(j=1; j<d; j++)

if(vmax[j] - vmin[j] > vdiff) {

2.1. MULTI-DIMENSIONAL CLUSTER TREE 29

jmax = j; vdiff = vmax[j] - vmin[j];

}

l = 0; r = sz-1; /* Rearrange array */

vmid = 0.5 * (vmax[jmax] + vmin[jmax]);

while(l < r) {

while(l < sz && x[index[l]][jmax] <= vmid) l++;

while(r >= 0 && x[index[r]][jmax] > vmid) r--;

if(l < r) {

h = index[l]; index[l] = index[r]; index[r] = h;

}

}

this = new_cluster(start, sz, 2); /* Recursion */

this->son[0] = split_geometrically(factory, index,

start, l, leafsize);

this->son[1] = split_geometrically(factory, index+l,

start+l, sz-l, leafsize);

}

return this;

}

In order to simplify the handling of the creation of cluster trees, we employ a simple “front-end” procedure
to call split_geometrically:

static pcluster

do_geometric(pclusterfactory factory,

int *index, int n,

int leafsize)

{

return split_geometrically(factory, index, 0, n, leafsize);

}

For the regular clustering strategy, we have to modify the splitting routine slightly: instead of computing the
box given by vmin and vmax in each step, we simply update only one coordinate before calling the routine
recursively.

If we apply one of these algorithms to a simple rectangular grid with lexicographic numbering of the degrees
of freedom, we get the following sequence of numberings:

3210

4 5 6 7

111098

12 13 14 15

Original

121310

4 5 9 8

111067

3 2 14 15

Level 1

111010

3 2 9 8

121367

4 5 14 15

Level 2

0 3 8 11

10921

5 6 13 14

151274

Level 3

The array index maps the final numbering (i.e., the one corresponding to level 3) to the original numbering:

int index[16] = { 0, 4, 5, 1, 12, 8, 9, 13,

2, 6, 7, 3, 14, 10, 11, 15 };

30 CHAPTER 2. MULTI-DIMENSIONAL CONSTRUCTION

In practice, the routines for the creation of cluster trees will be called not from the top-level of a program,
but from intermediate routines that initialize the fields x, smin and smax with geometry data. Since we
do not intend to write these routines for each type of clustering strategy, we use a “master function” that
controls all aspects of the creation of a cluster tree:

pclustertree

create_subclustertree(pclusterfactory factory,

const int *index, int n,

ClusterStrategy strategy, int leafsize)

{

/* ... some initialization ... */

ct = new_clustertree(n, factory->nidx);

dof2idx = ct->dof2idx;

idx2dof = ct->idx2dof;

for(i=0; i<n; i++) dof2idx[i] = index[i];

switch(strategy) {

default:

case HLIB_DEFAULT:

case HLIB_GEOMETRIC:

ct->root = do_geometric(factory, dof2idx, n, leafsize);

break;

case HLIB_REGULAR:

ct->root = do_regular(factory, dof2idx, n, leafsize);

break;

/* ... more clustering strategies ... */

}

for(i=0; i<factory->nidx; i++) idx2dof[i] = -1;

for(i=0; i<n; i++) idx2dof[dof2idx[i]] = i;

return ct;

}

Now let us turn our attention to a simple but non-trivial example that illustrates how we have to initialize
the clusterfactory structure and how we can use it to create a cluster tree.

Example 2.10 (Curve in 2D) We consider a closed curve in two-dimensional space, given as an array x

of vertices points and an array e of edges edges. We use piecewise constant basis functions and choose
the characterizing point to be the middle of the corresponding interval. Building the desired cluster tree is
straightforward:

factory = new_clusterfactory(edges, edges, 2);

index = (int *) malloc((size_t) sizeof(int) * edges);

for(i=0; i<edges; i++) {

factory->x[i][0] = 0.5 * (x[e[i][0]][0] + x[e[i][1]][0]);

factory->x[i][1] = 0.5 * (x[e[i][0]][1] + x[e[i][1]][1]);

index[i] = i;

}

ct = create_subclustertree(factory, index, edges, HLIB_GEOMETRIC, 1);

2.1. MULTI-DIMENSIONAL CLUSTER TREE 31

In the previous example, each index corresponds to a degree of freedom. Now, we will consider a simple
example in which the degrees of freedom are a true subset of the set of indices.

Example 2.11 (FE grid in 2D) We consider a triangular grid, given as an array triangle of nt trian-
gles, an array vertex of nv points and an array dirichlet of nv flags that are set if a point is part of the
Dirichlet boundary. The construction of the cluster tree is done as follows:

n = 0;

for(i=0; i<nv; i++)

if(!dirichlet[i]) n++;

factory = new_clusterfactory(n, nv, 2);

index = (int *) malloc((size_t) sizeof(int) * n);

j = 0;

for(i=0; i<nv; i++) {

factory->x[i][0] = vertex[i][0];

factory->x[i][1] = vertex[i][1];

if(!dirichlet[i]) {

index[j] = i; j++;

}

}

ct = create_subclustertree(factory, index, n, HLIB_REGULAR, 1);

For a given cluster tau, we can iterate over all corresponding intervals by using the following simple loop:

for(i=tau->start; i<tau->start+tau->sz; i++) {

ii = dof2idx[i];

/* do something for the index ii */

}

For a pair tau, sigma of clusters and a given rank k, we can build the rkmatrix by this function call:

rk = new_rkmatrix(k, tau->size, sigma->size);

There is one very important detail: if we want to perform matrix operations, we use the permutation of the
index set given in dof2idx, not the original ordering. The first index of a cluster tau corresponds to the
basis function with the number dof2idx[tau->start], not to that with the number tau->start. Let us
consider an example: if we want to implement the function fill_fullmatrix from Exercise 4, we have to
make sure that we use the intervals dof2idx[i] and dof2idx[j] to compute Mij , not the intervals i and j.

In typical applications, the permutation described by dof2idx is only important when accessing the un-
derlying geometry, i.e., when matrices or right hand side vectors are discretized or when results have to be
interpreted, e.g., if the solution vector is to be displayed.

Remark 2.12 (Alternatives) There are many variations of the two possible clustering strategies described
here: for some applications, a balanced cluster tree may be of importance, so the algorithm is changed so that
the subsets it creates are of approximately identical size. For other applications, e.g., in boundary element
techniques, it may be desirable to split the index set by more general planes than those given by the coordinate
vectors we have used in our method.

32 CHAPTER 2. MULTI-DIMENSIONAL CONSTRUCTION

2.2 Multi-dimensional block cluster tree

As seen in Subsection 1.5, the cluster trees can be used to derive a hierarchy of block partitions of the I ×J
corresponding to the matrix, the block cluster tree. The leaves of this tree form a block partition of I × J .

2.2.1 Definition

Definition 2.13 (Block cluster tree) Let TI and TJ be cluster trees for index sets I and J . A finite
tree T is a block cluster tree for TI and TJ if the following conditions hold:

• root(T) = (root(TI), root(TJ)).

• Each node b ∈ T has the form b = (t, s) for clusters t ∈ TI and s ∈ TJ .

• For each node b = (t, s) ∈ T with sons(b) 6= ∅, we have

sons(b) =





{(t, s′) : s′ ∈ sons(s)} if sons(t) 6= ∅ and sons(s) = ∅
{(t′, s) : t′ ∈ sons(t)} if sons(t) = ∅ and sons(s) 6= ∅
{(t′, s′) : t′ ∈ sons(t), s′ ∈ sons(s)} otherwise.

(2.1)

• The label of a node b = (t, s) ∈ T is given by b̂ = t̂ × ŝ ⊆ I × J .

A block cluster tree for TI and TJ is usually denoted by TI×J .

We can see that ̂root(TI×J) = I × J holds. A closer look at the definition reveals that TI×J is a special
cluster tree for the index set I × J , therefore the leaves of TI×J define a disjoint partition

{b̂ : b ∈ L(TI×J)}

of the index set I × J corresponding to a matrix.

Definition 2.14 (Homogeneity) A block cluster tree TI×J for TI and TJ will be called homogeneous, if

level(t × s) = level(t) = level(s)

holds for all t × s ∈ TI×J .

If a block cluster tree is homogeneous, we have

sons(t × s) 6= ∅ ⇒ sons(t × s) = {t′ × s′ : t′ ∈ sons(t), s′ ∈ sons(s)}

for all t × s ∈ TI×J , i.e., only the last choice in (2.1) can hold.

2.2.2 Admissibility

In the one-dimensional setting, we have used the simple condition (1.4) to determine whether we could
approximate a matrix block by a low-rank matrix.

In the multi-dimensional setting, we have to generalize the admissibility condition: the indices in I and
therefore the clusters in TI no longer correspond to intervals. We can still find a connection between indices
and domains: each index i ∈ I corresponds to a basis function ϕi, and the support Ωi = supp ϕi again is a
subdomain of Rd.

2.2. MULTI-DIMENSIONAL BLOCK CLUSTER TREE 33

We can generalize Ωi to clusters t ∈ TI by setting

Ωt :=
⋃

i∈t̂

Ωi,

i.e., Ωt is the minimal subset of Rd that contains the supports of all basis functions ϕi with i ∈ t̂.

Using this, a possible generalization of (1.4) is

min{diam(Ωt), diam(Ωs)} ≤ η dist(Ωt, Ωs), (2.2)

where diam(·) is the Euclidean diameter of a set and dist(·, ·) is the Euclidean distance of two sets.

The concept of admissibility carries over to clusters: a pair t × s of clusters t ∈ TI , s ∈ TJ is admissible if
the corresponding domains Ωt and Ωs are admissible. Using this, we can define the necessary conditions for
block cluster trees:

Definition 2.15 (Admissible block cluster tree) A block cluster tree TI×J for I and J is called ad-
missible with respect to some admissibility condition if

t × s is admissible or sons(t) = ∅ or sons(s) = ∅

holds for all leaves t × s ∈ L(TI×J).

Constructing an admissible block cluster tree from the cluster trees TI and TJ and a given admissibility
condition can be done by a straightforward recursion: given two clusters t ∈ TI and s ∈ TJ , we check the
admissibility. If the clusters are admissible, we are done. If they are not admissible, we repeat the procedure
for all combinations of sons of t and sons of s (cf. Subsection 2.3).

Checking the condition (2.2) for general domains can be computationally expensive, so we are looking for a
simplified condition. The traditional way is to determine the Chebyshev circles (in 2D) or spheres (in 3D)
for the domains, since diameters and distances of circles or spheres can be computed in O(1) operations.
Unfortunately, the construction of Chebyshev circles is not entirely trivial, so we make use of an even simpler
technique: axis-parallel boxes.

2.2.3 Bounding boxes

For each cluster t ∈ TI , we define an axis-parallel box Qt ⊆ Rd such that Ωt ⊆ Qt holds. This box will be
called the bounding box of the cluster t.

By replacing the possibly complicated domains Ωt and Ωs in (2.2) by the larger boxes Qt and Qs, we get
the admissibility condition

min{diam(Qt), diam(Qs)} ≤ η dist(Qt, Qs). (2.3)

This condition obviously implies (2.2).

Checking the distance and computing the diameters for axis-parallel boxes is not as simple as in the case of
Chebyshev circles, but still manageable: if Qt = [a1, b1] × · · · × [ad, bd] and Qs = [c1, d1] × · · · × [cd, dd], we

34 CHAPTER 2. MULTI-DIMENSIONAL CONSTRUCTION

have

diam(Qt) =

(
d∑

l=1

(bl − al)
2

)1/2

, diam(Qs) =

(
d∑

l=1

(dl − cl)
2

)1/2

and

dist(Qs, Qs) =

(
d∑

l=1

dist([al, bl], [cl, dl])
2

)1/2

,

so these quantities can be computed by O(1) operations.

2.2.4 Implementation

Implementation 2.16 (Bounding boxes in cluster) Since bounding boxes are fundamental, we modify
the definition of the cluster structure by adding the necessary fields:

double *bmin;

double *bmax;

int d;

The fields bmin and bmax are d-dimensional arrays of double variables representing the minimal and maximal
coordinates, i.e., if Qt = [a1, b1]× · · · × [ad, bd], then bmin contains the vector (ai)

d
i=1 and bmax contains the

vector (bi)
d
i=1.

We can make use of the structure of the cluster tree in order to construct optimal bounding boxes, i.e., bound-
ing boxes with minimal diameter: Since t̂ =

⋃
t′∈sons(t) t̂′ holds by definition, we have Ωt =

⋃
t′∈sons(t) Ωt′ , so

the optimal bounding box for the cluster t has to contain all the optimal bounding boxes for its sons t′ and
can therefore be constructed by finding maxima and minima of the corresponding coordinate vectors.

In the leaf clusters, we need information on the supports of the basis functions corresponding to the indices,
and this geometric information has to be provided by the user. The obvious solution is to store it in the
clusterfactory structure:

Implementation 2.17 (Bounding boxes of supports in clusterfactory) We add the following two
fields to the clusterfactory structure:

double **smin;

double **smax;

The arrays smin and smax have nn entries, one for each index. The entries smin[i] and smax[i] describe
the axis-parallel box containing the support Ωi of the corresponding basis function in the same way the fields
bmin and bmax describe the bounding box of a cluster.

2.2. MULTI-DIMENSIONAL BLOCK CLUSTER TREE 35

Example 2.18 (Curve in 2D, support) In the Example 2.10, we have to add code that initializes the new
fields smin and smax describing the bounding boxes of the supports of basis functions. Since these supports
are simple intervals, it is sufficient to determine the minimal and maximal coordinates of the endpoints:

for(i=0; i<edges; i++) {

factory->smin[i][0] = dmin(x[e[i][0]][0], x[e[i][1]][0]);

factory->smax[i][0] = dmax(x[e[i][0]][0], x[e[i][1]][0]);

factory->smin[i][1] = dmin(x[e[i][0]][1], x[e[i][1]][1]);

factory->smax[i][1] = dmax(x[e[i][0]][1], x[e[i][1]][1]);

}

Here, we use the functions dmin and dmax to compute the minimum and maximum of two double arguments.

Example 2.19 (FE grid in 2D, support) Creating bounding boxes in the setting of Example 2.11 is
slightly more complicated, since more than one triangle contribute to the support of a nodal basis function.
Therefore we compute bounding boxes for all triangles and combine them to form boxes for the vertices:

for(i=0; i<nv; i++) {

factory->smin[i][0] = factory->smax[i][0] = vertex[i][0];

factory->smin[i][1] = factory->smax[i][1] = vertex[i][1];

}

for(i=0; i<nt; i++) {

tmin[0] = dmin(vertex[triangle[i][0]][0],

dmin(vertex[triangle[i][1]][0],

vertex[triangle[i][2]][0]));

tmax[0] = dmax(vertex[triangle[i][0]][0],

dmax(vertex[triangle[i][1]][0],

vertex[triangle[i][2]][0]));

tmin[1] = dmin(vertex[triangle[i][0]][1],

dmin(vertex[triangle[i][1]][1],

vertex[triangle[i][2]][1]));

tmax[1] = dmax(vertex[triangle[i][0]][1],

dmax(vertex[triangle[i][1]][1],

vertex[triangle[i][2]][1]));

for(j=0; j<3; j++) {

k = triangle[i][j];

factory->smin[k][0] = dmin(factory->smin[k][0], tmin[0]);

factory->smax[k][0] = dmax(factory->smax[k][0], tmax[0]);

factory->smin[k][1] = dmin(factory->smin[k][1], tmin[1]);

factory->smax[k][1] = dmax(factory->smax[k][1], tmax[1]);

}

}

Note that we have to initialize the bounding boxes with “safe” values before entering the main loop.

Using the extended clusterfactory, we can construct the bounding boxes and initialize the fields bmin and
bmax in the cluster structure by the following recursive procedure:

static void

find_boundingbox(pcluster tau, pcclusterfactory factory)

{

/* ... some initialization ... */

36 CHAPTER 2. MULTI-DIMENSIONAL CONSTRUCTION

if(sons > 0) {

for(i=0; i<sons; i++)

find_boundingbox(tau->son[i], factory);

for(j=0; j<d; j++) {

bmin[j] = son[0]->bmin; bmax[j] = son[0]->bmax;

}

for(i=1; i<sons; i++)

for(j=0; j<d; j++) {

bmin[j] = dmin(bmin[j], son[i]->bmin[j]);

bmax[j] = dmax(bmax[j], son[i]->bmax[j]);

}

}

else {

for(j=0; j<d; j++) {

bmin[j] = smin[index[0]]; bmax[j] = smax[index[0]];

}

for(i=1; i<size; i++)

for(j=0; j<d; j++) {

bmin[j] = dmin(bmin[j], smin[index[i]][j]);

bmax[j] = dmax(bmax[j], smax[index[i]][j]);

}

}

}

Now we can use the bounding boxes in order to construct a block cluster tree.

Implementation 2.20 (blockcluster) The blockcluster structure is defined as follows:

typedef struct _blockcluster blockcluster;

typedef blockcluster *pblockcluster;

struct _blockcluster {

pccluster row;

pccluster col;

unsigned type;

pblockcluster *son;

int block_rows;

int block_cols;

};

The fields row and col give the row and column clusters that form this block. If the block has sons, the
array son contains block_rows*block_cols pointers to these sons. The pointer to son (i, j) can be found
at position i+j*block_rows. The field type contains information about the admissibility criteria this block
satisfies: 0 means that it is not admissible, 1 corresponds to weak admissibility, 3 means that (2.3) holds
(for some parameter η), and 7 means that the strong admissibility condition (7.14) holds (again for some
parameter η). Other variants are also possible, please check blockcluster.h for details.

The following simple algorithm constructs a blockcluster structure from cluster structures and the stan-
dard admissibility condition (2.3):

2.3. CONSTRUCTION OF AN ADMISSIBLE SUPERMATRIX STRUCTURE 37

pblockcluster

build_blockcluster(pccluster row, pccluster col,

double eta)

{

/* ... some initialization ... */

dist = distance_cluster(row, col);

diam_row = diameter_cluster(row);

diam_col = diameter_cluster(col);

if(diam_row < eta*dist || diam_col < eta*dist)

bc = new_blockcluster(row, col, 0, 0,

HLIB_BLOCK_MINADM | HLIB_BLOCK_WEAKADM);

else if(row->sons > 0 && col->sons > 0) {

bc = new_blockcluster(row, col, row->sons, col->sons, 0);

for(j=0; j<col->sons; j++)

for(i=0; i<row->sons; i++)

bc->son[i+j*bc->block_rows] =

build_blockcluster(row->son[i], col->son[j], eta);

}

else

bc = new_blockcluster(row, col, 0, 0, 0);

return bc;

}

Implementation 2.21 (Construction of blockcluster structures) In the library, we use a more gen-
eral routine

pblockcluster

build_blockcluster(pccluster row, pccluster col,

BlockAdmissiblityCriterion adm,

BlockHomogeneity hom, double eta, int leafsize);

which allows the user to pick the desired kind of admissibility criterion adm, to choose to create inhomogeneous
block cluster trees (suited for H2-matrices) by setting hom appropriately, and to stop splitting clusters if they
have not more than leafsize elements. The latter option is useful if a “coarse” block cluster tree has to be
created without changing the clustertree structure.

2.3 Construction of an admissible supermatrix structure

Since the structure of a supermatrix closely resembles that of a blockcluster tree, we can directly translate
the latter into the former:

psupermatrix

build_supermatrix_from_blockcluster(pcblockcluster bc,

int k)

{

/* ... some initialization ... */

if(bc->son) {

s = new_supermatrix(block_rows, block_cols, rows, cols,

NULL, NULL, NULL);

38 CHAPTER 2. MULTI-DIMENSIONAL CONSTRUCTION

for(j=0; j<block_cols; j++)

for(i=0; i<block_rows; i++)

s->s[i+j*block_rows] =

build_supermatrix_from_blockcluster(bc->son[i+j*block_rows],

k, eps);

}

else {

if(bc->type & HLIB_BLOCK_WEAKADM) {

r = new_rkmatrix(k, rows, cols);

s = new_supermatrix(1, 1, rows, cols, NULL, r, NULL);

}

else {

f = new_fullmatrix(rows, cols);

s = new_supermatrix(1, 1, rows, cols, NULL, NULL, f);

}

}

return s;

}

If we apply this algorithm to Example 2.10 and a block cluster tree constructed for the standard admissibility
condition (2.3), we get a supermatrix structure that corresponds to the following matrix partition:

2.4 Exercises

2.4.1 Theory

Exercise 7 Let T be a cluster tree with c clusters and l leaves. Prove that c ≤ 2l − 1 holds if we have
sons(t) 6= 1 for all t ∈ T .

2.4.2 Practice

Exercise 8 The routine build_blockcluster stops splitting matrix blocks as soon as one of the correspond-
ing clusters is a leaf.

Write a routine build_blockcluster_inhom that splits the blocks until both clusters are leaves. If a pair
(τ, σ) is not admissible, we distinguish four cases:

• If sons(τ) 6= ∅ and sons(σ) 6= ∅, examine all pairs (τ ′, σ′) with τ ′ ∈ sons(τ) and σ′ ∈ sons(σ).

2.4. EXERCISES 39

• If sons(τ) = ∅ and sons(σ) 6= ∅, examine all pairs (τ, σ′) with σ′ ∈ sons(σ).

• If sons(τ) 6= ∅ and sons(σ) = ∅, examine all pairs (τ ′, σ) with τ ′ ∈ sons(τ).

• If sons(τ) = ∅ and sons(σ) = ∅, create a full matrix.

Differently from build_blockcluster, this new routine may create an inhomogeneous block cluster tree.

Running the program example_cluster.c for 64 basis functions should give you a file matrix.ps containing
the following block partition:

40 CHAPTER 2. MULTI-DIMENSIONAL CONSTRUCTION

Chapter 3

Integral Equations

Using the multi-dimensional cluster tree and the corresponding generalized block cluster tree, we can store
approximations of multi-dimensional discretized integral operators in the form of hierarchical matrices.

The basic approach is to replace the kernel by a degenerate expansion [26], this leads to the panel-clustering
method. One of these expansions is the multipole expansion [30, 19] for the Laplace kernel.

We use a relatively general approach based on polynomial interpolation that has been described in [3].
Its implementation is quite simple and it can be applied to all asymptotically smooth (cf. (3.14)) kernel
functions.

3.1 Galerkin discretization

We consider a general integral equation

Gu + λ〈u, ·〉 = f (3.1)

in a Hilbert space H , where G is an integral operator mapping H into its dual space H ′, the right hand side
f ∈ H ′ is an element of the dual space, λ ∈ R is some parameter and u ∈ H is the solution we are looking
for.

The variational counterpart of equation (3.1) is given by

a(u, v) + λm(u, v) = f(v) (3.2)

for all v ∈ H , where

a(u, v) = 〈Gu, v〉H′×H and m(u, v) = 〈u, v〉H×H .

In typical situations, the bilinear form a(·, ·) representing the integral operator can be written as

a(u, v) =

∫

Ω

v(x)

∫

Ω

g(x, y)u(y) dy dx (3.3)

for a kernel function g(·, ·) and domains or manifolds Ω.

The equation (3.2) is discretized by a Galerkin method, i.e., we choose an n-dimensional subspace Hn of H
and consider the problem of finding a function un ∈ Hn such that

a(un, vn) + λm(un, vn) = f(vn)

holds for all vn ∈ Hn. For any basis (ϕi)i∈I of Hn, this is equivalent to

a(un, ϕi) + λm(un, ϕi) = f(ϕi)

41

42 CHAPTER 3. INTEGRAL EQUATIONS

for all i ∈ I. Since the solution un is an element of Hn, there is a coefficient vector (xi)i∈I satisfying

un =
∑

j∈I
xjϕj ,

so the coefficients satisfy the equation

∑

j∈I
xja(ϕj , ϕi) + λ

∑

j∈I
m(ϕj , ϕi) = f(ϕi)

for all i ∈ I. This is a system of linear equations and can be written in matrix form

Gx + λMx = b

by introducing matrices G, M ∈ RI×I and a vector b ∈ RI with

Gij := a(ϕj , ϕi) =

∫

Ω

ϕi(x)

∫

Ω

g(x, y)ϕj(y) dy dx, (3.4)

Mij := m(ϕj , ϕi) =

∫

Ω

ϕi(x)ϕj(x) dx and (3.5)

bi := f(ϕi). (3.6)

If we use standard finite element basis functions (ϕi)i∈I , the matrix M will be sparse, but the matrix G will
be densely populated, since typical kernel functions have global support.

Storing G directly will not lead to efficient algorithms. One way of avoiding this problem is to approximate
G by a matrix that can be treated efficiently. The idea has already been described in Section 1.2: we replace
the original kernel function k(·, ·) by local degenerate approximations, and this leads to a hierarchical matrix.

3.2 Interpolation

3.2.1 Degenerate approximation

In Section 1.2, we have used the approximation

g̃(x, y) =
k−1∑

ν=0

1

ν!
∂ν

xg(x0, y)(x − x0)
ν (3.7)

of the kernel function g(·, ·). This approach works only if the derivatives of the kernel function can be
evaluated efficiently. In order to avoid this restriction, we use interpolation instead of the Taylor expansion
to construct an approximation: let (xν)ν∈K be a family of interpolation points in Rd, and let (Lν)ν∈K be
the corresponding Lagrange functions satisfying

Lν(xµ) = δν,µ

for all ν, µ ∈ K. We interpolate the function x 7→ g(x, ·) and get the interpolant

g̃(x, y) :=
∑

ν∈K

g(xν , y)Lν(x). (3.8)

This approximation is obviously degenerate, and it can be constructed without the need for derivatives of
the kernel function.

Using this approximation, the matrix G from (3.4) is replaced by a matrix G̃ defined by

G̃ij :=

∫

Ω

ϕi(x)

∫

Ω

g̃(x, y)ϕj(y) dy dx =
∑

ν∈K

∫

Ω

ϕi(x)Lν (x) dx

∫

Ω

ϕj(y)g(xν , y) dy = (AB>)ij , (3.9)

3.2. INTERPOLATION 43

where we set

Aiν :=

∫

Ω

ϕi(x)Lν(x) dx and Bjν :=

∫

Ω

ϕj(y)g(xν , y) dy. (3.10)

Obviously, the rank of G̃ = AB> is bounded by #K, so we have indeed found an alternative method for
computing low-rank approximations.

The computation of the entries of A and B is simple: in the matrix A, only piecewise polynomials have to
be integrated. This can be done by any exact quadrature rule. For the computation of the matrix B, we
can use quadrature rules or try to find symbolic expressions for the integrals (cf. Exercise 9).

3.2.2 Tensor-product interpolation on bounding boxes

Since we cannot find a global degenerate approximation of the kernel function g(·, ·), we work with local
approximations corresponding to pairs of clusters.

This means that we have to find a set of interpolation points and a set of corresponding Lagrange functions
for each cluster t ∈ TI such that the approximation error on the corresponding domain Ωt is small enough.

Constructing good interpolation operators for general domains is a complicated topic, therefore we use the
same simplification as in the treatment of the admissibility condition: instead of approximating the kernel
function on a general subset Ωt of Rd, we approximate it on the bounding box Qt ⊇ Ωt.

Since the bounding box Qt is the tensor product of intervals, we first consider interpolation on intervals. For
the interval [−1, 1], the m-th order Chebyshev points

(xν)m
ν=0 =

(
cos

(
2ν + 1

2m + 2
π

))m

ν=0

are a good choice. The Lagrange polynomials have the form

Lν(x) =
m∏

µ=0,µ6=ν

x − xµ

xν − xµ
,

and the corresponding interpolation operator is given by

Im : C[−1, 1] → Pm, f 7→
m∑

ν=0

f(xν)Lν .

2L

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

012345

−0.6

−0.8

In order to get an interpolation operator for an arbitrary non-empty interval [a, b], we use the affine trans-
formation

Φ[a,b] : [−1, 1] → [a, b], x 7→ b + a

2
+

b − a

2
x

and define the transformed interpolation operator I
[a,b]
m : C[a, b] → Pm by

I
[a,b]
m [f] :=

(
Im[f ◦Φ[a,b]]

)
◦ Φ−1

[a,b].

44 CHAPTER 3. INTEGRAL EQUATIONS

It can be written in the form

I
[a,b]
m [f] =

m∑

ν=0

f(Φ[a,b](xν))Lν ◦ Φ−1
[a,b],

so it is straightforward to define the transformed interpolation points

x[a,b]
ν := Φ[a,b](xν) =

b + a

2
+

b − a

2
xν

and corresponding Lagrange functions

L[a,b]
ν := Lν ◦ Φ−1

[a,b].

We observe that

L[a,b]
ν (x[a,b]

µ) = Lν ◦ Φ−1
[a,b](Φ[a,b](xµ)) = Lν(xµ) = δνµ

holds for all ν, µ ∈ {0, . . . , m}. This implies

L[a,b]
ν (x) =

m∏

µ=0,µ6=ν

x − x
[a,b]
µ

x
[a,b]
ν − x

[a,b]
µ

.

In the d-dimensional case, the domain of interpolation is an axis-parallel bounding box Qt = [a1, b1] ×
· · · × [ad, bd]. Since the domain has tensor-product structure, it is straightforward to use tensor-product
interpolation, i.e., to set

I
t
m := I

[a1,b1]
m ⊗ · · · ⊗ I

[ad,bd]
m .

3 4

5

0

3

2
1

0

2

4

5

3

0 1 2 5 1

4

0 1 2 3 4 5

By introducing the set

K := {ν ∈ Nd
0 : νi ≤ m for all i ∈ {1, . . . , d}} = {0, . . . , m}d

of multi-indices and the corresponding interpolation points and Lagrange polynomials

xt
ν := (x[a1,b1]

ν1
, . . . , x[ad,bd]

νd
), Lt

ν := L[a1,b1]
ν1

⊗ · · · ⊗ L[ad,bd]
νd

, (3.11)

we can express I
t
m in the familiar form

I
t
m[f](x) =

∑

ν∈K

f(xt
ν)Lt

ν(x).

Note that evaluating the tensor-product polynomials Lt
ν is quite simple due to

Lt
ν(x) =

(
L[a1,b1]

ν1
⊗ · · · ⊗ L[ad,bd]

νd

)
(x) =

d∏

i=1

L[ai,bi]
νi

(xi) =

d∏

i=1

m∏

µ=0,µ6=νi

xi − x
[ai,bi]
µ

x
[ai,bi]
νi − x

[ai,bi]
µ

. (3.12)

3.2. INTERPOLATION 45

3.2.3 Construction of the low-rank approximation

Let us consider an admissible pair (t, s) of clusters. The admissibility implies that

min{diam(Qt), diam(Qs)} ≤ η dist(Qt, Qs)

holds. If diam(Qt) ≤ diam(Qs), we apply interpolation to the first argument of the kernel function. The
corresponding block of the matrix has the form (3.9), so we have to compute the matrices At,s and Bt,s:

At,s
iν =

∫

Ω

ϕi(x)Lt
ν (x) dx, Bt,s

jν =

∫

Ω

ϕj(y)g(xt
ν , y) dy,

where xt
ν and Lt

ν are the transformed interpolation points and Lagrange polynomials defined in (3.11).

If diam(Qs) ≤ diam(Qt), we apply interpolation to the second argument and have to compute the matrices
At,s and Bt,s with reversed roles:

At,s
iν =

∫

Ω

ϕi(x)g(x, xs
ν) dx, Bt,s

jν =

∫

Ω

ϕj(y)Ls
ν(y) dy.

In both cases, we need the transformed interpolation points. Given an array xp of dimension p = m + 1
containing the points (xi)

m
i=0 and a cluster t, the following code fragment computes the corresponding

transformed points and stores the points in an array l containing p entries containing the transformed
points for the d dimensions:

for(j=0; j<d; j++) {

mid = 0.5 * (t->bmax[j] + t->bmin[j]);

dif = 0.5 * (t->bmax[j] - t->bmin[j]);

for(i=0; i<p; i++)

l[i][j] = mid + xp[i] * dif;

}

We store a multi-index ν ∈ Nd
0 in the form of an array nu of d integers. The j-th coordinate of the point xt

ν

is then given by l[nu[j]][j] for nu[j]= νj . Computing integrals of the Lagrange polynomials can be done
by exact quadrature rules, so only a way of evaluating a Lagrange polynomial corresponding to a multi-index
ν at a point x is required. Due to (3.12), this can be done by the following simple code fragment:

result = 1.0;

for(j=0; j<d; j++)

for(i=0; i<p; i++)

if(i != nu[j])

result *= (x[j] - l[i][j]) / (l[nu[j]][j] - l[i][j]);

3.2.4 Interpolation error bound

One-dimensional estimates

The Chebyshev interpolation operators Im satisfy the stability estimate

‖Imf‖∞,[−1,1] ≤ Λm‖f‖∞,[−1,1]

for the constant

Λm :=
2

π
ln(m + 1) + 1 ≤ m + 1.

For a function f ∈ Cm+1[−1, 1], the approximation error bound

‖f − Imf‖∞,[−1,1] ≤
2−m

(m + 1)!
‖f (m+1)‖∞,[−1,1]

46 CHAPTER 3. INTEGRAL EQUATIONS

holds. For the transformed interpolation operator, this implies

‖f − I
[a,b]
m f‖∞,[a,b] = ‖f ◦ Φ[a,b] − (I[a,b]

m f) ◦ Φ[a,b]‖∞,[−1,1] = ‖f ◦ Φ[a,b] − Im(f ◦ Φ[a,b])‖∞,[−1,1]

≤ 2−m

(m + 1)!
‖(f ◦ Φ[a,b])(m+1)‖∞,[−1,1] =

2−m

(m + 1)!

(
b − a

2

)m+1

‖f (m+1)‖∞,[a,b]

=
(b − a)m+1

22m+1(m + 1)!
‖f (m+1)‖∞,[a,b].

Multi-dimensional estimates

Let t ∈ TI be a cluster with the bounding box Qt := [a1, b1]× · · · × [ad, bd]. For i ∈ {0, . . . , d}, we introduce
the operators

Pi := I
[a1,b1]
m ⊗ · · · ⊗ I

[ai,bi]
m ⊗ I ⊗ · · · ⊗ I.

We have P0 = I and Pd = I
t
m and

‖f − I
t
mf‖∞,Qt ≤

d∑

i=1

‖Pi−1f − Pif‖∞,Qt =

d∑

i=1

‖Pi−1(I − I ⊗ · · · ⊗ I ⊗ I
[ai,bi]
m ⊗ I ⊗ · · · ⊗ I)f‖∞,Qt

≤ (m + 1)i−1
d∑

i=1

‖(I − I ⊗ · · · ⊗ I ⊗ I
[ai,bi]
m ⊗ I ⊗ · · · ⊗ I)f‖∞,Qt

≤ (m + 1)d−1

22m+1(m + 1)!

d∑

i=1

(bi − ai)
m+1‖∂m+1

i f‖∞,Qt

≤ d(m + 1)d−1

22m+1(m + 1)!
diam(Qt)m+1 max{‖∂m+1

i f‖∞,Qt : i ∈ {1, . . . , d}}. (3.13)

Application to the kernel function

We assume that g ∈ C∞(Qt × Qs) is asymptotically smooth, i.e, that

|∂α
x ∂β

y g(x, y)| ≤ C(α + β)!c
|α|+|β|
0 ‖x − y‖−|α|−|β|−σ (3.14)

holds for constants C, c0, σ ∈ R>0. This implies that the functions

gx : Qt → C∞(Qs), x 7→ g(x, ·),
gy : Qs → C∞(Qt), y 7→ g(·, y),

satisfy the estimates

‖∂αgx(x)‖∞,Qt ≤ Cα!c
|α|
0 dist(Qt, Qs)−|α|−σ ,

‖∂βgy(y)‖∞,Qs ≤ Cβ!c
|β|
0 dist(Qt, Qs)−|β|−σ

for x ∈ Qt and y ∈ Qs, so we can apply the interpolation estimate (3.13) in order to get

‖gx − I
t
mgx‖∞,Qt ≤ Cd(m + 1)d−1

2 dist(Qt, Qs)σ

(
c0 diam(Qt)

4 dist(Qt, Qs)

)m+1

‖gy − I
s
mgy‖∞,Qs ≤ Cd(m + 1)d−1

2 dist(Qt, Qs)σ

(
c0 diam(Qs)

4 dist(Qt, Qs)

)m+1

.

If diam(Qt) ≤ diam(Qs), we have

|g(x, y) − g̃(x, y)| = |g(x, y) −
∑

ν∈K

g(xt
ν , y)Lt

ν(x)| = |gx(x)(y) − (It
m[gx](x))(y)| = |(gx − I

t
m[gx])(x)(y)|

≤ Cd(m + 1)d−1

2 dist(Qt, Qs)σ

(
c0 diam(Qs)

4 dist(Qt, Qs)

)m+1

≤ Cd(m + 1)d−1

2 dist(Qt, Qs)σ

(c0η

4

)m+1

.

3.3. EXAMPLE: BOUNDARY ELEMENT METHOD IN 2D 47

In a similar fashion, we can treat the case diam(Qs) ≤ diam(Qt) and conclude

|g(x, y) − g̃(x, y)| ≤ C ′(m)
(c0η

4

)m+1

dist(Qt, Qs)−σ (3.15)

for the polynomial C ′(m) := Cd(m + 1)d/2. If we choose η < 4/c0, we have (c0η/4) < 1 and the approxima-
tion of the kernel function converges exponentially in m.

Remark 3.1 (Improved error bound) In [3], we prove that the error converges as O((c0η)/(c0η + 2)),
i.e., we get exponential convergence even if η and c0 are large.

3.3 Example: Boundary Element Method in 2D

In Example 2.10, we have considered the construction of a cluster tree for a curve in two-dimensional space.
Now we will solve integral equations on this curve by the techniques introduced in this chapter.

We are interested in a boundary integral problem, i.e., the set Ω will be a submanifold. In our case, Ω is a
one-dimensional submanifold of R2, i.e., a curve. Since we are interested in integral equations, we have to
recall the meaning of an integral on a curve.

3.3.1 Curve integrals

Let γ : [0, 1] → R2 be a continuously differentiable function that is injective in [0, 1[. We denote its range
by Γ := γ([0, 1]). Let u ∈ C(Γ). Similar to the construction of Riemann integrals, we introduce a partition
0 = x0 < x1 < . . . < xn = 1 of the interval [0, 1] and consider the sum

Ix :=

n∑

i=1

u(γ(xi))‖γ(xi) − γ(xi−1)‖.

Lemma 3.2 (Curve integral) Let ε ∈ R>0. There is a δ ∈ R>0 such that for all partitions 0 = x0 < x1 <
. . . < xn = 1 with xi − xi−1 < δ (i ∈ {1, . . . , n}) we have

∣∣∣∣Ix −
∫ 1

0

u(γ(y))‖γ′(y)‖ dy

∣∣∣∣ ≤ ε.

Proof: Since u ◦ γ and ‖γ ′‖ are continuous on the compact set [0, 1], they are uniformly continuous. Let
ε̂ :=

√
ε + a2/4 − a/2 for

a :=

∫ 1

0

|u(γ(y))| + ‖γ′(y)‖ dy.

Due to uniform continuity, there is a δ ∈ R>0 such that

|u ◦ γ(x) − u ◦ γ(y)| < ε̂ and |‖γ ′(x)‖ − ‖γ′(y)‖| < ε̂

holds for all x, y ∈ [0, 1] with |x − y| < δ.

Let 0 = x0 < x1 < . . . < xn = 1 with xi − xi−1 < δ for all i ∈ {1, . . . , n}. By the differential mean value
theorem, we find an x̂i ∈ [xi−1, xi] with

γ′(x̂i) =
γ(xi) − γ(xi−1)

xi − xi−1
.

48 CHAPTER 3. INTEGRAL EQUATIONS

This implies

∣∣∣∣Ix −
∫ 1

0

u(γ(y))‖γ′(y)‖ dy

∣∣∣∣ =
∣∣∣∣∣

n∑

i=1

∫ xi

xi−1

(
u(γ(xi))

∥∥∥∥
γ(xi) − γ(xi−1)

xi − xi−1

∥∥∥∥− u(γ(y))‖γ′(y)‖
)

dy

∣∣∣∣∣

≤
n∑

i=1

∣∣∣∣∣

∫ xi

xi−1

(u(γ(xi))‖γ′(x̂i)‖ − u(γ(y))‖γ′(y)‖) dy

∣∣∣∣∣

≤
n∑

i=1

∫ xi

xi−1

(|u(γ(xi))| |‖γ′(x̂i)‖ − ‖γ′(y)‖| + |u(γ(xi)) − u(γ(y))|‖γ′(y)‖) dy

≤
n∑

i=1

∫ xi

xi−1

(|u(γ(xi))|ε + ε‖γ′(y)‖) dy

≤
n∑

i=1

∫ xi

xi−1

(
ε̂2 + |u(γ(y))|ε̂ + ε̂‖γ ′(y)‖

)
dy

= ε̂2 + ε̂

∫ 1

0

(|u ◦ γ(y)| + ‖γ′(y)‖) dy = ε̂2 + ε̂a = ε.

Now we can define the curve integral: let (γi)
m
i=1 be a tuple of injective functions in C1([0, 1], R2). For all

i ∈ {1, . . . , m}, we set Γi := γi([0, 1]). The curve integral over the piecewise differentiable curve Γ :=
⋃m

i=1 Γi

is given by ∫

Γ

u(x)dx :=

m∑

i=1

∫ 1

0

u(γi(y))‖γ′
i(y)‖ dy.

3.3.2 Single layer potential

We fix n points p0, . . . , pn−1 ∈ R2, set pn := p0 and define the affine parametrizations

γi : [0, 1] → R2, y 7→ pi−1(1 − y) + piy,

for i ∈ {1, . . . , n}. As long as pi 6= pj holds for all i, j ∈ {0, . . . , n − 1} with i 6= j, this defines a polygonal
curve Γ :=

⋃m
i=1 γi([0, 1]).

p

p
2

p
3

p
4

p
5

p
6

p
7

p

p
9

p
10

p
11

p
12

p
13

p
14

p
15

p
16

p
17

p
0

1

8

On the curve Γ, we can now define the single layer potential operator

Gslp[u](x) := − 1

2π

∫

Γ

log(‖x − y‖)u(y) dy

3.3. EXAMPLE: BOUNDARY ELEMENT METHOD IN 2D 49

and the corresponding bilinear form

aslp(u, v) := − 1

2π

∫

Γ

v(x)

∫

Γ

log(‖x − y‖)u(y) dy dx.

We discretize aslp(·, ·) by piecewise constant functions (ϕi)
n
i=1 defined through

ϕi ◦ γj ≡ δij

for i, j ∈ I := {1, . . . , n}. The coefficients of the corresponding matrix are given by

Gij = aslp(ϕj , ϕi) = − 1

2π

∫

Γ

ϕi(x)

∫

Γ

log(‖x − y‖)ϕj(y) dy dx

= − 1

2π
‖pi − pi−1‖ ‖pj − pj−1‖

∫ 1

0

∫ 1

0

log(‖γi(x) − γj(y)‖) dy dx.

Now we are in the situation of Subsection 3.2.1 and can construct a hierarchical matrix by replacing the
logarithmic kernel g(x, y) := log(‖x − y‖) by degenerate approximations.

3.3.3 Implementation

We have already considered the construction of suitable cluster trees and admissible partitions in Exam-
ples 2.10 and 2.18, so we will focus on the problem of computing the entries of the hierarchical matrix
represented by a supermatrix in our code.

The treatment of the full matrices involves the efficient evaluation of singular integrals and is not the subject
of our investigation. It suffices to say that we provide a function integrate_nearfield that initializes these
matrices.

Let us now consider the treatment of the low-rank blocks. They correspond to admissible pairs (t, s) of
clusters and require the evaluation of a degenerate approximation of the kernel function. We assume that
diam(Qt) ≤ diam(Qs), so the approximation is given by

g̃(x, y) =
∑

ν∈K

log(‖xt
ν − y‖)Lt

ν(x)

and we have to compute the matrices

At,s
iν =

∫

Γ

ϕi(x)Lt
ν(x) dx = ‖pi − pi−1‖

∫ 1

0

Lt
ν(γi(x)) dx, (3.16)

Bt,s
jν = − 1

2π

∫

Γ

ϕj(y) log(‖xt
ν − y‖) dy = − 1

2π
‖pj − pj−1‖

∫ 1

0

log(‖xt
ν − γj(y)‖) dy. (3.17)

Since γi is affine, the first integrand is a polynomial of degree m, so we can apply an exact quadrature rule
for its evaluation.

In order to implement this computation, we need the following data:

• An array vertex of dimension n containing the coordinates of the points (pi)
n−1
i=0 .

• Arrays xq and wq of dimension q containing the points and weights of a suitable quadrature rule. For
the typical choice, Gauss quadrature, we can use the library routine build_gauss.

• An array l of dimension p containing the transformed interpolation points. This array can be computed
by the function given in Subsection 3.2.3.

Filling the matrix Bs,t requires us to integrate the kernel function for points xt
ν on intervals given by pi−1

and pi. In our example, this can be done analytically (cf. Exercise 9). In more general situations, we can
use the same quadrature rule as in the case of the integration of the Lagrange polynomials.

50 CHAPTER 3. INTEGRAL EQUATIONS

The supermatrix structure can be initialized by a simple recursion: If the supermatrix contains an
rkmatrix, we compare the diameters of the clusters involved and use the procedure described above to
initialize the fields a and b of the rkmatrix.

If the supermatrix contains a fullmatrix, we evaluate singular integrals and fill its field e.

Otherwise, we proceed recursively with the subblocks that are given by the array s.

3.4 Exercises

3.4.1 Practice

Exercise 9 Let γ : [0, 1] → R2 and c ∈ R2 be given by

γ(t) :=

(
sx + tdx

sy + tdy

)
and c :=

(
cx

cy

)
.

We assume that c 6∈ γ([0, 1]). Write a C function

static double

collocation_logarithm(double sx, double sy, double dx, double dy,

double cx, double cy);

that computes the value of the integral
∫ 1

0

log(‖γ(t) − c‖2) ‖γ′(t)‖2 dt.

There are two ways of solving this exercise: you can compute the value of the integral explicitly by using the
equation ∫

log(a2 + x2) dx = x log(a2 + x2) − 2x + 2a arctan
(x

a

)
,

or you can use Gauss quadrature. Gauss quadrature points can be computed by the routine build_gauss in
the file quadrature.c.

Exercise 10 (BEM) The structure curvebemfactory contains the data necessary for the discretization of
the single layer potential on a curve:

• An integer n and an array vertex containing the geometrical information of the curve, i.e., the points
(pi)

p−1
i=0 .

• Arrays xq and wq containing q quadrature points.

• An array xp containing p interpolation points.

• An auxiliary array l that can be used to store transformed interpolation points.

Use the given function transform_interpolation_points to implement the functions

static void

integrate_polynomial(pccluster t,

pcurvebemfactory bfactory,

double *X, int ldX);

static void

integrate_kernel(pccluster t, pccluster s,

pcurvebemfactory bfactory,

double *X, int ldX);

3.4. EXERCISES 51

that initialize the matrices X as follows: for the first function, the matrix X is filled with the entries of the
matrix At,s from (3.16). For the second function, it is filled with the entries of the matrix Bt,s.

52 CHAPTER 3. INTEGRAL EQUATIONS

Chapter 4

Elliptic Partial Differential Equations

In the previous two sections we have introduced the hierarchical matrix format that is well suited for the fast
assembly and evaluation of stiffness matrices that stem from non-local integral operators. Since the stiffness
matrix of those operators is in general dense, one has to apply some compression method in order to avoid
the O(n2) complexity.

The story is different for the discretisation and solution of partial differential equations. Such an operator
is typically local so that a finite element discretisation leads to a sparse stiffness matrix. This means, the
assembly and evaluation is of (optimal) complexity O(n). However, the inverse to the stiffness matrix is in
general dense. In Section 4.3 we prove that the inverse allows for a data-sparse H-matrix approximation.
In this chapter we consider the one-dimensional case (cf. [23]) where algebraic arguments allow us to give a
simple proof.

4.1 One-Dimensional Model Problem

We consider the differential equation

−U ′′(x) = F(x), x ∈ [0, 1], (4.1)

with Dirichlet boundary conditions
U(0) = 0, U(1) = 0 (4.2)

for a suitable right-hand side F : [0, 1] → R and seek the solution U : [0, 1] → R.

4.1.1 Discretization

A standard discretisation scheme is Galerkin’s method (see [21]) where we solve equation (4.1) projected
onto the (n-dimensional) space Vn := span{ϕ0, . . . , ϕn−1},

−
∫ 1

0

U ′′(x)ϕi(x)dx =

∫ 1

0

F(x)ϕi(x)dx, 0 ≤ i < n.

Partial integration (and the zero boundary condition) yields

∫ 1

0

U ′(x)ϕ′
i(x)dx =

∫ 1

0

F(x)ϕi(x)dx, 0 ≤ i < n.

We seek the solution U in the same space Vn, i.e., U =
∑n−1

j=0 ujϕj , such that the coefficient vector u is the
solution of the linear system

Gu = f, Gij :=

∫ 1

0

ϕ′
i(x)ϕ′

j (x)dx, fi :=

∫ 1

0

F(x)ϕi(x)dx.

53

54 CHAPTER 4. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

In the introductory example from Section 1.1 we have chosen piecewise constant basis functions but here,
the partial integration forbids the use of such functions.

Instead, we choose piecewise affine and continuous basis functions

ϕi(x) =





(n + 1)(x − i−1
n+1) if i−1

n+1 ≤ x ≤ i
n+1

(n + 1)(i+1
n+1 − x) if i

n+1 ≤ x ≤ i+1
n+1

0 otherwise

(4.3)

in the interior of a uniform grid of [0, 1] with step size h = 1/(n + 1):

1

0

φ
2

10

φ
0

The stiffness matrix G is sparse in the sense that in each row at most three entries are nonzero. Basic
calculus shows

G = (n + 1)




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




.

Contrary to the integral equation from Section 1.1, the assembly of the entries for the stiffness matrix G is
not difficult. Also, the matrix is already sparse and needs no compression. The matrix vector multiplication
can be performed in optimal complexity O(n). However, the inverse G−1 to G is not sparse. Its computation
as well as storing it is complicated.

4.1.2 The Stiffness Matrix in H-Matrix Format

For the ease of presentation we assume that n is a power of 2:

n = 2p.

The stiffness matrix G can easily be written as a 2 × 2 block matrix

G = (n + 1)




G′

−1
−1

G′




,

where G′ denotes the stiffness matrix for the model problem (4.1) with n/2 degrees of freedom but scaled
by 2n

n+1 . The two off-diagonal blocks (with the entry “−1”) are of rank 1. The two diagonal blocks can be
split up in the same way. Successively each diagonal block can be split up until we reach the cardinality 1
(see Figure 4.1). The result is a hierarchical blocking of the matrix or, in other words, an H-matrix. The
cluster tree TI , I := {0, . . . , n − 1}, is analogous to the one in Section 1.4. The block cluster tree TI×I is
defined by

root(TI×I) := I × I,

sons(r × s) :=

{
{r′ × s′ | r′ ∈ sons(r), s′ ∈ sons(s)} if r = s,
∅ otherwise.

4.1. ONE-DIMENSIONAL MODEL PROBLEM 55

Figure 4.1: The block structure of the stiffness matrix for p = 2, 3, 4.

The matrix G is an H-matrix based on the tree TI×I with blockwise rank k = 1:

G ∈ H(TI×I , 1).

4.1.3 The Inverse to the Stiffness Matrix in H-matrix Format

Inversion of a 2 × 2 Block Matrix

Let the matrix M be given in 2 × 2 block form

M =

[
M11 M12

M21 M22

]

with M, M11 regular. We perform a series of regular transformations to the equation MM−1 = I :
[

M11 M12

M21 M22

]
M−1 =

[
I 0
0 I

]

⇒
[

I M−1
11 M12

M21 M22

]
M−1 =

[
M−1

11 0
0 I

]

⇒
[

I M−1
11 M12

0 M22 − M21M
−1
11 M12

]
M−1 =

[
M−1

11 0
−M21M

−1
11 I

]

⇒
[

I M−1
11 M12

0 I

]
M−1 =

[
M−1

11 0
−(M22 − M21M

−1
11 M12)

−1M21M
−1
11 (M22 − M21M

−1
11 M12)

−1

]

⇒
[

I 0
0 I

]
M−1 =

[
M−1

11 + M−1
11 M12S

−1M21M
−1
11 −M−1

11 M12S
−1

−S−1M21M
−1
11 S−1

]

with S := M22 − M21M
−1
11 M12. The formula in the last row,

M−1 =

[
M−1

11 + M−1
11 M12S

−1M21M
−1
11 −M−1

11 M12S
−1

−S−1M21M
−1
11 S−1

]
, (4.4)

is sometimes called Frobenius formula but basically it is obtained by block Gauss elimination and can be
generalised to arbitrary m × m block matrices. We will only need the formula for the 2 × 2 case.

Inversion of a Tridiagonal Matrix

The stiffness matrix G from Section 4.1 can be regarded as a (hierarchical) 2×2 block matrix. Additionally,
it is a tridiagonal matrix which can be exploited in the inversion formula (4.4).

Lemma 4.1 Let n = 2p and M ∈ Rn×n be a tridiagonal matrix. We assume that all principal matrices of
M are regular (this is needed for the Gaussian elimination). Then

M−1 ∈ H(TI×I, 1)

56 CHAPTER 4. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

for the block cluster tree TI×I from Section 4.1.2. Recursive application of (4.4) yields the exact inverse
M−1.

Proof: We prove the statement by induction. For p = 0 and n = 2p = 1 the statement holds. Now let

M =

[
M (11) M (12)

M (21) M (22)

]
.

The off-diagonal blocks of M−1 are

(M−1)(12)
(4.4)
= −(M (11))−1M (12)S−1

and since rank(M (12)) = 1 we get rank((M−1)(12)) ≤ 1. The same holds for the other off-diagonal block:
rank((M−1)21) ≤ 1. The block S = M (22) − M (21)(M (11))−1M (12) is again tridiagonal:

(M (21)(M (11))−1M (12))ij =

{
((M (11))−1)n−1,n−1 if (i, j) = (n/2, n/2)
0 else.

Hence, M (22) and M (21)(M (11))−1M (12) are both tridiagonal. By induction (M−1)(22) = S−1 ∈ H(TI′×I′ , 1)
where I ′ := {n/2, . . . , n − 1} and TI′×I′ is the subtree of TI×I with root I ′ × I ′. By analogy we also get
(M−1)(11) ∈ H(TI′′×I′′) for the subtree TI′′×I′′ to the index set I ′′ := {0, . . . , n/2− 1}.

The structure of the block cluster tree TI×I is adapted to the tridiagonal stiffness matrix G. In higher
dimensions (d = 2, 3) the structure has to be analogous to the block cluster tree in Section 2.1. The
statement “G−1 ∈ H(TI×I, k)” will no longer be true unless k = O(n). This means that the algebraic
approach used in the previous lemma cannot be used in higher spatial dimensions.

4.2 Multi-dimensional Model Problem

Example 4.2 (Poisson’s Equation) We consider the differential equation

−∆U(x) := −
d∑

i=1

∂2
i U(x) = F(x), x ∈ Ω ⊂ Rd, (4.5)

with Dirichlet boundary conditions

U(x) = 0 in x ∈ Γ := ∂Ω (4.6)

for a right-hand side F ∈ L2(Ω) and seek the solution U ∈ H1
0 (Ω). Let Vn := 〈ϕ0, . . . , ϕn−1〉 be an n-

dimensional subspace of H1
0 (Ω). The coefficent vector u of the Galerkin solution Un(x) :=

∑n
i=1 uiϕi(x) is

the solution to the linear system

Gu = f, Gij :=

∫

Ω

〈∇ϕi(x),∇ϕj(x)〉 dx, fi :=

∫

Ω

ϕi(x)F(x) dx. (4.7)

The matrix G is sparse and the entries can easily be computed for typical basis functions ϕi, e.g., piecewise
affine basis functions on a triangulation of Ω.

For domains Ω, where the first Green’s formula holds, we can represent the solution U by the singularity
function (see [21])

s : Ω × Ω → R, s(x, y) =

{
− 1

2π log ‖x − y‖ if d = 2
1
4π‖x − y‖−1 if d = 3,

4.2. MULTI-DIMENSIONAL MODEL PROBLEM 57

in the integral form

U(x) =

∫

Ω

s(x, y)F(y)dy −
∫

Γ

s(x, y)∂nU(y)dΓy .

If the domain Ω possesses a Green’s function g(x, y) = s(x, y) + Φ(x, y), i.e., g is zero on the boundary Γ
and Φ is harmonic in Ω and twice differentiable in Ω̄, then the representation of U simplifies to

U(x) =

∫

Ω

g(x, y)F(y)dy. (4.8)

The essential behaviour of g is described by the singularity function s which is of the same type as the kernel
functions considered in Chapter 3. Therefore, it is reasonable to use the same structure also for the inverse
G−1 to the FEM stiffness matrix G.

The construction of the cluster tree TI , I := {0, . . . , n − 1}, is done as in Section 2.1 by geometrically
balanced binary space partitioning until the minimal leafsize nmin is reached. The admissibility condition
(2.3) is used to define the block cluster tree TI×I (split only inadmissible blocks).

Lemma 4.3 (H-matrix representation of the stiffness matrix) The stiffness matrix G fulfils G ∈
H(TI×I , 0).

Proof: Let t × s ∈ TI×I be an admissible block. Then

min{diam(Ωt), diam(Ωs)}
(2.3)

≤ η dist(Ωt, Ωs)

for some parameter η > 0. Since diam(Ωt) > 0 (a continuous basis function cannot have a trivial support)
we can conclude that dist(Ωt, Ωs) > 0 holds, which means that the supports of the basis functions i ∈ t̂ are
disjoint from the supports of the basis functions j ∈ ŝ. Due to (4.7) we get Gij = 0, thus rank(G|t̂×ŝ) = 0.

The previous lemma is not a surprise because the stiffness matrix G is sparse. The inverse G−1 on the other

hand is a dense matrix and we seek an approximation G̃−1 to G−1 in the set H(TI×I, k) with preferably
small rank k and good approximation quality.

By using Galerkin’s method we have already introduced a discretisation error

εn(U) := ‖U − PnU‖L2(Ω)

where Pn is the Ritz projection onto Vn. The finite element convergence is described by

εn(U) ≤ εn‖F‖L2(Ω).

The approximation error ‖G−1 − G̃−1‖2 should now be of the same size as the discretisation error:

Theorem 4.4 (Existence of an H-matrix approximant) Let p := depth(TI×I). Then there exists a

matrix G̃−1 ∈ H(TI×I, k) that fulfils

‖G−1 − G̃−1‖2 = O(εn)

for a blockwise rank

k = O
(
p2 log(p/εn)

)
.

The proof of the theorem does not yield a method to construct the approximant G̃−1 — it involves the
unknown Green’s function g from (4.8). Therefore the question remains how one can compute the approxi-

mant G̃−1. This is not done by an analytical approach but by algebraic manipulations explained in the next
chapter.

58 CHAPTER 4. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

4.3 Approximation of the inverse of the stiffness matrix

We will now prove that the inverse to the finite element stiffness matrix of an elliptic operator on a quasi-
uniform grid can be approximated (up to the size of the discretisation error ε) by an H-matrix with blockwise
rank k = O(log(1/ε)d+3). This result is contained in [1]. For integral operators we have seen in Chapter 3
that the dense stiffness matrix B allows for an efficient H-matrix approximation BH. Here, the situation is
similar, because the FEM stiffness matrix A can be written (up to the discretisation error) as

A−1 ≈ M−1BM−1,

where M is the FEM mass matrix and B the stiffness matrix of an integral operator whose kernel is the
Green function of the underlying differential operator. Unfortunately, the Green function does not possess
the nice smoothness properties we exploited in Chapter 3, therefore we have to prove a similar feature that
allows us to approximate the Green function in admissible parts of the domain by a degenerate kernel.

4.3.1 Notation of Finite Elements and Introduction into the Problem

In the following, we consider an elliptic boundary-value problem of second order in a domain Ω ⊂ Rd. For
simplicity, we concentrate to the principal part and use Dirichlet conditions:

Lu = f in Ω, where Lu := −
d∑

i,j=1

∂j(cij∂iu), (4.9)

u = 0 on Γ := ∂Ω.

The variational formulation is

a(u, v) =

∫
f(x)v(x)dx, where (4.10)

a(u, v) :=

∫

Ω

d∑

i,j=1

cij(x)∂iu(x)∂jv(x)dx. (4.11)

The precise assumptions of the boundary-value problem are as follows:

• The domain Ω ⊂ Rd is a bounded Lipschitz domain.

• The coefficient matrix C = C(x) = (cij(x))ij , cij ∈ L∞(Ω), is symmetric with

0 < λmin ≤ λ ≤ λmax (4.12)

for all eigenvalues λ of C(x) and almost all x ∈ Ω.

Remark 4.5 The ratio κC = λmax/λmin is an upper bound on almost all spectral condition numbers
cond‖·‖2

C(x). This does not necessarily hold the other way round.

In the finite element discretisation, one introduces a (d-dimensional) triangulation T , which covers (or
approximates) the domain.

For all elements t ∈ T one can consider the radius r̄(t) of the minimal sphere containing t and the radius r(t)
of the maximal sphere contained in t. T is called shape regular, if the ratio r̄(t)/r(t) remains bounded for
all t ∈ T and the whole family of triangulations T . In the case of triangles (i.e., d = 2), the shape regularity
can also described by αi(t) ≥ α > 0 for all angles α1(t), α2(t), α3(t) of t.

If there is a constant c such that diam(t) ≤ c diam(t′) for all t, t′ ∈ T , the triangulation T is said to be
quasi-uniform. In particular, we define h := max{diam(t) : t ∈ T } and hmin := minimal side length over all
t ∈ T and remark that hmin ≤ h ≤ const · hmin.

4.3. APPROXIMATION OF THE INVERSE OF THE STIFFNESS MATRIX 59

In the following we assume that piecewise affine finite element basis functions (ϕi)i∈I are chosen for the FE
space Vh. Furthermore, we formulate the following statements for the case d = 2, although the generalisation
to d > 2 is obvious.

The celebrated advantage of a finite element discretisation is that the stiffness matrix A is sparse. The
entries

Aij := a (ϕj , ϕi) (i, j ∈ I)

vanish for all nodal points i 6= j not belonging to the same triangle t ∈ T . However, the inverse A−1 is a
dense matrix and requires the efficient H-matrix techniques.

The critical question is whether the inverse A−1 can be treated by the H-matrix technique in the same way
as the discretisations of the integral operators. A positive indication is given by the fact that A−1 can be
considered as the discrete Green function and is closely connected to the integral operator

Gf :=

∫

Ω

g(x, y)f(y)dy, (4.13)

where g(·, ·) is the Green function defined by Lg(·, y) = δy (Dirac’s function at y ∈ Ω) with boundary data
g(x, y) = 0 (x ∈ Γ).

However, there is a possible obstacle: in the case of the integral operators arising from the boundary element
method we make use of the fact that the kernel function is analytic (or asymptotically smooth), when we
apply the Taylor series. This is not true in the case of G. Even if L = −∆, re-entrant corners of Ω cause the
well-known corner singularities of g. The most interesting case, however, are boundary-value problems with
non-smooth coefficients cij in (4.9), e.g., piecewise constant ones, which are necessarily discontinuous. For
nonsmooth coefficients also g has low regularity. Nevertheless, we shall show that A−1 enjoys the H-matrix
properties.

For this purpose we need some auxiliary results. Next, in §4.3.2, we investigate the mass matrix and its
inverse. Then, in §4.3.3 we show the connection between the Galerkin discretisation of G from (4.13) and
the inverse A−1 of the FE stiffness matrix. The central part of the proof is given in §4.3.4 and discusses the
approximation error of

g(x, y) ≈
k∑

i=1

ui(x)vi(y) in D1 × D2 (4.14)

depending on k (D1, D2 are subsets of Ω satisfying the admissibility condition). The result shows that the
discretisation of G has the desired properties although g is not smooth.

4.3.2 Mass Matrices

Properties of Mass Matrices

The mass matrix is the Galerkin approximation of the identity operator:

M = (Mij)i,j∈I , Mij :=

∫

Ω

ϕi(x)ϕj(x)dx.

Obvious properties of M are collected in

Remark 4.6 The mass matrix M is always positive definite and sparse.

The positive definiteness is a consequence of the linear independence of the ϕi’s, while the sparsity follows
from the fact that finite element basis functions have small local supports.

A proof for the following basic Lemma can be found in [21]:

Lemma 4.7 Let T be shape regular and quasi-uniform. Then the mass matrix M is well-conditioned, i.e.,
the ratio µmax/µmin of the extreme eigenvalues is bounded independently of the mesh size (or matrix size).

60 CHAPTER 4. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

There is a direct connection between the mass matrix and estimates of the norms in L2(Ω) and Rn. We use
the notation J for the natural bijection

J : Rn → Vh, x 7→
∑

i∈I
xiϕi, I = {1, . . . , n}.

Using the adjoint J∗ of J , we can write the mass matrix as M = J∗J .

For quasi-uniform and shape-regular triangulations it is known that there are constants 0 < cJ,1 ≤ cJ,2

(independent of h and n) such that

cJ,1‖x‖h ≤ ‖Jx‖L2(Ω) ≤ cJ,2‖x‖h for all x ∈ Rn, (4.15)

provided that the discrete Euclidean norm ‖ ·‖h is suitably scaled. Obviously, cJ,2 is an upper bound of ‖J‖;
hence,

µmax := ‖M‖2 = ‖J∗J‖2 = ‖J‖2 ≤ c2
J,2,

µmin := 1/‖M−1‖2 ≥ c2
J,1,

cond2(M) = µmax/µmin ≤ (cJ,2/cJ,1)
2
.

Vice versa, scaling the Euclidean norm ‖·‖h appropriately, (4.15) holds with cJ,1 =
√

µmin and cJ,2 =
√

µmax.
We mention that the FE stiffness matrix can be written as A = J∗LJ, where L : H1

0 (Ω) → H−1(Ω) is the
differential operator from (4.9).

The matrix graph of M consists of all nodal points (corner points of the triangles t ∈ T), while an edge
(P, P ′) exists in the graph if and only if P, P ′ ∈ t for some t ∈ T (see Hackbusch [22, Section 6.2]). For
i, j ∈ I we define δij to be the minimal length of a path from i to j, where δii := 0 for i = j. If no path from
i to j exists (e.g., for a reducible matrix M), we formally set δij := ∞. δij defines a distance in the vertex
set of the graph.

Lemma 4.8 Let T be shape regular and quasi-uniform with hmin being the minimal side length of the tri-
angles t ∈ T . Let Ωi = supp ϕi. Then δij ≥ 1 + dij/hmin for all i 6= j, where dij := dist(Ωi, Ωj).

Proof: Consider a path connecting the nodal points Pi ∈ Ωi and Pj ∈ Ωj consisting of δij edges. Since
i 6= j, the first step of the path leads from Pi ∈ Ωi to Qi ∈ ∂Ωi. The remaining path has the length
δij − 1. Since each edge of the graph corresponds to a side of length ≥ hmin, the geometrical length of the
path is ≥ (δij − 1)hmin and must be larger than dist(Qi, Pj), i.e., δij − 1 ≥ dist(Qi, Pj)/hmin. Note that
dij := dist(Ωi, Ωj) ≤ dist(Qi, Pj). Hence, the desired estimate δij ≥ 1 + dij/hmin follows.

Componentwise Estimates of Inverse Matrices

Let σ(M) denote the spectrum of M , while δij is the graph distance introduced above. Πk is the space of
all polynomials of degree ≤ k.

Lemma 4.9 Let M = (Mij)i,j∈I be a symmetric positive definite matrix with σ(M) ⊂ [a, b] (0 < a ≤ b).
Then for i 6= j, the entries of M−1 satisfy the estimate

|(M−1)ij | ≤ ĉ qδij with ĉ =
(1 +

√
r)2

2ar
, q =

√
r − 1√
r + 1

, r =
b

a
. (4.16)

Proof: For any polynomial p ∈ Πk with k < δij we observe that p(M)ij = 0. Furthermore, the spectral
norm and the spectral radius coincide for normal matrices:

‖M−1 − p(M)‖2 = ρ(M−1 − p(M)) = max
µ∈σ(M)

|µ−1 − p(µ)|.

4.3. APPROXIMATION OF THE INVERSE OF THE STIFFNESS MATRIX 61

Due to a result of Chebyshev (cf. [27, p. 33]) there is a polynomial pk ∈ Πk so that

‖µ−1 − pk(µ)‖∞,[a,b] ≤ ĉ qk+1

with q and ĉ as in (4.16). Set k := δij − 1. The previous arguments show the final result:

|(M−1)ij | = |(M−1)ij − pk(M)ij | ≤ ‖M−1 − pk(M)‖2 ≤ ĉ qk+1 = ĉ qδij .

Now, we apply Lemma 4.9 to the mass matrix. Its spectrum is contained in [a, b] with a = µmin and b = µmax.
Due to Lemma 4.7, the ratio r = µmax/µmin is bounded independently of the mesh size, i.e., independently
of the size of the matrix M. Together with δij ≥ 1 + dij/hmin from Lemma 4.8 we obtain

Lemma 4.10 Let T be shape regular and quasi-uniform with hmin being the minimal side length of the
triangles t ∈ T . Then the inverse of the mass matrix satisfies

|(M−1)ij | ≤ C ‖M−1‖2 qdij/h for all i 6= j ∈ I,

where C = r−1
2r and q =

√
r−1√
r+1

∈ (0, 1) with r = µmax/µmin are independent of the matrix size n.

Approximation by an H-Matrix

While the global Frobenius norm is easily described by those of the submatrices, the situation is more
involved for the spectral norm. Given the partition P (leaves of TI×I), we denote by P` the subset {t× s ∈
P : level(t) = `}.

Lemma 4.11 Let P be a partition described by a cluster tree of depth L = O(log n). Then there is a constant
Csp such that for any matrix M ∈ Rn×n the following inequality holds between the global and the blockwise
spectral norms:

‖M‖2 ≤ Csp

L∑

`=0

max
t×s∈P`

‖M |t̂×ŝ‖2. (4.17)

Proof: Exercise

Under the assumption of shape regularity and quasi-uniformity, we have the estimate

vol(Ωi) ≥ cvh
d (4.18)

as well as the inequalities (4.15) discussed above. The supports Ωi may overlap. In accordance with the
standard finite element discretisation we require that each triangle t belongs to the support of a bounded
number of basis functions, i.e., there is a constant cM > 0 so that

cM vol(t) ≥
∑

i∈t

vol(Ωi), t ∈ T . (4.19)

Theorem 4.12 Assume (4.18), (4.15), (4.19) and define the partition P of the mass matrix M by the
admissibility condition

dist(Ωt, Ωs) ≥ ρ max{diam(Ωt), diam(Ωs)} > 0 or min{#t̂, #ŝ} = 1. (4.20)

Then for any ε > 0, there is NH ∈ H(TI×I , kε) satisfying ‖M−1 −NH‖2 ≤ ε‖M−1‖2 with kε = O(logd(L
ε))

(L = O(log n) from Lemma 4.11).

62 CHAPTER 4. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Proof: (a) We use the following explicit definition of NH = NH(k) depending on k ∈ N. Set

NH|t̂×ŝ := M−1|t̂×ŝ if #t̂#ŝ ≤ k2,

NH|t̂×ŝ := 0 otherwise, for t × s ∈ P.

In the first case we have rank(NH|t̂×ŝ) ≤ k, while in the second case rank(NH|t̂×ŝ) = 0 ≤ k. Therefore NH
belongs to H(P, k). We define the error matrix

E := M−1 − NH(k).

Due to Lemma 4.11, it remains to determine the spectral norms of E|t̂×ŝ = M−1|t̂×ŝ in the case of #t̂#ŝ > k2.

(b) For #t̂#ŝ > k2 and i ∈ t̂, j ∈ ŝ, we want to estimate Eij = (M−1)ij . Condition (4.20) implies

dij = dist(Ωi, Ωj) ≥ dist(Ωt, Ωs) ≥ ρ max{diam(Ωt), diam(Ωs)}.

We notice that (diam(Ωt))
d ≥ vol(Ωt)2

d/ωd (ωd: volume of the unit sphere), and from (4.19) and (4.18) we
obtain that

vol(Ωt) ≥ c−1
M

∑

i∈t̂

vol(Ωi) ≥
cv

cM
hd#t̂.

Altogether, dij ≥ C ′h d
√

#t̂ follows with C ′ expressed by ωd, ρ, cM , and cv . Similarly, dij ≥ C ′h d
√

#ŝ holds.

The combination yields dij/h ≥ C ′ 2d
√

#t̂#ŝ. This proves

|Eij | ≤ C‖M−1‖2q
C′ 2d

√
#t̂#ŝ.

(c) A trivial estimate of the spectral norm yields

‖E|t̂×ŝ‖2 ≤
√

#t̂#ŝ max
i∈t̂,j∈ŝ

|Eij | ≤ C

√
#t̂#ŝ‖M−1‖2q

C′ 2d
√

#t̂#ŝ.

We simplify the right-hand side: for a suitable C ′′ < C ′, the estimate C` qC′ d
√

` ≤ qC′′ d
√

` holds for all
` ≥ kmin so that

‖E|t̂×ŝ‖2 ≤ ‖M−1‖2q
C′′ 2d

√
#t̂#ŝ < ‖M−1‖2q

C′′ d
√

k.

Lemma 4.11 implies ‖E‖2 ≤ (L + 1)C∗ ‖M−1‖2 qC′′ d
√

k with C∗ = CCsp. Choose k = kε ≥ kmin such that

(L + 1)C∗ qC′′ d√
k ≤ ε, i.e., kε = max{kmin,O(logd(LC∗

ε)} = O(logd(L
ε)).

We summarise that the simple construction used in the proof yields an H(TI×I, k)-approximation with
k = O(logd(L

ε)).

4.3.3 Connection between A
−1 and B

The integral operator G from (4.13) leads to the Galerkin discretisation matrix B = J ∗L−1J with entries

Bij :=

∫

Ω

∫

Ω

ϕj(x)g(x, y)ϕi(y)dxdy (i, j ∈ I),

where g is the Green function.

There are two FE error estimates which can be considered. The L2(Ω)-orthogonal projection is expressed
by

Qh := JM−1J∗ : L2(Ω) → Vh, i.e., (Qhu, vh)L2 = (u, vh)L2 for all u ∈ V and vh ∈ Vh.

The related error is described by
eQ

h (u) := ‖u − Qhu‖L2(Ω).

4.3. APPROXIMATION OF THE INVERSE OF THE STIFFNESS MATRIX 63

On the other hand, the finite element approximation is connected with the Ritz projection

Ph = JA−1J∗L : V → Vh.

If u ∈ V is the solution of the variational problem a(u, v) = f(v) (cf. (4.11)), uh = Phu is its finite element
solution. The FE error is

eP
h (u) := ‖u− Phu‖L2(Ω).

Since the L2(Ω)-orthogonal projection is the optimal one, i.e., eQ
h (u) ≤ eP

h (u), we only need estimates of eP
h .

As proved in [1], the weakest form of the finite element convergence is described by

eP
h (u) ≤ εh‖f‖L2(Ω) for all u = L−1f, f ∈ L2(Ω), (4.21)

where εh → 0 as h → 0. Only under further smoothness conditions on the coefficients cij (see (4.9)) and
regularity assumptions, we can expect a better behaviour εh = O(hσ) with σ ∈ (0, 2] .

Lemma 4.13 Let cJ,2 and εh be the quantities in (4.15) and (4.21). Then ‖MA−1M − B‖2 ≤ 2 c2
J,2 εh.

Proof: Let x,y ∈ Rn and fh = Jx, vh = Jy ∈ Vh. Then, using B = J∗L−1J and the projections from
above, we have

〈(MA−1M − B)x,y〉 = 〈(MA−1M − J∗L−1J)M−1J∗fh, M−1J∗vh〉
=
(
(JA−1J∗ − JM−1J∗L−1JM−1J∗)fh, vh

)
L2(Ω)

= (PhL−1fh − QhL−1Qhfh, vh)L2(Ω) = (PhL−1fh − QhL−1fh, vh)L2(Ω)

= ([L−1fh − PhL−1fh] − [L−1fh − QhL−1fh], vh)L2(Ω)

≤
(
eP

h (L−1fh) + eQ
h (L−1fh)

)
‖vh‖L2(Ω) ≤ 2 eP

h (L−1fh)‖vh‖L2(Ω)

≤ 2 εh‖fh‖L2(Ω)‖vh‖L2(Ω) ≤ 2 c2
J,2 εh‖x‖h‖y‖h,

which proves ‖MA−1M − B‖2 ≤ 2 c2
J,2 εh.

Corollary 4.14 ‖A−1 − M−1BM−1‖2 ≤ 2 c−4
J,1 c2

J,2 εh.

The further plan is as follows. In §4.3.5 we prove that B can be well approximated by an H-matrix BH.
From Theorem 4.12 we know that M−1 has an H-matrix approximation NH. Due to Theorem 6.18, the
product NHBHNH yields an H-matrix approximating M−1BM−1. Since additional errors of the order of
the discretisation error εh are acceptable, approximations of M−1BM−1 are also good approximations of
A−1 as shown in Corollary 4.14.

4.3.4 Green Functions

The Green function g is defined in Ω × Ω. If ω1 and ω2 are disjoint, the restriction of g to ω1 × ω2 is L-
harmonic, i.e., Lg = 0. The subspace of L-harmonic functions will be considered in §4.3.4. First we give
approximation results for general closed subspaces of L2(D).

Approximation by Finite Dimensional Subspaces

In the following lemmata D ⊂ Rd is a domain. All distances and diameters use the Euclidean norm in Rd

except the distance of functions which uses the L2(D)-norm. The constant cappr in (4.22) depends only on
the spatial dimension d.

64 CHAPTER 4. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Lemma 4.15 Let D ⊂ Rd be a convex domain and X a closed subspace of L2(D). Then for any k ∈ N

there is a subspace Vk ⊂ X satisfying dim Vk ≤ k so that

distL2(D)(u, Vk) ≤ cappr
diam(D)

d
√

k
‖∇u‖L2(D) for all u ∈ X ∩ H1(D). (4.22)

Proof: (a) First we assume k = `d and D ⊂ Q = {x ∈ Rd : ‖x − z‖∞ < 1
2 diam(D)} for some z ∈ Rd. We

subdivide the cube Q uniformly into k subcubes Qi, i = 1, . . . , k, and set Di = D ∩ Qi, i = 1, . . . , k. Each

of the sets Di is convex with diam(Di) ≤
√

d
` diam(D). Let

Wk = {v ∈ L2(D) : v is constant on Di for all i = 1, . . . , k}.

Then dim Wk ≤ k and according to Poincaré’s inequality for u ∈ H1(D) it holds that

∫

Di

|u − ūi|2dx ≤ π−2 diam2(Di)

∫

Di

|∇u|2dx,

where ūi = vol(Di)
−1
∫

Di
u dx is the mean value of u in Di. Summation over all i yields

distL2(D)(u, Wk) ≤ ‖u − ū‖L2(D) ≤
√

d

π`
diam(D) ‖∇u‖L2(D)

for ū defined by ū|Di
= ūi.

(b) For general k ∈ N, choose ` := b d
√

kc ∈ N, i.e., `d ≤ k < (` + 1)d. Applying Part (a) for k′ := `d, we use
the space Wk := Wk′ satisfying dim Wk = dim Wk′ ≤ k′ ≤ k. Using 1

` ≤ 2
`+1 < 2

d
√

k
, we arrive at

distL2(D)(u, Wk) ≤ cappr
diam(D)

d
√

k
‖∇u‖L2(D)

with the constant cappr := 2
√

d cd.

(c) Let P : L2(D) → X be the L2(D)-orthogonal projection onto X and Vk = P (Wk). Keeping in mind that
P has norm one and u ∈ X , the assertion follows from ‖u − P ū‖L2(D) = ‖P (u − ū)‖L2(D) ≤ ‖u − ū‖L2(D).

In the last proof we have restricted Di to convex domains though Poincaré’s inequality holds whenever the
embedding H1(Di) ↪→ L2(Di) is compact. This is for example true if Di fulfils a uniform cone condition.
However, in this case it is not obvious how the constant depends on the geometry.

Space of L-Harmonic Functions

The Green function g(x, ·) is a special example of an L-harmonic function in a subdomain DΩ ⊂ Ω (provided
x /∈ DΩ) with zero boundary values on ∂Ω ∩ DΩ. The space X in Lemma 4.15 will be substituted by a
function space X(D) ⊂ L2(D) which we define next. While the notation X(D) will be used for different D,
the underlying domain Ω is fixed.

Let D be a domain intersecting Ω: DΩ := D ∩ Ω 6= ∅. The boundary ∂DΩ

consists of two parts:

Γ0(D) := D ∩ ∂Ω, Γ1(D) := ∂DΩ\Γ0(D) = ∂D ∩ Ω. (4.23)

Γ0 = ∅ holds in the cases of D ⊂ Ω or D ⊃ Ω. The former case may happen,
whereas the latter is of no interest for us.

���

���

�

�

4.3. APPROXIMATION OF THE INVERSE OF THE STIFFNESS MATRIX 65

If D is not a subset of Ω, we require that outside of Ω functions u ∈ X(D) are extended by zero. The
functions u ∈ X(D) are locally in H1(D) relative to Γ1(D) (notation: u ∈ H1

rl,Ω(D)) in the following sense:

H1
rl,Ω(D) := {u ∈ L2(D) : u|D\Ω = 0, u ∈ H1(K) for all K ⊂ D with dist(K, Γ1(D)) > 0}. (4.24)

The first condition is empty if D ⊂ Ω.

The L-harmonicity1 is required in the weak formulation of Lu = 0,

a(u, ϕ) = 0 for all ϕ ∈ C∞
0 (DΩ) (DΩ = D ∩ Ω) (4.25)

with a(·, ·) from (4.11). The final definition is

X(D) := {u ∈ H1
rl,Ω(D) : u satisfies (4.25)}. (4.26)

The Green function g(x, ·) can be extended to D by zero. This extension is in H1(D) and hence in X(D) if
x ∈ Ω \ D.

Lemma 4.16 The space X(D) is closed in L2(D).

The proof is postponed to the next subsection, since it needs Lemma 4.18. The closeness of X(D) is necessary
in order to use X(D) as X in Lemma 4.15.

Remark 4.17 Consider X(D) and X(D′) for two domains D′ ⊂ D intersecting Ω.

(a) For any u ∈ X(D), the restriction u|D′ belongs to X(D′); hence, in short notation, X(D)|D′ = X(D′).
If dist(D′, Γ1(D)) > 0, even X(D)|D′ = X(D′) ∩ H1(D′) holds (cf. (4.24)).

(b) The relevant parts of D and D′ are DΩ = D∩Ω, D′
Ω = D′∩Ω as well as Γ0(D) and Γ0(D

′). DΩ and D′
Ω

are the domains of L-harmonicity, whereas Γ0(D) and Γ0(D
′) describe the location of zero boundary values

due to the zero extension outside. As long as D = D′ and Γ0 = Γ′
0, differences in D \ Ω and D′ \ Ω are

irrelevant, since functions from X(D) and X(D′) vanish in these parts anyway.

The Caccioppoli Inequality

The following lemma shows that any function u ∈ X(D) allows to estimate ‖∇u‖L2(KΩ) for a domain K ⊂ D
not touching Γ1(D) by means of the weaker norm ‖u‖L2(DΩ). Note that K may contain parts of Γ0(D).

Lemma 4.18 Let X(D), Γ1(D) as in (4.26), (4.23), and K ⊂ D, KΩ = K ∩ Ω with dist(K, Γ1(D)) > 0.
Further, let κC = λmax/λmin (cf. (4.12)). Then the so-called Caccioppoli inequality holds:

‖∇u‖L2(KΩ) ≤
4
√

κC

dist(K, Γ1(D))
‖u‖L2(DΩ) for all u ∈ X(D). (4.27)

Proof: Let η ∈ C1(D) satisfy 0 ≤ η ≤ 1, η = 1 in K, η = 0 in a neighbourhood of Γ1(D) and |∇η| ≤ 2/δ in
DΩ, where we set δ = dist(K, Γ1(D)). Since K ′ := supp(η) ⊂ D satisfies dist(K ′, Γ1(D)) > 0, (4.24) implies
u ∈ H1(K ′). Hence, ϕ := η2u ∈ H1

0 (DΩ) may be used as a test function in a(u, ϕ) = 0 due to the dense
embedding of C∞

0 (DΩ) in H1
0 (DΩ):

0 =

∫

DΩ

(∇u)T C(x)∇(η2u)dx = 2

∫

DΩ

ηu(∇u)T C(x)(∇η)dx +

∫

DΩ

η2(∇u)T C(x)(∇u)dx.

1To be precise, we need L∗-harmonicity, since the Green function g(x, y) is L-harmonic w.r.t. x but L∗-harmonic w.r.t.
y. However, since here L consists only of the principal part (4.9), L is self-adjoined. But notice that symmetry is not at all
essential.

66 CHAPTER 4. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

From (4.12) it follows that

∫

DΩ

η2
∥∥∥C1/2(x)∇u

∥∥∥
2

dx =

∫

DΩ

η2(∇u)T C(x)(∇u)dx = 2

∣∣∣∣
∫

DΩ

ηu(∇u)T C(x)(∇η)dx

∣∣∣∣

≤ 2

∫

DΩ

η |u| ‖C1/2(x)∇η‖ ‖C1/2(x)∇u‖dx

≤ 4

√
λmax

δ

∫

DΩ

|u|
(
η‖C1/2(x)∇u‖

)
dx

≤ 4

√
λmax

δ

(∫

DΩ

η2‖C1/2(x)∇u‖2dx

)1/2

‖u‖L2(DΩ),

i.e., ‖η C1/2(x)∇u‖L2(DΩ) ≤ 4
√

λmax

δ ‖u‖L2(DΩ). The estimation by

‖∇u‖L2(KΩ) ≤ ‖η∇u‖L2(DΩ) ≤ λ
−1/2
min ‖ηC1/2(x)∇u‖L2(DΩ)

yields the assertion.

Remark 4.19 Since u = 0 in D\Ω, we may write the norms in the inequality of Lemma 4.18 as ‖∇u‖L2(K)

and ‖u‖L2(D) (i.e., K instead of KΩ and D instead of DΩ).

Proof:(Lemma 4.16) Let {uk}k∈N ⊂ X(D) converge to u in L2(D). Let K ⊂ D with dist(K, Γ1(D)) > 0.
According to Remark 4.19, the sequence {∇uk}k∈N is bounded on K,

‖∇uk‖L2(K) ≤ c ‖uk‖L2(D) ≤ C.

Due to the Banach-Alaoglu Theorem, a subsequence {uik
}k∈N converges weakly in H1(K) to û ∈ H1(K).

Hence, for any v ∈ L2(K) we have (u, v)L2(K) = limk→∞(uik
, v)L2(K) = (û, v)L2(K) proving u = û ∈ H1(K).

Since the functional a(·, ϕ) for ϕ ∈ C∞
0 (DΩ) is in (H1(K))′, we see by the same argument that a(u, ϕ) = 0.

Finally, uk|D\Ω = 0 leads to u|D\Ω = 0. Hence, u ∈ X(D) is shown.

Main Theorem

First we investigate how large the dimension of a finite dimensional subspace must be to approximate a
function from X(D) in a subdomain D2 of D up to a certain error.

Lemma 4.20 Let D, Γ1(D), DΩ and X(D) as before (cf. Lemma 4.18) and assume that D2 ⊂ D is a
convex domain such that

dist(D2, ∂D) ≥ ρ diam(D2) > 0.

Then for any µ > 1 there is a subspace W ⊂ X(D2) so that

distL2(D2)(u, W) ≤ 1

µ
‖u‖L2(DΩ) for all u ∈ X(D) (4.28)

and

dim W ≤ cd
ρdlog µed+1 + dlog µe, cρ = 4ecappr

√
κC

1 + 2ρ

ρ
. (4.29)

Proof: (a) Consider K(r) := {x ∈ Rd : dist(x, D2) ≤ r} for 0 ≤ r ≤ dist(D2, ∂D). We conclude that
K(r) are again convex domains which are increasing with r: K(r1) ⊇ K(r2) for r1 ≥ r2. The smallest is
K(0) = D2, while K(dist(D2, ∂D)) is the largest one which is still in D. We remark that

dist(K(r2), ∂K(r1)) = r1 − r2 for r1 ≥ r2 and diam(K(r)) ≤ diam(D2) + 2r.

4.3. APPROXIMATION OF THE INVERSE OF THE STIFFNESS MATRIX 67

(b) Consider the sequence r0 > r1 > . . . > ri = 0 with rj := (1 − j/i) dist(D2, ∂D), where i is chosen later.
Using K(r) from Part (a) we set

Dj := K(rj), Xj := X(Dj) (cf. (4.26))

and notice that D2 = Di ⊂ Di−1 ⊂ . . . ⊂ D0 ⊂ D.

(c) Let j ∈ {1, . . . , i}. Applying Lemma 4.18 (Remark 4.19) with (Dj−1, Dj) instead of (D, K), we obtain

‖∇v‖L2(Dj) ≤
4
√

κC

dist(Dj , Γ1(Dj−1))
‖v‖L2(Dj−1) for all v ∈ Xj−1

(we recall Γ1(D
j−1) = ∂Dj−1 ∩ Ω). Because of dist(Dj , Γ1(D

j−1)) ≥ dist(Dj , ∂Dj−1) = rj−1 − rj = r0/i
(see Part (a)), the resulting estimate is

‖∇v‖L2(Dj) ≤
4i
√

κC

r0
‖v‖L2(Dj−1) for all v ∈ Xj−1. (4.30)

(d) Apply Lemma 4.15 with Dj instead of D and with the choice k := d(βi)de, where the factor β will be
adjusted later. Then this Lemma ensures that there is a subspace Vj ⊂ Xj satisfying dim Vj ≤ k and

distL2(Dj)(v, Vj) ≤ cappr
diam(Dj)

d
√

k
‖∇v‖L2(Dj) for all v ∈ Xj ∩ H1(Dj).

Using d
√

k ≥ βi and diam(Dj) = diam(D2) + 2rj ≤ diam(D2) + 2r0 (see Part (a)), we arrive at

distL2(Dj)(v, Vj) ≤ cappr
diam(D2) + 2r0

βi
‖∇v‖L2(Dj) for all v ∈ Xj ∩ H1(Dj). (4.31)

Since any v ∈ Xj−1 also belongs to Xj ∩H1(Dj), the estimates (4.30), (4.31) together with r0 ≥ ρ diam(D2)
may be combined to

distL2(Dj)(v, Vj) ≤
1 + 2ρ

ρ

4cappr
√

κC

β
‖v‖L2(Dj−1) for all v ∈ Xj−1. (4.32)

In particular, the factor 1+2ρ
ρ

4cappr
√

κC

β becomes µ−1/i for the choice

β := β0M
1/i with β0 := 4cappr

√
κC

1 + 2ρ

ρ
. (4.33)

(e) For any given u =: v0 ∈ X0, (4.32) and (4.33) lead to v0|D1 = u1 + v1 with u1 ∈ V1 and

‖v1‖L2(D1) ≤ µ−1/i ‖v0‖L2(D0).

Consequently, v1 belongs to X1. Similarly, for all j = 1, . . . , i we are able to find an approximant uj ∈ Vj so
that vj−1|Dj = uj + vj and ‖vj‖L2(Dj) ≤ µ−1/i ‖vj−1‖L2(Dj−1). Hence, the subspace

W := span{Vj |D2 : j = 1, . . . , i}
using the restrictions of Vj to the smallest domain D2 = Di contains uj |D2 ∈ Vj |D2 ⊂ W . Therefore,

v0 = vi +
∑i

j=1 uj leads to

distL2(D2)(v0, W) ≤ ‖vi‖L2(D2) ≤
(
µ−1/i

)i

‖v0‖L2(D0) ≤ µ−1‖u‖L2(DΩ),

where the last inequality is due to D0 ⊂ D and u|D\Ω = 0.

(f) The dimension of W is bounded by
∑i

j=1 dim Vj = id(βi)de ≤ i + βdid+1. The choice i := dlog µe yields

dim W ≤ dlog µe + βd
0eddlog µed+1

because of β = β0µ
1/i ≤ β0e. Together with cρ = β0e, we obtain the final result.

68 CHAPTER 4. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Remark 4.21 (a) Setting µ = exp(m), the dimension of W is bounded by cd
ρdmed+1 + dme ∼ cd

ρm
d+1.

On the other hand, if a dimension K = dim W is given, the possible improvement factor 1
µ = exp(−m) is

described by m & (cρK)1/(d+1)/cρ.

(b) The factor 1+2ρ
ρ in (4.29) shows that ρ should be of order O(1), e.g., dist(D2, ∂D) ≥ diam(D2) is a

reasonable choice.

Next we consider the Green functions g(x, ·) with x ∈ D1 ⊂ Ω, which are L-harmonic in Ω \ D1. Note that
its approximant gk(x, ·) from the following theorem is of the desired form (4.14).

Theorem 4.22 Let D1 ⊂ Ω and D2 with D2 ∩ Ω 6= ∅ be two domains such that D2 is convex and

dist(D1, D2) ≥ ρ diam(D2) > 0.

Then for any ε ∈ (0, 1) there is a separable approximation

gk(x, y) =

k∑

i=1

ui(x)vi(y) with k ≤ kε = cd
ρ/2dlog

1

ε
ed+1 + dlog

1

ε
e,

where cρ is defined in (4.29), so that

‖g(x, ·) − gk(x, ·)‖L2(D2) ≤ ε‖g(x, ·)‖L2(DΩ) for all x ∈ D1, (4.34)

where D := {y ∈ Rd : dist(y, D2) ≤ ρ
2diam(D2)} and DΩ := D ∩ Ω.

Proof: Note that the right-hand side ‖g(x, ·)‖L2(DΩ) does not contain the singularity of g because of
dist(DΩ, D1) ≥ dist(D, D1) = dist(D2, D1) − ρ

2diam(D2) ≥ ρ
2diam(D2) > 0.

Since dist(D2, ∂D) = ρ
2diam(D2), we can apply Lemma 4.20 with M = ε−1 and ρ replaced by ρ/2. Let

{v1, . . . , vk} be a basis of the subspace W ⊂ X(D2) with k = dim W ≤ cd
ρ/2dlog 1

εed+1 + dlog 1
εe according

to Lemma 4.20.

For any x ∈ D1, the function gx := g(x, ·) is in X(D). By means of (4.28), gx = ĝx + rx holds with ĝx ∈ W
and ‖rx‖L2(D2) ≤ ε‖gx‖L2(DΩ). Expressing ĝx by means of the basis, we obtain

ĝx =
k∑

i=1

ui(x)vi

with coefficients ui(x) depending on the index x. Since x varies in D1, the ui are functions defined on D1.

The function gk(x, y) :=
∑k

i=1 ui(x)vi(y) satisfies estimate (4.34).

Remark 4.23 Without loss of generality, we may choose {v1, . . . , vk} as an orthogonal basis of W . Then
the coefficients ui(x) in the latter expansion equal (g(x, ·), vi)L2(D2∩Ω) showing that the ui’s satisfy Lui = vi

with homogeneous Dirichlet boundary conditions. In particular, ui is L-harmonic in Ω \ D2. Note that the
ui’s do not depend on D1.

For later use, we add a trivial remark.

Remark 4.24 Assume (4.34) and E ⊂ D1. Then ‖g − gk‖L2(E×D2) ≤ ε‖g‖L2(E×DΩ).

Theorem 4.22 can be easily adjusted to fundamental solutions s,

LxS(x, y) = δ(x − y) for all x, y ∈ Rd,

which play a central role for example in boundary element methods (BEM). The following corollary guar-
antees that we are able to treat BEM matrices by H-matrices.

4.3. APPROXIMATION OF THE INVERSE OF THE STIFFNESS MATRIX 69

Corollary 4.25 Assume that a fundamental solution S exists for L. Let D1, D2 ⊂ Rd be two domains with
D2 being convex and

dist(D1, D2) ≥ ρ diam(D2) > 0.

Then for ε > 0 there is Sk(x, y) =
∑k

i=1 ui(x)vi(y) with k ≤ kε = cd
ρ/2dlog 1

εed+1 + dlog 1
εe, where cρ is

defined in (4.29), so that

‖S(x, ·) − Sk(x, ·)‖L2(D2) ≤ ε‖S(x, ·)‖L2(D) for all x ∈ D1,

where D := {x ∈ Rd : dist(x, D2) ≤ 1
2 dist(D1, D2)}.

4.3.5 FEM Matrices

Theorem 4.26 Assume (4.20) and let Ωs be convex for all s ∈ TI. Let P := L(TI×I). For any ε ∈ (0, 1),
let kε ∈ N (kε ∼ O(logd+1(1

ε))) be the dimension bound from Theorem 4.22. Then for k ≥ kε there is
BH ∈ H(TI×I, k) such that the spectral norm of the difference is bounded by

‖B − BH‖2 ≤ ε
c(κC , ρ, diam(Ω))

λmin
L, (4.35)

where c(κC , ρ, Ω) is a function depending on κC = λmax/λmin, ρ from (4.20) and diam(Ω). L = O(log n) is
the maximal level from Lemma 4.11.

Proof: (a) Let b := t × s ∈ P be admissible such that the first inequality of (4.20) holds. Apply Theorem
4.22 with D1 = Ωt, D2 = Ωs, and DΩ := {x ∈ Ω : dist(x, Ωs) ≤ ρ

2diam(Ωs)}. According to Remark 4.24

there is g̃b(x, y) =
∑kε

i=1 ub
i (x)vb

i (y) such that

‖g − g̃b‖L2(Ωt×Ωs) ≤ ε‖g‖L2(Ωt×DΩ).

Let the functions ub
i and vb

i of g̃b be extended to Ω by zero. We define the integral operator

Kbϕ =

∫

Ω

g̃b(·, y)ϕ(y) dy for supp ϕ ⊂ Ω

and set BH|b = (J∗KbJ)|b for all blocks b. The rank of BH|b is bounded by kε since each term ub
i (x)vb

i (y)
in g̃b produces one rank-1 matrix in (J∗KbJ)|b.
In the inadmissible blocks b we use the exact Green function, i.e., g̃b := g.

(b) Consider an admissible block b = t × s ∈ P . Choose any vectors x = (xj)j∈s, y = (yi)i∈t and
set u = Jx =

∑
j∈s xjϕj and v = Jy. To see that BH|b approximates the block B|b, remember the

representation (L−1ϕ)(x) =
∫
Ω g(x, y)ϕ(y) dy of L−1 and use (4.15). The estimate

|〈(B|b − BH|b)y,x〉| = |〈J∗(L−1 − Kb)Jy,x〉| = |((L−1 − Kb)v, u)L2 |
≤ ‖g − g̃b‖L2(Ωt×Ωs) ‖u‖L2(Ωs) ‖v‖L2(Ωt)

≤ ε ‖g‖L2(Ωt×DΩ) ‖u‖L2(Ω) ‖v‖L2(Ω)

≤ ε c2
J,2 ‖g‖L2(Ωt×DΩ) ‖x‖ ‖y‖

proves ‖B|b − BH|b‖2 ≤ ε c2
J,2 ‖g‖L2(Ωt×DΩ) for the spectral norm.

Although g(·, y) ∈ W 1,1(Ω) for all y ∈ Ω, g(·, ·) does not belong to L2(Ω × Ω) as soon as d ≥ 4. From [20]

|g(x, y)| ≤ c(d, κC)

λmin
|x − y|2−d (4.36)

it can be seen that ‖g‖L2(Ωt×DΩ) may increase when the sets Ωt, DΩ are approaching each other. The
construction of Ωt ensures

δ := dist(Ωt, DΩ) =
1

2
dist(Ωt, Ωs) ≥

ρ

2
diam(Ωt)

70 CHAPTER 4. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

as well as δ ≥ ρ
2 diam(Ωs). Hence (4.36) implies

‖g‖L2(Ωt×DΩ) ≤
c(d, κC)

λmin
δ2−d

√
vol(Ωt) vol(DΩ).

Using vol(DΩ) ≤ ωd(
1
2 diam(DΩ))d ≤ ωd(1 + 1/ρ)dδd and vol(Ωt) ≤ ωd(δ/ρ)d with ωd = vol(B1(0)), we see

that

‖g‖L2(Ωt×DΩ) ≤ Cρ
c(d, κC)

λmin
δ2 with Cρ := ωd

(ρ + 1)d/2

ρd
.

The rough estimate δ ≤ diam(Ω) = O(1) together with Lemma 4.11 yields (4.35).

Corollary 4.27 Assume that each (possibly non-convex) set Ωs has a convex superset Ys (e.g., bounding
box) satisfying the admissibility condition. Then Theorem 4.26 remains true for Ωt, Ωs.

Proof: Apply Theorem 4.26 to Yt and Ys.

Take BH ∈ H(TI×I, kB) from Theorem 4.26 and let NH ∈ H(TI×I , kN) be the H-matrix approximations
of M−1 (cf. Theorem 4.12). The product CH := NHBHNH belongs to H(TI×I, k) with k := C2

idC2
sp(L +

1)2 max{kB , kN}.
The estimation of the spectral norm of

M−1BM−1 − NHBHNH = (M−1 − NH)BM−1 + NH(B − BH)M−1 + NHBH(M−1 − NH)

by

‖M−1 − NH‖2(‖B‖2‖M−1‖2 + ‖NH‖2‖BH‖2) + ‖NH‖2‖M−1‖2‖B − BH‖2

is obvious. Let εN := ‖M−1 − NH‖2, εB := ‖B − BH‖2. Since εN ≤ ‖M−1‖2, εB ≤ ‖B‖2 and
‖B‖2, ‖M−1‖2 = O(1), we obtain

‖M−1BM−1 − NHBHNH‖2 ≤ CII (εN + εB). (4.37)

The combination of Corollary 4.14 and (4.37) yields

‖A−1 − NHBHNH‖2 ≤ CI εh + CII(εN + εB),

where CI = 2 c−4
J,1 c2

J,2. For simplicity we set

kN := kB := max{O(logd+1(
LC1

δ
)),O(logd(

L‖M−1‖2

δ
))}

with C1 = c(κC ,ρ,diam(Ω))
λmin

and δ = CI θεh/(2CII), where the constants in the O(·) expressions are detailed
in Theorem 4.26 and Theorem 4.12, while θ ∈ (0, 1). Then,

‖A−1 − NHBHNH‖2 ≤ CI (1 + θ)εh (4.38)

shows that the already existing finite element error CI εh is only slightly increased. The corresponding ranks
kB = kN behave asymptotically like

kB = kN = O(logd+1(
L

εh
)).

The resulting rank for CH = NHBHNH is bounded by kC = C2
idC2

sp(L + 1)2kB . Thus, CH approximates
A−1 as described in (4.38) and belongs to H(TI×I , k). This result is summarised in Part (a) of

4.4. IMPLEMENTATION 71

Theorem 4.28 (a) Let εh > 0 be the finite element error from (4.21). L = O(log n) is the depth of the

cluster tree (see Lemma 4.11). Then there are constants C ′ and C ′′ defining kC := C ′L2 logd+1(LC′′

εh
) and

there is an H-matrix CH ∈ H(TI×I , kC) such that

‖A−1 − CH‖2 ≤ CI (1 + θ)εh. (4.39)

(b) If εh = O(hβ) according to eP
h (u) ≤ cEhβ‖f‖L2(Ω) for all u = L−1f, f ∈ L2(Ω), with some β > 0, then

kC = O(logd+3(n)) holds.

Proof: As h−1 = O(n1/d), the asymptotic behaviour of log(LC′′

εh
) = log(L) + const + log(nβ/d) is O(log n).

This proves Part (b).

Since λmin in (4.12) is of size O(1) (without loss of generality, we may scale the problem so that λmin = 1), also
‖A−1‖2 = O(1) holds. Hence, the absolute error (4.39) may be changed into a relative one: ‖A−1 −CH‖2 ≤
C∗

I ‖A−1‖2(1 + θ)εh with another constant C∗
I .

4.4 Implementation

The matrix G defined by (4.7) is sparse, so we should store it in a suitable format.

4.4.1 Sparse Matrices

One way of storing a sparse matrix efficiently is to use the row-compressed representation: For each row i,
there are arrays containing the columns of non-zero entries and the corresponding coefficients.

Implementation 4.29 (sparsematrix) The sparsematrix structure is defined as follows:

typedef struct _sparsematrix sparsematrix;

typedef sparsematrix *psparsematrix;

struct _sparsematrix {

int rows;

int cols;

int nz;

int *row;

int *col;

double *coeff;

};

The fields rows and cols contain the number of rows and the number of columns of the sparse matrix. The
field nz contains the number of non-zero entries.

The columns indices for all non-zero entries are stored in the array col, and the array coeff contains the
corresponding coefficients. The array row contains the start and end indices of the parts of the col and
coeff arrays corresponding to a certain row: For each row i, the entry row[i] is the first index in col and
coeff corresponding to the i-th row of the matrix, and row[i+1]-1 is the last index.

Let us consider the matrix

G =




2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2




72 CHAPTER 4. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

as an example (in C notation, i.e., with indices {0,. . . ,4}). The first row contains two non-zero entries,
so we set row[0]=0 and row[1]=2. The first non-zero entry is G00 = 2, therefore we set col[0]=0 and
coeff[0]=2.0. The second non-zero entry is G01 = −1, and we represent it by setting col[1]=1 and
coeff[1]=-1.0.

The second row contains three non-zero entries. We already have found row[1]=2, so we add three to get
row[2]=5. The first non-zero entry G10 = −1 in this row is represented by col[2]=0 and coeff[2]=-1.0.
Repeating this construction for the remaining non-zero entries leads to the following representation:

2 22 −12 2−1

0 1 0 2 3 2

−1

4 4121 3

−1−1−1−1−1

3

2 5 8 13110

coeff

col

row

The product of a vector v and a matrix described by a sparsematrix object can be computed by the
following simple algorithm:

for(i=0; i<rows; i++) {

sum = 0.0;

for(j=row[i]; j<row[i+1]; j++)

sum += coeff[j] * v[col[j]];

w[i] = sum;

}

This and a number of other useful functions are already included in the library:

Implementation 4.30 (sparsematrix) Once the structure of a sparse matrix (i.e., the arrays row and
col) is fixed, we can use the functions

void

clear_sparsematrix(psparsematrix sp);

void

addcoeff_sparsematrix(psparsematrix sp, int row, int col, double val);

void

setcoeff_sparsematrix(psparsematrix sp, int row, int col, double val);

to initialize the coefficients. clear_sparsematrix sets all coefficients to zero, addcoeff_sparsematrix adds
val to the coefficient in row row and column col, while setcoeff_sparsematrix sets the coefficient to val

directly. The first two functions are useful in the context of finite element discretizations, where the stiffness
and mass matrices are usually assembled iteratively, while the third function was included for finite difference
methods, where all matrix coefficients are known a priori.

Of course, there are also the usual eval methods

void

eval_sparsematrix(pcsparsematrix sp, const double *v, double *w);

4.4. IMPLEMENTATION 73

void

addeval_sparsematrix(pcsparsematrix sp, const double *v, double *w);

void

evaltrans_sparsematrix(pcsparsematrix sp, const double *v, double *w);

void

addevaltrans_sparsematrix(pcsparsematrix sp, const double *v, double *w);

that multiply a sparse matrix or its transposed by a vector and add the result to another vector or overwrite
it.

A sparsematrix is not a supermatrix. Therefore we have to convert it before we can apply H-matrix
arithmetics. Due to Lemma 4.3, this is a simple task that is accomplished by the function

void

convertsparse2_supermatrix(pcsparsematrix sp, psupermatrix s);

Defining the proper structure for a sparse matrix can be complicated, since it involves counting the num-
ber of non-zero entries and enumerating them correctly. Therefore we introduce the auxiliary structure
sparsefactory that handles all the bookkeeping:

Implementation 4.31 (sparsefactory) A sparsefactory object is used to describe only the structure of
a sparse matrix, i.e., the distribution of non-zero entries. It is created by a call to

psparsefactory

new_sparsefactory(int rows, int cols);

giving the number rows of rows and cols of columns of the sparse matrix. A new sparsefactory contains
no non-zero entries, i.e., it describes the zero matrix. We can add non-zero entries using the function

void

addnz_sparsefactory(psparsefactory fac, int row, int col);

where row and col are the row and column of a new non-zero entry. This function call will only change the
sparsefactory if the entry is currently not in the list of non-zeros, i.e., it is safe to call it more than once
for the same entry.

After the entire structure has been described by calls to addnz_sparsefactory, we can use the sparsefactory
to create a matching sparsematrix:

psparsematrix

new_sparsematrix(psparsefactory fac);

Let us now apply these techniques to Example 2.11: we use piecewise linear basis functions, i.e., an entry
Gij of the stiffness matrix (4.7) can be non-zero only if there is at least one triangle in the grid that lies in
the support of both ϕi and ϕj . This information is sufficient to create the sparsematrix structure:

idx2dof = ct->idx2dof;

fac = new_sparsefactory(n, n);

for(k=0; k<triangles; k++)

for(i=0; i<3; i++) {

ii = idx2dof[t[k][i]];

74 CHAPTER 4. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

if(ii >= 0)

for(j=0; j<3; j++) {

jj = idx2dof[t[k][j]];

if(jj >= 0)

addnz_sparsefactory(fac, ii, jj);

}

}

sp = new_sparsematrix(fac);

del_sparsefactory(fac);

Since the sparsematrix structure should be compatible with a supermatrix structure, we have to take the
permutation of the index set into account. The code in Example 2.11 stores the mapping from grid indices to
degrees of freedom in the array ct->idx2dof, and our code fragment uses this array to convert the indices of
the triangles vertices t[k][i] into degrees of freedom. If t[k][i] does not correspond to a degree of freedom,
i.e., if it is a boundary node, idx2dof[t[k][i]] has the value -1 and we drop this entry from the sparse
matrix.

4.4.2 Assembly of Stiffness and Mass Matrices

We have seen how a sparsematrix object matching the structure of a grid and a set of basis functions can
be constructed. Now, we will fill the sparse matrix with coefficients corresponding to the partial differential
equation.

The matrix coefficients are defined by (4.7). As in Example 2.11, we consider only domains that correspond

to compatible triangulations, i.e., there is a family (∆i)
T−1
i=0 of triangles such that Ω =

⋃T−1
i=0 ∆i holds and

that two different triangles ∆i, ∆j are either disjoint, share a common vertex or a common edge.

The discrete space Vn of piecewise linear functions on the triangulation (∆ι)
T−1
ι=0 is defined by

Vn := {u ∈ C(Ω) : u|∆ι
is affine for all ι ∈ {0, . . . , T − 1} and u|Γ = 0} ⊆ H1

0 (Ω)

Let u ∈ Vn. Since u is affine on each ∆ι, its restriction u|∆ι
it is completely defined by the values in

the vertices of ∆ι. Since u is continuous, it is completely defined by its values of u in all vertices of the
triangulation, which implies that the dimension n of Vn has to be the number of interior vertices in the
triangulation. We denote the interior vertices by (vi)

T−1
i=0 and define the basis functions (ϕi)

T−1
i=0 by

ϕi(vj) = δij

for all j ∈ {0, . . . , T − 1}. Due to (4.7), the entry Gij is given by

Gij =

∫

Ω

〈∇ϕi(x),∇ϕj(x)〉 dx =

T−1∑

ι=0

∫

∆ι

〈∇ϕi(x),∇ϕj(x)〉 dx,

so we could build the matrix using the code fragment

for(ii=0; ii<n; ii++)

for(jj=0; jj<n; jj++) {

sum = 0.0;

for(k=0; k<triangles; k++)

if(in_support(k, ii) && in_support(k, jj))

addcoeff_sparsematrix(G, ii, jj, integrate_G(k, ii, jj));

}

Since switching between triangles usually requires more operations than switching between basis functions,
a different ordering of the loops is more efficient:

4.4. IMPLEMENTATION 75

for(k=0; k<triangles; k++)

for(i=0; i<3; i++) {

ii = idx2dof[t[k][i]];

if(ii >= 0)

for(j=0; j<3; j++) {

jj = idx2dof[t[k][j]];

if(jj >= 0)

addcoeff_sparsematrix(G, ii, jj, integrate_G(k, ii, jj));

}

}

In order to evaluate the individual integrals (4.7), we need the gradients of the basis functions. For piecewise
linear basis functions, their computation is especially simple: Let i, j, k ∈ {0, . . . , n−1} be such that vi, vj , vk

are the vertices of a triangle ∆ι in the triangulation. The function

ϕi,∆ι
(x) :=

det(x − vj , vk − vj)

det(vi − vj , vk − vj)

if affine and obviously satisfies ϕi,∆ι
(vi) = 1, ϕi,∆ι

(vj) = ϕi,∆ι
(vk) = 0. This implies ϕi|∆ι

= ϕi,∆ι
, so we

can use this representation to compute the gradients of basis functions:

det = ((p[t[k][0]][0] - p[t[k][2]][0]) *

(p[t[k][1]][1] - p[t[k][2]][1]) -

(p[t[k][1]][0] - p[t[k][2]][0]) *

(p[t[k][0]][1] - p[t[k][2]][1]));

for(i=0; i<3; i++) {

g[i][0] = (p[t[k][(i+1)%3]][1] - p[t[k][(i+2)%3]][1]) / det;

g[i][1] = (p[t[k][(i+2)%3]][0] - p[t[k][(i+1)%3]][0]) / det;

}

We can combine this fragment with the loop over all triangles in order to find the complete algorithm for
matrix assembly for the Laplace operator:

for(k=0; k<triangles; k++) {

det = ((p[t[k][0]][0] - p[t[k][2]][0]) *

(p[t[k][1]][1] - p[t[k][2]][1]) -

(p[t[k][1]][0] - p[t[k][2]][0]) *

(p[t[k][0]][1] - p[t[k][2]][1]));

for(i=0; i<3; i++) {

g[i][0] = (p[t[k][(i+1)%3]][1] - p[t[k][(i+2)%3]][1]) / det;

g[i][1] = (p[t[k][(i+2)%3]][0] - p[t[k][(i+1)%3]][0]) / det;

}

area = 0.5 * fabs(det);

for(i=0; i<3; i++) {

ii = idx2dof[t[k][i]];

if(ii >= 0)

for(j=0; j<3; j++) {

jj = idx2dof[t[k][j]];

if(jj >= 0) {

val = area * (g[i][0] * g[j][0] + g[i][1] * g[j][1]);

addcoeff_sparsematrix(G, ii, jj, val);

}

}

76 CHAPTER 4. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

}

}

4.5 Exercises

4.5.1 Theory

Exercise 11 (Inversion of Banded Matrices) Let n = 2p and M ∈ Rn×n be a matrix with k upper and
lower diagonals (Mij = 0 for |i − j| > k). Let all principal matrices of M be regular.

Prove that
M−1 ∈ H(TI×I, k)

for the block cluster tree TI×I from Section 4.1.2.

Exercise 12 (H(T, k) is Closed) Let TI×I be some block cluster tree and k ∈ N. Prove that the set
H(TI×I , k) is closed, i.e., for all M ∈ RI×I and all (Mi)i∈N ⊂ H(TI×I , k) holds

lim
i→∞

‖M − Mi‖ = 0 ⇒ M ∈ H(TI×I, k)

Exercise 13 (Local Inversion Formula) Let M, P ∈ Rn×n. Let M be regular. Prove that for any small
enough ε > 0 holds

(M + εP)−1 = M−1
∞∑

ν=0

(−εPM−1)ν = M−1 + O(ε).

Exercise 14 (Inversion of Tridiagonal Matrices) In Lemma 4.1 and Exercise 11 we demanded the reg-
ularity of all principal matrices of M , because this is needed for the existence of an LU-decomposition. Now
let n = 2p and M ∈ Rn×n be a tridiagonal regular matrix whose principal matrices are not necessarily
regular. Prove

M−1 ∈ H(TI×I, 1)

for the block cluster tree TI×I from Section 4.1.2.

4.5.2 Practice

Exercise 15 (Anisotropic problem) Let M ∈ R2×2 be a symmetric positive definite matrix. Write a
function anisotropic_grid2d that builds a sparsematrix corresponding to the anisotropic equation

−〈∇, M∇U〉(x) = −
2∑

i=1

2∑

j=1

∂iMij∂jU(x) = F(x).

Hint: Applying partial integration to the differential operator on the left side leads to matrix entries

Gij =

∫

Ω

〈M∇ϕi(x),∇ϕj(x)〉 dx.

Exercise 16 (Convection-diffusion problem) Let ε ∈ R>0 and c ∈ R2. Write a function convdiff_grid2d

that builds a sparsematrix corresponding to the convection-diffusion equation

−ε∆U(x) + 〈c,∇U(x)〉 = F(x).

Hint: Since partial integration does not apply to the lower-order part of the differential operator on the left
side, it will be necessary to integrate a basis function ϕi. This can be done by the simple midpoint quadrature
rule.

Chapter 5

Arithmetics of Hierarchical Matrices

In this chapter we will explain the algorithms that perform the addition and multiplication in the hierarchical
matrix format efficiently. Based upon these basic linear algebra subroutines, we can define algorithms that
compute an approximate inverse, LU-decompostion or Cholesky decomposition. The actual proof for the
efficiency, namely the complexity estimates, are postponed to the next Chapter 6. The basic idea for the
H-matrix arithmetics is formulated in [23] and a general approach is contained in [14] (german) and [16]
(english).

5.1 Arithmetics in the rkmatrix Representation

Since the basic building blocks of H-matrices are matrices in fullmatrix and rkmatrix representation we
will first explain how the arithmetic operations +, · can be performed efficiently for matrices in rkmatrix

format - for the fullmatrix format this is obvious (and already implemented in BLAS or LAPACK).

First, we have to introduce the set of matrices of rank at most k. These are the matrices that can be
represented in the rkmatrix format. Afterwards, we will modify the rkmatrix implementation.

Definition 5.1 (R(k)-Matrices) Let n, m, k ∈ N. We define the set of n × m matrices of rank at most k
by

R(k, n, m) := {M ∈ Rn×m | rank(M) ≤ k}.

Implementation 5.2 (rkmatrix) The rkmatrix representation is implemented in the C programming lan-
guage as follows:

typedef struct _rkmatrix rkmatrix;

typedef rkmatrix *prkmatrix;

struct _rkmatrix {

int k;

int kt;

int rows;

int cols;

double* a;

double* b;

};

The description is the same as in the previous Implementation 1.12, except that upon initialisation
(new_rkmatrix) the current rank is kt = 0 (the matrix is initialised to zero).

77

78 CHAPTER 5. ARITHMETICS OF HIERARCHICAL MATRICES

The current rank kt resembles the fact that a matrix in R(k, n, m) can have a rank kt smaller than k. From
Lemma 4.3 we know that all rkmatrix blocks in the H-matrix representation of the stiffness matrix are of
rank 0 while the maximal allowed rank for the formatted arithmetics is k > 0. In the algorithms we want to
exploit kt < k whenever possible.

5.1.1 Reduced Singular Value Decomposition (rSVD)

Definition 5.3 (SVD and rSVD) Let M ∈ R(k, n, m). A singular value decomposition (SVD) of M is a
factorisation of the form

M = UΣV T

T
VU Σ

0

0 0

with unitary matrices U ∈ Rn×n, V ∈ Rm×m and a diagonal matrix Σ ∈ Rn×m, where the diagonal entries
are

Σ11 ≥ Σ22 ≥ . . . ≥ Σkk ≥ Σk+1,k+1 = . . . = Σmin{n,m},min{n,m} = 0.

The diagonal entries of Σ are called the singular values of M .

A reduced singular value decomposition (rSVD) of M is a factorisation of the form

M = UΣV T

U Σ V
T

with matrices U ∈ Rn×k, V ∈ Rm×k that have orthonormal columns and a diagonal matrix Σ ∈ Rk×k, where
the diagonal entries are

Σ11 ≥ Σ22 ≥ . . . ≥ Σkk > 0.

Remark 5.4 1. A (reduced) SVD is not unique.

2. If the singular values of M are all different then the reduced singular value decomposition is unique up
to scaling of the columns of U, V by −1.

3. A SVD of M yields a rSVD by discarding the columns > k of U, V and the columns and rows > k of
Σ.

A SVD of a general matrix (fullmatrix) can be computed by the standard LAPACK subroutine dgesvd

within complexity O
(
min(n, m) max(n, m)2

)
(see [9]). After the next Lemma we will explain how to compute

a rSVD of an rkmatrix in O
(
k2 max(n, m)

)
complexity.

The singular value decomposition is a representation of a matrix (in factorised form) and the reduced singular
value decomposition is similar to the rkmatrix format. The reason why the SVD is of interest is given in
the next Lemma.

Lemma 5.5 (Best Approximation with Fixed Rank) Let

M = UΣV T

T
VΣU

0

0

0

5.1. ARITHMETICS IN THE RKMATRIX REPRESENTATION 79

be a SVD of M ∈ Rn×m. Let

M̃ := ŨΣ̃Ṽ T

U Σ V
T~ ~ ~

with matrices
Ũ := U |n×k, Σ̃ := diag(Σ1,1, . . . , Σk,k), Ṽ := V |m×k.

Then M̃ is a best approximation to M in the sense that

‖M − M̃‖ = min
R∈R(k,n,m)

‖M − R‖, ‖M − M̃‖2 = Σk+1,k+1, ‖M − M̃‖F =

√√√√
min(n,m)∑

i=k+1

Σ2
i,i.

holds in the Frobenius and spectral norm.

Proof: For the spectral norm the proof is contained in [9]. The extension to the Frobenius norm can be
achieved by induction as an exercise.

Let M = ABT ∈ Rn×m be a matrix in rkmatrix representation. A rSVD M = UΣV T can be computed
efficiently in three steps:

1. Compute (reduced) QR-factorisations of A, B: A = QARA, B = QBRB

with matrices QA ∈ Rn×k, QB ∈ Rm×k, RA, RB ∈ Rk×k. dgeqrf→ complexity O((n + m)k2)

2. Compute a rSVD of RART
B = U ′ΣV ′. dgesvd→ complexity O(k3)

3. Compute U := QAU ′, V := QBV ′. dgemm→ complexity O((n + m)k2)

Implementation 5.6 (rSVD) The implemementation of the rSVD in the C programming language for the
rkmatrix format might look as follows:

void

rsvd_rkmatrix(prkmatrix r, double *u, double* s, double *v){

double *u_a, *v_a, *u_b, *v_b, *usv;

int kt = r->kt, rows = r->rows, cols = r->cols;

... allocate u_a,v_a,u_b,v_b,usv ...

qr_factorisation(r->a,rows,kt,u_a,v_a); /* r->a =: u_a*v_a */

qr_factorisation(r->b,cols,kt,u_b,v_b); /* r->b =: u_b*v_b */

multrans2_lapack(kt, kt, kt, v_a, v_b, usv); /* usv := v_a*v_b’ */

svd_factorisation(usv, u_s, s, v_s); /* usv =: u_s*s*v_s’ */

mul_lapack(rows, kt, kt, u_a, u_s, u); /* u := u_a*u_s */

mul_lapack(cols, kt, kt, v_b, v_s, v); /* v := v_b*v_s */

... deallocate u_a,v_a,u_b,v_b,usv ...

}

The procedure rsvd_rkmatrix enables us to compute a rSVD of an rkmatrix in O
(
k2(n + m)

)
complexity.

According to Lemma 5.5 the rSVD representation can be used to derive a best approximation with fixed
rank.

80 CHAPTER 5. ARITHMETICS OF HIERARCHICAL MATRICES

Definition 5.7 (Truncation Tk) Let M ∈ Rn×m and k ∈ N. We define the truncation operator Tk :
Rn×m → R(k, n, m), M 7→ M̃ , where M̃ is a best approximation of M in the set R(k, n, m) (not necessarily
unique). The matrix M̃ is called a “truncation of M to rank k”.

The truncation operator Tk produces an approximation to a given matrix in the set R(k, n, m). The approx-
imation quality might be arbitrarily bad, although it is a best approximation within the set. An alternative
truncation operator is defined by a fixed accuracy that has to be achieved. The rank necessary to reach the
accuracy is chosen automatically.

Definition 5.8 (Truncation Tε) Let M ∈ Rn×m and ε > 0. We define the truncation operator Tε :
Rn×m → R(k, n, m), M 7→ M̃ , where M̃ is a best approximation of M in the set R(k, n, m) and

k := min{k̃ ∈ N0 | ∃M̃ ∈ R(k̃, n, m) : ‖M − M̃‖ ≤ ε‖M‖}.

The matrix M̃ is called an “adaptive truncation of M with accuracy ε”. T abs
ε is the respective truncation

operator with absolute truncation error ε.

From Lemma 5.5 we know how to determine the necessary rank for an adaptive truncation: compute a
rSVD and discard singular values (starting from the smallest) as long as the relative or absolute prescribed
accuracy is met.

5.1.2 Formatted rkmatrix Arithmetics

The set R(k, n, m) is not a linear subspace of the n × m matrices, because it is not closed with respect to
the addition. Instead, the set has properties of an ideal.

Lemma 5.9 (Multiplication) Let R ∈ R(k, n, m), N ∈ Rn′×n and M ∈ Rm×m′

. Then

NR ∈ R(k, n′, m), RM ∈ R(k, n, m′).

Proof: If R = ABT then NR = (NA)BT and RM = A(MT B)T .

Lemma 5.10 (Addition) Let R1, R2 ∈ R(k, n, m). Then R1 + R2 ∈ R(2k, n, m).

Proof: If R1 = ABT and R2 = CDT then R1 + R2 = ABT + CDT =
[

A C
]

︸ ︷︷ ︸
n×2k

[
B D

]T
︸ ︷︷ ︸

2k×m

.

The addition of two matrices in rkmatrix format of rank k1 and k2 yields a matrix in rkmatrix format of
rank k1 + k2 without performing arithmetic operations (see the previous proof). The formatted sum is then
defined as a best approximation of rank at most k, where k is either fixed (fixed rank addition) or chosen
automatically so that a given approximation quality is achieved (adaptive addition).

Definition 5.11 (Formatted rkmatrix Addition) The formatted addition (fixed rank k or adaptive with
accuracy ε) is defined as

A ⊕k B := Tk(A + B), A ⊕ε B := Tε(A + B), A, B ∈ Rn×m.

In the following implementation of the formatted rkmatrix addition we have combined the fixed rank and
adaptive truncation.

5.1. ARITHMETICS IN THE RKMATRIX REPRESENTATION 81

Implementation 5.12 (Formatted rkmatrix Addition) The structure truncation_control contains
the information about the allowed relative truncation error rel_eps, the allowed absolute truncation error
abs_eps and a flag adaptive that tells us wether we use the fixed rank truncation (adaptive= 0) or the
adaptive arithmetic (adaptive= 1). This information is stored in the struct truncation_control:

typedef struct _truncation_control truncation_control;

typedef truncation_control *ptruncation_control;

struct _truncation_control {

double rel_eps;

double abs_eps;

int adaptive;

};

Each rkmatrix r stores a pointer r->tc to a struct truncation_control which is by default NULL, i.e.,
we use by default the fixed rank arithmetic. If r->tc!=0 and r->tc->adaptive= 1 then the rank k for the
representation of the target matrix is determined by

k := min{k̃ ∈ N0 | ∃M̃ ∈ R(k̃, n, m) : ‖M − M̃‖ ≤ rel_eps‖M‖ or ‖M − M̃‖ ≤ abs_eps}.

The structure of the target matrix has to be extended to allow the necessary rank k (which is a priori not
known).

The implementation of the formatted addition in the C programming language for the rkmatrix format is
done as follows:

void

add_rkmatrix(prkmatrix c, prkmatrix a, prkmatrix b){

prkmatrix a_plus_b;

double *u, *s, *v;

int i, j, n = c->rows, m = c->cols, kt = a->kt + b->kt;

a_plus_b = new_rkmatrix(kt,n,m);

u = (double*) malloc(kt*n*sizeof(double));

v = (double*) malloc(kt*m*sizeof(double));

s = (double*) malloc(kt*sizeof(double));

for(i=0; i<(a->kt)*n; i++) a_plus_b->a[i] = a->a[i];

for(i=0; i<(a->kt)*m; i++) a_plus_b->b[i] = a->b[i];

for(i=0; i<(b->kt)*n; i++) a_plus_b->a[i+(a->kt)*n] = b->a[i];

for(i=0; i<(b->kt)*m; i++) a_plus_b->b[i+(a->kt)*m] = b->b[i];

rsvd_rkmatrix(a_plus_b, u, s, v);

if(c->tc && c->tc->adaptive){

for(i=0; i<kt && s[i]>c->tc->rel_eps*s[0] && s[i]>c->tc->abs_eps; i++)

if(i>c->k) reallocstructure_rkmatrix(c,i);

}else{

for(i=0; i<kt && i<c->k; i++);

}

c->kt = i;

for(i=0; i<c->kt*n; i++) c->a[i] = u->e[i];

for(i=0; i<m; i++)

for(j=0; j<c->kt; j++)

c->b[i+j*m] = v->e[i+j*m] * s[j];

82 CHAPTER 5. ARITHMETICS OF HIERARCHICAL MATRICES

free(s); free(u); free(v);

del_rkmatrix(a_plus_b);

}

5.2 Arithmetics in the H-Matrix Format

5.2.1 Addition and Multiplication

In Definitions 5.7 and 5.8, we have defined the truncation operator Tk to the set R(k, n, m). The extension
to H-matrices is given below.

Definition 5.13 (Truncation Tk) Let TI×I be a block cluster tree. We define the truncation operator

Tk : Rn×m → H(TI×I, k), M 7→ M̃

blockwise for all leaves t × s ∈ TI×I by

M̃ |t̂×ŝ :=

{
Tk(M |t̂×ŝ) if t × s admissible
M |t̂×ŝ otherwise.

Lemma 5.14 The operator Tk maps a matrix M ∈ RI×I to a best approximation M̃ ∈ H(TI×I, k) with
respect to the Frobenius norm:

‖M − M̃‖F = min
M ′∈H(TI×I ,k)

‖M − M ′‖F

Proof: Exercise

The truncation operator can be used to define the formatted matrix operations as follows.

Definition 5.15 (Formatted Addition) Let TI×I denote a block cluster tree and k ∈ N. We define the
formatted addition of H-matrices A, B ∈ H(TI×I, k) by

A ⊕ B := Tk(A + B).

If the rank k under consideration is not evident then we write ⊕k instead of ⊕.

Implementation 5.16 (Formatted Addition) Exercise 20.

Definition 5.17 (Formatted Multiplication) Let TI×I be a block cluster tree and let k ∈ N. We define
the formatted multiplication of H-matrices A, B ∈ H(TI×I, k) by

A � B := Tk(A · B).

Formally it is easy to write “A · B”, but in practice the structure of the matrix product A · B can become
rather complicated. This is different from the addition where the structure of the sum A + B retains the
structure of A and B. To illustrate the complications, we take a look at two typical examples. After some
necessary Definitions and Lemmata we finally explain how to compute the H-matrix product efficiently.

5.2. ARITHMETICS IN THE H-MATRIX FORMAT 83

Example 5.18 (Multiple Blocks per Row) We consider m × m block matrices in Rn×n:

A =




A11 · · · A1m

...
. . .

...
Am1 · · · Amm


 , B =




B11 · · · B1m

...
. . .

...
Bm1 · · · Bmm


 .

In the sum A + B only one addition per block occurs:

(A + B)ij = Aij + Bij

In the product A · B multiple terms appear:

(A · B)ij =

m∑

l=1

Ail · Blj

The truncation Tk of the sum over m addends is much more expensive than m times the truncation of two
addends. However, the latter will not necessarily yield a best approximation.

Definition 5.19 (Fast Truncation T ′
k) Let TI×I be a block cluster tree and q ∈ N>1. We define the fast

truncation operator
T ′

k : H(TI×I, qk) → H(TI×I , k), M 7→ M̃

by q−1 times calling the truncation for a matrix with blockwise rank 2k: let M =
∑q

i=1 Mi be a decomposition
of M into q matrices Mi ∈ H(TI×I, k). Then we define

M̃1 := M1,

M̃i := Tk(Mi + M̃i−1), i = 2, . . . , q,

M̃ := M̃q.

Example 5.20 (Different Matrix Formats) We consider 2 × 2 block matrices in Rn×n,

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
, C =

[
C11 C12

C21 C22

]
,

and assume that all submatrices Aij , Bij , Cij are again 2 × 2 block matrices consisting of matrices in
supermatrix format except the lower right blocks A22, B22, C22, which belong to R(k, n2, m2). The product
A · B is to be truncated to the format of C:

C A B

In the lower right block of C we have to perform the truncation

C22 = Tk (A21B12 + A22B22)

to the rkmatrix format. The product A21B12 is not contained in R(k, n2, m2) which poses a problem: we
have to truncate a hierarchical matrix (supermatrix) to the rkmatrix format. To do this efficiently, we will
not compute a best approximation but something close to it.

Definition 5.21 (Levels of the Tree) Let T be a tree. We define the levels ` ∈ N0 of T by

T (`) := {t ∈ V (T) | level(t) = `}.

On each level ` ∈ N0 we define
L(T, `) := T (`) ∩ L(T).

84 CHAPTER 5. ARITHMETICS OF HIERARCHICAL MATRICES

Lemma 5.22 For any cluster tree TI and ` ∈ N there holds

I =



⋃̇

v∈T
(`)
I

v̂


 ∪̇


 ⋃̇

v∈L(TI ,`−1)

v̂


 ∪̇ · · · ∪̇


 ⋃̇

v∈L(TI ,0)

v̂


 .

Proof: Define T ′
I := TI \ ∪depth(TI)

j=`+1 T
(j)
I and apply Lemma 2.7.

Definition 5.23 (Hierarchical Approximation) Let TI×I be a block cluster tree and p := depth(TI×I).
For each M ∈ H(TI×I , k) we define the hierarchical approximation MH of M in p+1 steps (see Figure 5.1)
by

Mp|t̂×ŝ :=

{
Tk(M |t̂×ŝ) if t × s inadmissible leaf,
M |t̂×ŝ otherwise,

,

M`−1|t̂×ŝ :=

{
Tk(M`|t̂×ŝ) if t × s ∈ T

(`−1)
I×I ,

M`|t̂×ŝ otherwise,
` = p, . . . , 1,

MH := M0.

F

F

F

F

R

R

R

R

R

R

R R

RR

R

RR

R

R

R

R R

RR

R

M M MM 2 1 0

Figure 5.1: The matrix M is converted levelwise for each block: in the first step the fullmatrix blocks (F)
to rkmatrix format (R), then the sons of a block to a single rkmatrix.

Lemma 5.24 (Hierarchical Approximation Error) Let TI×I be a block cluster tree, p := depth(TI×I),
M ∈ H(TI×I , k) and let MH denote the hierarchical approximation of M . Then

‖M − MH‖F ≤ (2p+1 + 1)‖M − Tk(M)‖F .

Proof: We define the sets

R(TI×I , `, k) := {X ∈ RI×I | rank(X |t̂×ŝ) ≤ k for all leaves t × s ∈ L(TI×I) or t × s ∈ T
(`)
I×I}.

Obviously M` is contained in the set R(TI×I , `, k). From one level ` to the next level ` − 1, the algorithm
determines a best approximation (with respect to the Frobenius norm) of the matrix M` in the set R(TI×I , `−
1, k):

∀X ∈ R(TI×I , `, k) : ‖M` − M`−1‖F ≤ ‖M` − X‖F . (5.1)

In the first step (conversion of the fullmatrix blocks) this reads

∀X ∈ R(TI×I, p, k) : ‖M − Mp‖F ≤ ‖M − X‖F . (5.2)

5.2. ARITHMETICS IN THE H-MATRIX FORMAT 85

By induction we prove
‖M` − Tk(M)‖F ≤ 2p−`‖Mp − Tk(M)‖F

as follows. The start ` = p of the induction is trivial. The induction step ` 7→ ` − 1 follows from

‖M`−1 − Tk(M)‖F ≤ ‖M`−1 − M`‖F + ‖M` − Tk(M)‖F

(5.1)

≤ 2‖M` − Tk(M)‖F .

Using this inequality, we can conclude that

‖M − M0‖F = ‖M −
p−1∑

`=0

(M` − M`+1) − Mp‖F

≤ ‖M − Mp‖F +

p−1∑

`=0

‖M` − M`+1‖F

(5.1),(5.2)

≤ ‖M − Tk(M)‖F +

p−1∑

`=0

‖M`+1 − Tk(M)‖F

≤ ‖M − Tk(M)‖F +

p−1∑

`=0

2p−`−1‖Mp − Tk(M)‖F

≤ 2p‖Mp − Tk(M)‖F + ‖M − Tk(M)‖F

≤ 2p(‖Mp − M‖F + ‖M − Tk(M)‖F) + ‖M − Tk(M)‖F

(5.2)

≤ (2p+1 + 1)‖M − Tk(M)‖F .

The factor ‘2p+1 + 1 = O(n)’ in the estimate of the hierarchical approximation error seems to be rather
large. Since the singular values in the rkmatrix blocks decay rapidly, this factor can easily be compensated
without destroying the complexity. In practice the hierarchical approximation error is observed to be much
smaller than the estimate.

Next, we want to combine the hierarchical approximation with the multiplication (see Example 5.20). In
order to explain the algorithm we will first take a look at a simple example. Let the matrices

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]

be given. The goal is to approximate the truncation of the product,

C := Tk(AB) = Tk

([
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A22B22 + A21B12

])
.

First, we compute for each block entry the truncated product

C ′
ij := Tk(Ai1B1j), C ′′

ij := Tk(Ai2B2j).

Afterwards we compute the formatted sum

Cij := C ′
ij ⊕ C ′′

ij

and finally the rkmatrix approximation

C̃ := Tk

([
C11 C12

C21 C22

])
.

In general, C̃ 6= C due to possible cancellation effects and the hierarchical approximation error.

86 CHAPTER 5. ARITHMETICS OF HIERARCHICAL MATRICES

Implementation 5.25 (Fast Multiplication and Conversion to rkmatrix Format) The matrices a

and b are given in supermatrix format (underlying block cluster tree Ta based on T1, T2 and Tb based
on T2, T3) while the target matrix r is of rkmatrix format. We compute r := r⊕ a� b.

void

addprod2_rkmatrix(prkmatrix r, psupermatrix a, psupermatrix b){

int i,j,k,bn,bm,bam,no,mo,*rk_no,*rk_mo;

prkmatrix *rk_r;

bn = a->block_rows;

bam = a->block_cols;

bm = b->block_cols;

if(a->s!=0x0 && b->s!=0x0){

rk_no = (int*) malloc(bn*bm*sizeof(int));

rk_mo = (int*) malloc(bn*bm*sizeof(int));

rk_r = (prkmatrix*) malloc(bn*bm*sizeof(prkmatrix));

no = 0;

for(i=0; i<bn; i++){

mo = 0;

for(j=0; j<bm; j++){

rk_no[i+j*bn] = no;

rk_mo[i+j*bn] = mo;

rk_r[i+j*bn] = new_rkmatrix(r->k,a->s[i]->rows,b->s[j*bam]->cols);

for(k=0; k<bam; k++){

addprod2_rkmatrix(rk_r[i+j*bn],a->s[i+k*bn],b->s[k+j*bam]);

}

mo += b->s[j*bam]->cols;

}

no += a->s[i]->rows;

}

addparts2_rkmatrix(r,bn*bm,rk_no,rk_mo,rk_r);

for(i=0; i<bn*bm; i++) del_rkmatrix(rk_r[i]);

free(rk_r);

free(rk_mo);

free(rk_no);

}else{

...

/* no hierarchical conversion necessary */

...

}

}

Now we are able to formulate the fast formatted multiplication.

Implementation 5.26 (Fast Multiplication of Hierarchical Matrices) The matrices a,b,c are given
in supermatrix format (underlying block cluster tree Ta based on T1, T2, Tb based on T2, T3 and Tc based on
T1, T3). We compute c := c⊕ a� b.

void

muladd_supermatrix(psupermatrix c, psupermatrix a, psupermatrix b){

int i,j,k,bn,bm,bam;

bn = c->block_rows;

bm = c->block_cols;

5.2. ARITHMETICS IN THE H-MATRIX FORMAT 87

bam = a->block_cols;

if(c->s!=0x0){

if(a->s!=0x0 && b->s!=0x0){

/* only supermatrices -> recursion */

for(i=0; i<bn; i++)

for(j=0; j<bm; j++)

for(k=0; k<bam; k++)

muladd_supermatrix(c->s[i+j*bn],a->s[i+k*bn],b->s[k+j*bam]);

}else{

/* a or b is rk or fullmatrix */

...

}

}else{

if(c->r!=0x0){

/* product of 2 supermatrices to be stored in a rkmatrix*/

addprod2_rkmatrix(c->r,a,b);

}else{

/* c is fullmatrix */

...

}

}

}

5.2.2 Inversion

Definition 5.27 (Preliminary Formatted Inversion) Let TI×I be a block cluster tree and k ∈ N. The
preliminary formatted inversion operator is defined as

Ĩnv : {M ∈ Rn×n | rank(M) = n} → H(TI×I , k), M 7→ Tk(M−1).

Since the (fullmatrix) inversion of M is rather expensive, we will give an algorithm that computes an
approximation to Tk(M−1) without the need to invert M . This approximation will not necessarily be a best
approximation.

The inversion is done by use of (4.4),

M−1 =

[
M−1

11 + M−1
11 M12S

−1M21M
−1
11 −M−1

11 M12S
−1

−S−1M21M
−1
11 S−1

]
,

where S = M22 − M21M
−1
11 M12. If the inversion of the submatrices M11 and S is already done, then we

only need to perform multiplications and additions of submatrices. These can be replaced by the formatted
operations ⊕ and �. Recursively, we get an approximate inverse InvH(M). This approximation is called the
formatted inverse.

The generalisation to the case of block_rows × block_cols matrices is straightforward.

Implementation 5.28 (Formatted Inversion) The procedure invert_supermatrix computes an ap-
proximate inverse si to the matrix s. The supermatrix swork is needed as workspace. All three matrices
are assumed to be of the same structure (block cluster tree) and si,swork are initialised by 0. On exit the
content of s and swork is overwritten.

void

invert_supermatrix(psupermatrix si, psupermatrix s, psupermatrix swork){

int bn = s->block_rows;

88 CHAPTER 5. ARITHMETICS OF HIERARCHICAL MATRICES

int bm = s->block_cols;

int i,j,l;

psupermatrix *sw_e= swork->s, *s_e= s->s, *si_e= si->s;

if(si->s==0x0 || s->s==0x0 || swork->s==0x0){

/* inversion in the space of fullmatrices */

invert_fullmatrix(si->f,s->f,swork->f);

}else{

/* lower triangular */

for(l=0; l<bn; l++){

/* invert diagonal */

invert_supermatrix(si_e[l+bn*l],s_e[l+bn*l],sw_e[l+bn*l]);

/* scale inverse with inverted diagonal */

for(j=0; j<l; j++){

mul_supermatrix(sw_e[l+bn*j],si_e[l+bn*l],si_e[l+bn*j]);

copydata_supermatrix(sw_e[l+bn*j],si_e[l+bn*j]);

}

/* scale matrix with inverted diagonal */

for(j=l+1; j<bm; j++){

mul_supermatrix(sw_e[l+bn*j],si_e[l+bn*l],s_e[l+bn*j]);

copydata_supermatrix(sw_e[l+bn*j],s_e[l+bn*j]);

}

/* eliminate lower part */

for(i=l+1; i<bn; i++){

/* subtract from inverse */

for(j=0; j<=l; j++){

mul_supermatrix(sw_e[i+bn*j],s_e[i+bn*l],si_e[l+bn*j]);

scale_supermatrix(sw_e[i+bn*j],-1.0);

addto_supermatrix(si_e[i+bn*j],sw_e[i+bn*j]);

}

/* subtract from matrix */

for(j=l+1; j<bm; j++){

mul_supermatrix(sw_e[i+bn*j],s_e[i+bn*l],s_e[l+bn*j]);

scale_supermatrix(sw_e[i+bn*j],-1.0);

addto_supermatrix(s_e[i+bn*j],sw_e[i+bn*j]);

}

}

}

/* upper triangular */

for(l=bn-1; l>=0; l--){

for(i=l-1; i>=0; i--){

for(j=0; j<bm; j++){

mul_supermatrix(sw_e[i+bn*j],s_e[i+bn*l],si_e[l+bn*j]);

scale_supermatrix(sw_e[i+bn*j],-1.0);

addto_supermatrix(si_e[i+bn*j],sw_e[i+bn*j]);

}

}

}

}

}

5.2.3 Cholesky and LU Decomposition

Sometimes one does not need the whole (approximate) inverse but only a method to perform the matrix
vector multiplication b 7→ A−1b, i.e., to solve the system Ax = b. In that case it is sufficient to compute a

5.2. ARITHMETICS IN THE H-MATRIX FORMAT 89

Cholesky or LU decomposition

A ≈ LU = 0

0

of the matrix A. Depending on the application one could want a decomposition such that ‖A − LU‖ is of
the size of the discretisation error or just a coarse approximation in order to precondition the linear system
and use a simple iterative solver, e.g., GMRES:

(LU)−1Ax = (LU)−1b

An (approximate) H-LU decomposition is defined as a decomposition of the form

A ≈ LHUH

where the two (lower and upper triangular) matrices LH and UH are stored in the H-matrix format. As for
the fullmatrix version one can store the two factors by overwriting the given H-matrix A.

Three procedures are needed to compute the decomposition: first, a method to solve a triangular H-matrix
system for a vector. Second, a method to solve a triangular H-matrix system for a matrix and third the
LU -decomposition which is based on the aforementioned two.

Solving a triangular system Lx = b for a right-hand side b and lower triangular matrix L in the H-matrix
format is done recursively:

• if L is not subdivided (fullmatrix) then use the LAPACK subroutine dtrsv.

• if L is subdivided, for simplicity into block_rows=2 times block_cols=2 submatrices

L =

[
L11 0
L21 L22

]
, x =

[
x1

x2

]
, b =

[
b1

b2

]

then we have to solve
L11x1 = b1

which yields x1 and afterwards
L22x2 = b1 − L21x1

which yields x2.

Solving a triangular system LX = B for a right-hand side matrix B and lower triangular matrix L in the
H-matrix format is done similarly by recursion:

• if L is not subdivided (fullmatrix) then compute the solution row-wise by the LAPACK subroutine
dtrsv.

• if L is subdivided, for simplicity into block_rows=2 times block_cols=2 submatrices

L =

[
L11 0
L21 L22

]
, X =

[
X11 X12

X21 X22

]
, B =

[
B11 B12

B21 B22

]

then we have to solve
L11X11 = B11, L11X12 = B12

which yields X11, X12 and afterwards

L22X21 = B21 − L21X11, L22X22 = B22 − L21X12

which yields X21, X22.

90 CHAPTER 5. ARITHMETICS OF HIERARCHICAL MATRICES

Analogously we solve an upper triangular system XU = B.

Finally, the H-LU decomposition A = LU is defined recursively by

• if A is not subdivided (fullmatrix) then use the LAPACK subroutine dgetrf.

• if A is subdivided, for simplicity into block_rows=2 times block_cols=2 submatrices

A =

[
A11 A12

A21 A22

]

then we have to compute the factorisation

L11U11 = A11,

which yields the upper left components L11, U11 of the factors L, U , solve the triangular systems

L11U12 = A12, L21U11 = A21

and compute again a factorisation

L22U22 = A22 − L21U12.

For symmetric matrices A one can of course compute a Cholesky or LDLT factorisation with half the
complexity, where the steps in the algorithm are just analogously to those for the LU decomposition.

5.3 Exercises

5.3.1 Theory

Exercise 17 (Truncation to the Hierarchical Matrix Format) Prove the statement of Lemma 5.14,
i.e.,

‖M − M̃‖F = min
M ′∈H(TI×I ,k)

‖M − M ′‖F .

Exercise 18 (Hierarchical Approximation) Let TI×I be a block cluster tree, p := depth(TI×I), M ∈
H(TI×I , k) and let MH denote the hierarchical approximation of M (Definition 5.23). Prove that

‖M − MH‖2 ≤ (2
3p
2 +1 + 2p/2)‖M − Tk(M)‖2.

Hint: Don’t be confused, this is an easy exercise.

Exercise 19 (Cholesky Decomposition) Derive an algorithm for the H-LDLT decomposition of a sym-
metric matrix A with lower triangular matrix L and diagonal matrix D.

5.3.2 Practice

Exercise 20 (Addition of supermatrix structures) Let A, B ∈ H(TI×I, k) be given in H-matrix repre-
sentation implemented by use of the supermatrix structure. Implement the formatted addition by a recursive
procedure.

void

add_supermatrix(psupermatrix c, psupermatrix a, psupermatrix b);

5.3. EXERCISES 91

Exploit the fact that the three matrices a,b,c are assumed to be of the same H-matrix format. Test your
implementation with the program example_add by reading the two matrices example_add_matrix1.hma

and example_add_matrix2.hma from a file with the procedure read_supermatrix (supermatrix.h) and
compare the result with the matrix example_add_matrix1+2.hma. For the comparison the function
norm2diff_supermatrix (supermatrix.h) might be helpful.

Exercise 21 (Preconditioned Conjugate Gradient Method) The solver that we used in example_1d.c

from Exercise 6 to compute the solution x to Ax − b = 0, A ∈ Rn×n, is the conjugate gradient method:
Start:

x0 := 0, r0 := b, p0 := r0.

Iteration i = 1, . . . , n − 1:

λ := 〈ri−1, pi−1〉/〈Api−1, pi−1〉,
ri := ri−1 − λApi−1,

pi := ri − pi−1〈ri, Api−1〉/〈Api−1, pi−1〉,
xi := xi−1 + λpi.

Stop if ‖ri‖ < ε, where ε is the desired accuracy, i.e., ‖Ax − b‖ < ε.

The number of iterations necessary to reach the accuracy ε increases if the condition number of A increases.
A method to circumvent this is to precondition A, i.e., to solve the system

PAx = Pb

for a matrix P such that cond(PA) ≈ 1.

Extend the procedure

void

solve_cg_supermatrix(psupermatrix s, double *rhs, double *u,

double eps, double maxsteps,

psupermatrix prec, int prec_type,

int verbosity);

that performs the conjugate gradient method up to accuracy ε := 10−13 (or i = maxsteps) and preconditions
the matrix s by prec. The right-hand side b is denoted by rhs, the unknown solution is stored in the already
allocated array u. The variable prec_type is used to distinguish between different types of preconditioners
(see next exercise), for the beginning prec is just a supermatrix and prec_type=1. The variable verbosity

tells the procedure wether or not it should print information during the iteration.

Hint: Do not compute the matrix-matrix product prec�s and allow the preconditioner to be prec=0x0, i.e.,
unpreconditioned.

Exercise 22 (Numerical Test) A preconditioner P can be obtained in different ways.

1. Use the formatted inversion for hierarchical matrices:

void

invert_supermatrix(psupermatrix si, psupermatrix sc, psupermatrix swork);

The inversion need not be that accurate, therefore the stiffness matrix s is replaced by a coarser as-
sembled matrix sc (the rank k is smaller, e.g. kcoarse = 3).

Use the approximate inverse si as preconditioner for the conjugate gradient method and compute the
solution to the model problem in example_1d.c.

92 CHAPTER 5. ARITHMETICS OF HIERARCHICAL MATRICES

2. Modify the procedure solvepreconditionedcg_supermatrix such that the matrix winv is given in
Cholesky factorisation and use the subroutine solve_cholesky in order to evaluate the matrix winv=
(LLT)−1. Test the procedure for the model problem from example_1d.c.

Hint: The stiffness matrix for the integral operator from Section 1.1 is not positive.

Chapter 6

Complexity Estimates

The complexity estimates for the arithmetics of hierarchical matrices can be decomposed into two parts:

a) The storage, matrix-vector multiplication and addition require the so-called sparsity of the underlying
block cluster tree TI×I.

b) For the (formatted) multiplication and inversion in the H-matrix format we need the so-called idempotency
of TI×I.

The estimates in this general form are contained in [14] (german) and [16] (english). For the one-dimensional
case the complexity estimates can be simplified as in [23], and for a two- and three-dimensional model problem
the storage, matrix-vector mutliplication and addition can be estimated as in [24].

6.1 Arithmetics in the rkmatrix Representation

Let M = ABT ∈ Rn×m be a matrix in rkmatrix representation. Since only the two factors A, B need to be
stored, the storage requirements amount to

NSt,R(k, n, m) = k(n + m) (6.1)

while in the fullmatrix representation we have

NSt,F (k, n, m) = nm. (6.2)

6.1.1 Reduced Singular Value Decomposition (rSVD)

Let M = ABT ∈ Rn×m be a matrix in rkmatrix representation. We computed an rSVD M = UΣV T by

1. Computing (reduced) QR-factorisations of A, B: A = QARA, B = QBRB

with matrices QA ∈ Rn×k, QB ∈ Rm×k, RA, RB ∈ Rk×k.

2. Computing an rSVD of RART
B = U ′ΣV ′.

3. Computing U := QAU ′, V := QBV ′.

The complexity of each step is





QR-factorisation of A O(nk2)
QR-factorisation of B O(mk2)
Multiplication RART

B O(k3)
rSVD of RART

B O(k3)
Multiplication U := QAU ′ O(nk2)
Multiplication V := QBV ′ O(mk2)
Altogether O((n + m)k2)

93

94 CHAPTER 6. COMPLEXITY ESTIMATES

Lemma 6.1 (Truncation) The truncation Tk of a matrix M ∈ Rn×m in rkmatrix format to lower rank
k′ < k is of complexity

NT (k, n, m) ≤ 6k2(n + m) + 23k3.

Remark 6.2 (Large k) If k > min(n, m) then the computation of the rSVD of RART
B can be exceedingly

expensive. In order to avoid this, we first compare k, n, m and if k > min(n, m) then we first change the

representation of M to fullmatrix by Mij :=
∑k

ν=1 AiνBjν at a cost of knm and afterwards we compute
an rSVD of M in fullmatrix representation in O(min(n, m)2 max(n, m)). Altogether this amounts to
O(min(n, m) max(n, m)k).

6.1.2 Formatted rkmatrix Arithmetics

Multiplication

The multiplication of an rkmatrix R = ABT =
∑k

ν=1 AνBT
ν with a matrix M involves k times the matrix-

vector multiplication of the matrix M or MT :

RM = ABT M =
k∑

ν=1

Aν(MT Bν)T ,

MR = MABT =

k∑

ν=1

(MAν)BT
ν .

Addition

The formatted addition A ⊕ B := Tk(A + B) of two matrices in rkmatrix format is done by truncation of
the exact sum (rank 2k) with a complexity of O((n + m)k2).

6.2 Arithmetics in the H-Matrix Format

For a matrix M ∈ RI×I one can count the number of nonzero entries per row,

c := max
i∈I

#{j ∈ I | Mij 6= 0},

such that the number of nonzero entries in the whole matrix is at most c#I. The constant c depends on the
sparsity pattern and for standard FEM stiffness matrices the constant c is independent of the size of #I.

The block cluster tree TI×I may have a similar sparsity property which is measured by the quantity Csp

defined below. In Section 6.3, the construction of TI and TI×I will lead to a block cluster tree with a sparsity
constant Csp independent of the size of #I.

Definition 6.3 (Sparsity) Let TI×I be a block cluster tree based on TI. We define the sparsity (constant)
Csp of TI×I by

6.2. ARITHMETICS IN THE H-MATRIX FORMAT 95

Csp := max
{

maxr∈TI
#{s ∈ TI | r × s ∈ TI×I},

maxs∈TI
#{r ∈ TI | r × s ∈ TI×I}

}
.

Definition 6.4 (Admissible and Inadmissible Leaves) Let T := TI×I be a block cluster tree. The set
of leaves of T is denoted by L(T) We define the set of admissible leaves of T as

L+(T) := {t × s ∈ T | t × s admissible}

and the set of inadmissible leaves of T as

L−(T) := {t × s ∈ T | t × s inadmissible}.

Lemma 6.5 (Storage) Let T := TI×I be a block cluster tree with sparsity constant Csp and depth p. Let
k ∈ N. The storage requirements NSt(T, k) for a matrix M ∈ H(T, k) are bounded by

NSt(T, k) ≤ 2Csp(p + 1) max{k, nmin}#I.

Proof:

NSt(T, k)
(6.1),(6.2)

=
∑

t×s∈L+(T)

k(#t̂ + #ŝ) +
∑

t×s∈L−(T)

#t̂ · #ŝ

≤
∑

t×s∈L+(T)

k(#t̂ + #ŝ) +
∑

t×s∈L−(T)

nmin(#t̂ + #ŝ)

≤
p∑

i=0

∑

t×s∈T (i)

max{k, nmin}(#t̂ + #ŝ)

=

p∑

i=0

∑

t×s∈T (i)

max{k, nmin}#t̂ +

p∑

i=0

∑

t×s∈T (i)

max{k, nmin}#ŝ

≤ 2Csp max{k, nmin}
p∑

i=0

∑

t∈T (i)

#t̂

Lemma 5.22
≤ 2Csp max{k, nmin}

p∑

i=0

#I

= 2Csp max{k, nmin}(p + 1)#I.

Lemma 6.6 (Matrix-Vector Multiplication) Let T := TI×I be a block cluster tree with sparsity con-
stant Csp and depth p. Let k ∈ N. The complexity NH·v(T, k) of the matrix-vector multiplication for a matrix
M ∈ H(T, k) are bounded by

NH·v(T, k) ≤ 2NSt(T, k).

Proof: Consider the matrix-vector product blockwise and use (6.1), (6.2) together with the respective
counterparts for the matrix-vector product.

96 CHAPTER 6. COMPLEXITY ESTIMATES

6.2.1 Truncation

Lemma 6.7 (Cardinality of TI and TI×I) Let TI be a cluster tree of depth p ≥ 1 and T := TI×I a block
cluster tree with sparsity constant Csp.

1. If # sons(t) 6= 1 holds for all (or at least #I/p) nodes t ∈ TI then

#TI ≤ 2#I, #T ≤ 2Csp#I. (6.3)

2. If # sons(t) 6= 1 is not necessarily fulfilled then

#TI ≤ 2p#I, #T ≤ 2pCsp#I. (6.4)

Lemma 6.8 (Truncation Tk) Let T := TI×I be a block cluster tree. The truncation Tk for a matrix
M ∈ H(T, k) in supermatrix format to lower rank k′ < k is of complexity

NT (T, k) ≤ 6kNSt(T, k) + 23k3#L(T).

Proof:

NT (T, k) =
∑

t×s∈L+(T)

NT (k, #t̂, #ŝ)
Lemma 6.1

≤
∑

t×s∈L+(T)

6k(#t̂ + #ŝ) + 23k3#L(T)

≤ 6kNSt(T, k) + 23k3#L(T).

Lemma 6.9 (Fast Truncation T ′
k) Let T := TI×I be a block cluster tree. The truncation T ′

k for a matrix
M ∈ H(T, qk) in supermatrix format to rank k is of complexity

NT (T, qk) ≤ 24(q − 1)kNSt(T, k) + 184(q − 1)k3#L(T).

Proof: Apply (q − 1)-times Lemma 6.8 for rank 2k.

Lemma 6.10 (Hierarchical Approximation) Let T := TI×I be a block cluster tree of depth p based
on the cluster tree TI where each node has at most Csons ≥ 2 sons (typically Csons = 2) and nmin ≤ k
(for simplification). Then the complexity to compute the hierarchical approximation (cf. Definition 5.23) is
bounded by

NHapx(T, k) ≤ 12CspC2
sons(p + 1)k2#I + 23C3

sonsk
3#T.

Proof: First step of the algorithm: the fullmatrix blocks corresponding to leaves t × s of T have to be
truncated to rkmatrix format. Since either #t̂ ≤ nmin or #ŝ ≤ nmin the complexity for the rSVD is at
most 21(#ŝ + #t̂)n2

min. In the later steps we always have to truncate an t̂ × ŝ supermatrix consisting of
submatrices in rkmatrix format to rkmatrix format. The submatrices can be extended by zeros to yield an
t̂ × ŝ rkmatrix of rank at most C2

sonsk. The truncation to rank k is according to Lemma 6.1 of complexity
6C2

sonsk
2(#ŝ + #t̂) + 23C3

sonsk
3. For all nodes this sums up to

NHapx(T, k) ≤
∑

t×s∈L−(T)

21n2
min(#ŝ + #t̂) +

∑

t×s∈T\L−(T)

(
6C2

sonsk
2(#ŝ + #t̂) + 23C3

sonsk
3
)

≤
∑

t×s∈T

(
6C2

sonsk
2(#ŝ + #t̂) + 23C3

sonsk
3
)

≤ 2Csp(p + 1)
(
6C2

sonsk
2#I

)
+ 23C3

sonsk
3#T.

6.2. ARITHMETICS IN THE H-MATRIX FORMAT 97

6.2.2 Addition

The complexity estimate for the formatted addition of two H-matrices based on the same block cluster tree
TI×I can be derived directly from the estimate for the truncation.

Lemma 6.11 (Addition) Let T = TI×I be a block cluster tree of depth p with sparsity constant Csp. Then
the complexity of the formatted addition of two matrices from H(T, k) is bounded by

N⊕(T, k) ≤ 24kNSt(T, k) + 184k3#L(T).

6.2.3 Multiplication

The multiplication is a much more complicated operation than the addition, as we have already seen in
Examples 5.18, 5.20. In order to illustrate what might happen during the multiplication we will take a look
at three typical examples.

It may happen that the structure of the product of two matrices from H(TI×I, k) is “coarser” than TI×I:

The coarsening effect is not severe, since the structure can be refined to fit to the original tree T := TI×I,
but it may also happen that the structure of the product of two matrices from H(T, k) is “finer” than T :

The refinement effect seems to suggest that the structure of the product of two matrices from H(T, k) is just
slightly enriched but it may also change totally:

This poses the question how one can efficiently describe the structure of the product. The product tree T ·T
should be a block cluster tree based on the cluster tree TI , i.e.,

root(T · T) := I × I.

If r × t is a node in the product tree T · T then

(AB)|r̂×t̂ = A|r̂×I · B|I×t̂.

98 CHAPTER 6. COMPLEXITY ESTIMATES

r

t t

r

s

s

If there is a cluster s ∈ TI such that both r × s and s × t are not a leaf in T , then the node r × t in the
product tree must not be a leaf. This leads to the definition

Definition 6.12 (Product Tree) We define the product T ·T of a block cluster tree T based on the cluster
tree TI by the root root(T · T) := I × I and for each node r × t of the product tree the successors

sons(r × t) :=
{
r′ × t′

∣∣ ∃s, s′ ∈ TI : r′ × s′ ∈ sonsT (r × s), s′ × t′ ∈ sonsT (s × t)
}

.

The sparsity of the block cluster tree T carries over to the product tree T · T .

Lemma 6.13 The product tree T · T is a block cluster tree of depth at most depth(T). If Csp(T) is the
sparsity constant of T then the sparsity of the product tree is bounded by the product of the sparsity:

Csp(T · T) ≤ Csp(T)2.

Proof: Due to the symmetry of the sparsity we only give a rowwise bound. Let r ∈ TI . Then

{t ∈ TI | r × t ∈ T · T} ⊂ {t ∈ TI | ∃s ∈ TI : r × s ∈ T, s× t ∈ T},
#{t ∈ TI | r × t ∈ T · T} ≤

∑

s∈TI ,r×s∈T

#{t ∈ TI | s × t ∈ T}

≤ Csp(T)Csp(T).

The product tree T · T allows us to describe the result of the multiplication blockwise in a compact form.
In order to simplify the notation we need to define the ancestors of a cluster.

Definition 6.14 (Ancestors) Let TI be a cluster tree and t ∈ T
(`)
I . Then we define the ancestor of t on

level j ≤ ` as the uniquely determined vertex F j(t) ∈ T
(j)
I with t̂ ⊂ F̂j(t). If t is an ancestor of s, we also

write s ∈ S∗(t), i.e., F`(s) = t.

Lemma 6.15 (Representation of the Product) Let T := TI×I be a block cluster tree based on the
cluster tree TI. For each leaf r × t ∈ T on level ` and all j = 0, . . . , ` we define

U(r × t, j) :=
{
s ∈ TI | Fj(r) × s ∈ T, s ×F j(t) ∈ T and at least one of the two is a leaf

}
.

Then for two matrices A, B ∈ H(T, k) and each r × t ∈ T · T there holds

I =
⋃̇

j=0,...,`

⋃̇

s∈U(r×t,j)

ŝ (6.5)

(AB)|r̂×t̂ =
∑̀

j=0

∑

s∈U(r×t,j)

A|r̂×ŝB|ŝ×t̂. (6.6)

6.2. ARITHMETICS IN THE H-MATRIX FORMAT 99

Proof: (Disjointness of U(r × t, j)) The elements of U(r × t, j) are nodes of the cluster tree TI on the
same level j and Lemma 5.22 yields the disjointness.

(Disjointness w.r.t. j) Let s1 ∈ U(r × t, j1) and s2 ∈ U(r × t, j2), j2 ≤ j1 and ŝ1 ∩ ŝ2 6= ∅. We want to
prove ŝ1 = ŝ2. Since s1, s2 ∈ TI we get ŝ1 ⊂ ŝ2 and F j2(s1) = s2. It follows

F̂j1(r) × ŝ1 ⊂ F̂j2(r) × ŝ2, ŝ1 × F̂j1(t) ⊂ ŝ2 × F̂j2(t). (6.7)

Due to the definition of U(r × t, j2) at least one of F j2(r) × s2 or s2 ×F j2(t) is a leaf. Hence, one inclusion
in (6.7) becomes an equality and ŝ1 = ŝ2.

(Covering) Let j ∈ I. If we define t0 := F0(r) ×F0(r) and t′0 := F0(r) ×F0(t), then it holds

t0 ∈ T, t′0 ∈ T and j ∈ F0(r).

If neither t0 nor t′0 is a leaf, then there exists s ∈ sons(F0(r)) such that j ∈ ŝ and t1 := F1(r) × s ∈ T ,
t′1 := s × F1(t) ∈ T . By induction we define ti := F i(r) × s, t′i := s × F i(t) with j ∈ ŝ. Let i be the first
index for which either ti = F i(r) × s or t′i = s ×F i(t) is a leaf. Then j ∈ ŝ, s ∈ U(r × t, i).

Theorem 6.16 (Structure of the Product) Let T := TI×I be a block cluster tree based on TI with
sparsity constant Csp and depth p. The exact multiplication is a mapping · : H(T, k)×H(T, k) → H(T ·T, k̃)

for some k̃ which can be bounded by

k̃ ≤ (p + 1)Csp max{k, nmin}. (6.8)

The exact multiplication can be performed with complexity

NH,·(T, k) ≤ 4(p + 1)C2
sp max{k, nmin}NSt(T, k).

Proof: (Rank) Let A, B ∈ H(T, k) and r × t ∈ L(T · T, `). Due to (6.6), we can express the product
by (p + 1) max`

j=0 #U(r × t, j) addends, each of which is a product of two matrices. From the definition
of U(r × t, j) we get that for each addend one of the factors corresponds to a leaf and so its rank is
bounded by max{k, nmin}. Hence, each addend has a rank bounded by max{k, nmin}. It follows that
k̃ ≤ (p + 1) max`

j=0 #U(r × t, j) max{k, nmin}. The cardinality of U(r × t, j) is bounded by

#U(r × t, j) ≤ #{s ∈ TI | Fj(r) × s ∈ T} ≤ Csp(T)

which yields #U(r × s, j) ≤ Csp(T).

b) (Complexity) Using the representation formula (6.6), we have to compute the products A|r̂×ŝB|ŝ×t̂ that
consist (due to the definition of U(r × t, j)) of max{k, nmin} matrix-vector products. In the following, the
expressions NH,St(Tr̂×I , k) and NH,St(TI×t̂, k) appear which denote the storage requirements for a submatrix

to the index set r̂ × J and J × t̂ of a matrix in H(T, k). We use the abbreviation κ := max{k, nmin} and
conclude that

NH,·(T, k)
Lem.6.6

≤
∑

r×t∈L(T ·T)

p∑

j=0

∑

s∈U(r×t,j)

κ max{2NSt(Tr×s, k), 2NSt(Ts×t, k)}

(6.6)

≤
∑

r×t∈L(T ·T)

2κ max{NSt(Tr̂×I , k), NSt(TI×t̂, k)}

≤ 2κ

p∑

j=0


 ∑

r×t∈L(T ·T,j)

NSt(Tr̂×I , k) +
∑

r×t∈L(T ·T,j)

NSt(TI×t̂, k)




Lem.6.13
≤ 2κ

p∑

j=0


C2

sp

∑

r∈T
(j)
I

NSt(Tr̂×I , k) + C2
sp

∑

t∈T
(j)
I

NSt(TI×t̂, k)




≤ 4κ(p + 1)C2
spNSt(T, k),

100 CHAPTER 6. COMPLEXITY ESTIMATES

s

s

t

rr

t

Figure 6.1: The idempotency constant Csp(r × t) of the leaf r × t is 9.

proving the last estimate.

The representation formula of the previous theorem is based on the product tree T · T which may differ
from T . The formatted multiplication has to map into H(T, k) such that we have to truncate a matrix from
H(T · T, k̃) to H(T, k). The complexity will depend upon the discrepancy between T · T and T . The trivial
case would be an idempotent tree T in the sense T · T = T . Sadly, block cluster trees will in general not be
idempotent. The distance of T · T from T is measured by the idempotency constant defined next.

Definition 6.17 (Idempotency) Let T := TI×I be a block cluster tree based on TI. We define the ele-
mentwise idempotency (cf. Figure 6.1) Cid(r × t) and idempotency constant Cid(T) by

Cid(r × t) := #{r′ × t′ | r′ ∈ S∗(r), t′ ∈ S∗(t) and ∃s′ ∈ TI : r′ × s′ ∈ T, s′ × t′ ∈ T},
Cid(T) := max

r×t∈L(T)
Cid(r × t).

If the tree T is fixed, the short notation Cid is used instead of Cid(T).

Theorem 6.18 (Formatted Multiplication) Let T := TI×I be a block cluster tree with idempotency con-
stant Cid, sparsity constant Csp and depth p. We assume (for simplicity) nmin ≤ k. The exact multiplication

is a mapping · : H(T, k) ×H(T, k) → H(T, k̃) with some k̃ bounded by

k̃ ≤ CidCsp(p + 1)k.

The formatted multiplication �best : H(T, k) ×H(T, k) → H(T, k′) for any k′ ∈ N0 is defined as the exact
multiplication followed by the truncation Tk′ of Lemma 5.13 and can be computed with complexity

N�,best(T, k) ≤ 43C3
idC

3
spk3(p + 1)3 max{#I, #L(T)}

by truncating the exact product. Using the fast truncation T ′
k′ of Defintion 5.19, the complexity can be reduced

to

N�(T, k) ≤ 56C2
sp max{Cid, Csp}k2(p + 1)2#I + 184CspCidk3(p + 1)#L(T).

We call this mapping � or �fast in contrast to �best from above.

6.2. ARITHMETICS IN THE H-MATRIX FORMAT 101

Proof: (a. Rank) Due to (6.8), in each leaf of T · T the rank is bounded by (p + 1)Cspk. If a leaf from T
is contained in a leaf from T · T , then the restriction to the leaf from T does not increase the rank. If a leaf
from T contains leaves from T · T then their number is bounded by Cid and therefore the rank at most k̃.

(b. Complexity) We split the cost estimate into three parts: Nmul for calculating the exact product in
T · T , N− for converting the rkmatrix blocks corresponding to leaves L−(T) to fullmatrix format and
N+, N fast

+ for the (fast) truncation of the rkmatrix blocks to leaves L+(T) with rank k′.

(b1. Nmul) According to Theorem 6.16 and Lemma 6.5, the exact product using the rkmatrix representation
with rank k̃ each leaf can be computed with complexity 4C3

sp(p + 1)2k2#I.

(b2. N−) In the leaves r × t ∈ L−(T) we have to change the representation to fullmatrix format which
has a cost of 2k̃#r̂#t̂:

N− ≤
∑

r×t∈L−(T)

2k̃#t̂#ŝ

≤
∑

r×t∈L(T)

2k̃nmin(#r̂ + #t̂)

≤
p∑

i=0

∑

r×t∈L(T,i)

2k̃nmin(#r̂ + #t̂)

Lemma 5.22
≤ 4(p + 1)Cspk̃nmin#I
≤ 4(p + 1)2C2

spCidknmin#I.

(b3. N+) For each leaf in L+(T) we truncate the rkmatrix block of rank k̃ to rank k using Lemma 6.8 for
the truncation or Lemma 6.9 for the fast truncation:

N+

Lem.6.8
≤ 6k̃NSt(T, k̃) + 23(k̃)3#L(T)

Lem.6.5
≤ 12C3

spC
2
idk2(p + 1)3#I + 23C3

spC
3
idk3(p + 1)3#L(T)

≤ 35C3
spC

3
idk3(p + 1)3 max{#I, #L(T)},

N fast
+

Lem.6.9
≤ CspCid(p + 1)

(
24kNSt(T, k) + 184k3#L(T)

)

Lem.6.5
≤ 48C2

spCidk2(p + 1)2#I + 184CspCidk3(p + 1)#L(T).

6.2.4 Inversion

The formatted inversion for matrices in supermatrix format was defined by use of the formatted multi-
plication and addition. The complexity analysis is not done in this way. Instead, we observe that the
multiplication and inversion procedure perform the same kind of operations - only in different order.

Theorem 6.19 (Formatted Inversion) Let T := TI×I be a block cluster tree. We assume that for the
fullmatrix blocks r × t ∈ L−(T) the complexity of the inversion is bounded by the complexity of the multi-
plication (in the case nmin = 1 both are one elementary operation). Then the complexity NH,Inv(T, k) of the
formatted inversion (Implementation 5.28) in the set H(T, k) is bounded by N�(T, k).

Proof: We prove the statement by induction over the depth p of the tree T . For p = 0, we have assumed
that the inversion is of the same complexity as the multiplication. Now let p > 0 and let r1, . . . , rn denote

102 CHAPTER 6. COMPLEXITY ESTIMATES

the sons of the root I of TI . For the inversion of the matrix we call the multiplication mul_supermatrix

for all combinations of blocks (ri, r`, rj), i, `, j ∈ {1, . . . , n}, where the combination i = ` = j stands for the
inversion which is by induction at most of the same complexity as the multiplication. This is exactly what is
done for the computation of the product of two matrices in supermatrix format (see Implementation 5.26).
Additionally, we have to call the formatted addition add_supermatrix in the blocks ri × rj , again the same
for the product.

6.3 Sparsity and Idempotency of the Block Cluster Tree TI×I

6.3.1 Construction of the Cluster Tree TI

Before we estimate the idempotency and sparsity of the tree TI×I, we will first recapitulate the construction
of the cluster tree TI by geometrically balanced splitting of the space.

Let I be any fixed (finite) index set and d ∈ N. The basis functions associated to the indices i ∈ I map
from Rd to R and have a small support Ωi. We denote the Chebyshev centre of such a support Ωi by mi.
In practice the vertex mi can be any point inside the support of Ωi, for nodal based basis functions one can
take the nodal point.

In order to simplify the notation and visualisation we will only present the case d = 2. The generalisation
to the case d > 2 is straightforward.

Construction 6.20 (Geometrically Balanced Clustering) Without loss of generality we assume that
the domain Ω is contained in the square [0, H) × [0, H). The root root(TI) of the cluster tree has the whole
index set I as a label.

The splitting of a cluster t with corresponding box [a, c) × [d, f) is done geometrically balanced, i.e., for the
midpoints b := (a + c)/2 and e := (d + f)/2 the four sons {s1, s2, s3, s4} of t are

ŝ1 := {i ∈ t̂ | mi ∈ [a, b) × [d, e),

ŝ2 := {i ∈ t̂ | mi ∈ [b, c) × [d, e),

ŝ3 := {i ∈ t̂ | mi ∈ [a, b) × [e, f),

ŝ4 := {i ∈ t̂ | mi ∈ [b, c) × [e, f).

If t̂ contains less or equal to nmin indices then we do not split t any further. Note that the boxes [a, b)× [d, e)
are passed on to the sons such that they may differ from the bounding box. The box corresponding to
a node t ∈ TI is denoted by Ct.

The structure of the cluster tree TI corresponds to the regular structure of the geometrically splitting of
[0, H] × [0, H]. This regular structure is essential in order to bound the sparsity and idempotency of the
block cluster tree to be constructed. Trees that have a large idempotency or sparsity may still be useful and
allow for fast formatted arithmetics, but the bounds for the complexity are not easy to establish.

Since only the Chebyshev centre of Ωi is contained in the respective box, a box Bt containing Ωt has to be
1
2diam(Ωi) larger than Bt. We define the local meshwidth ht and box Bt by

ht := max
i∈t̂

diam(Ωi), Bt := Ct +
1

2
[−ht, ht]

2
. (6.9)

Lemma 6.21 For any two nodes t, s ∈ T
(`)
I there holds

Ωt ⊂ Bt

diam(Bt) =
√

2(2−` + ht)H (6.10)

dist(Bt, Bs) ≥ dist(Ct, Cs) −
1

2

√
2(ht + hs). (6.11)

6.3. SPARSITY AND IDEMPOTENCY OF THE BLOCK CLUSTER TREE TI×I 103

Proof: Let i ∈ t. By Construction 6.20 we get mi ∈ Ct. The elements in the support Ωi have a distance
of at most 1

2diam(Ωi) from the centre mi and thus Ωi ⊂ Bt. The second and third part follow from the
definition of Bt.

6.3.2 Construction of the Block Cluster Tree TI×I

Based on the cluster tree TI from Construction 6.20 and the admissibility condition (2.3) we define the block
cluster tree T := TI×I as follows.

A product index set r × s with corresponding boxes Cr and Cs is called admissible, if

min{d̃iam(r), d̃iam(s)} ≤ d̃ist(r, s), (6.12)

where the modified distance and diameter are

d̃iam(t) := diam(Bt),

d̃ist(r, s) := dist(Br, Bs).

If a product r × s is admissible with respect to (6.12) then the corresponding domain Ωr ×Ωs is admissible
with respect to the standard admissibility condition (2.3).

This modified admissibility condition is used to construct the block cluster tree TI×I as usual.

Construction 6.22 (Block Cluster Tree TI×I) Let the cluster tree TI be given. We define the block

cluster tree T := TI×I by ̂root(T) := I × I and for each vertex r × s ∈ T the set of successors

sons(r×s) :=

{
{r′ × s′ | r′ ∈ sons(r), s′ ∈ sons(s)} if #r > nmin and #s > nmin and r × s is inadmissible,
∅ otherwise.

The block cluster tree does not bear a regular structure and we have to do some work to gain the bounds
for the sparsity and idempotency.

Lemma 6.23 Let T := TI×I be the block cluster tree of depth p ≥ 1 built from the cluster tree TI by
Construction 6.22. Then the sparsity constant (cf. Definition 6.3) Csp of T is bounded by

Csp ≤ 4 max
r∈TI

#{s ∈ TI | r × s ∈ T \ L(T) and r × s is inadmissible}.

Proof: Let r× s ∈ T (`). Then r× s is either the root of T or the father element F(r)×F(s) is inadmissible
due to Construction 6.22.

So far, we have not posed any condition on the locality of the supports of the basis functions ϕi. If all the
supports cover the whole domain Ω, then the only admissible block t̂× ŝ ⊂ I ×I is t̂× ŝ = ∅. Therefore, we
have to demand the locality of the supports.

Assumption 6.24 (Locality) We assume that the supports are locally separated in the sense that there
exist two constants Csep and nmin such that

max
i∈I

#{j ∈ I | dist(Ωi, Ωj) ≤ C−1
sepdiam(Ωi)} ≤ nmin. (6.13)

The left-hand side is the maximal number of ‘rather close’ supports. Note that the bound nmin is the same
that we use for the construction of TI.

104 CHAPTER 6. COMPLEXITY ESTIMATES

Lemma 6.25 (Sparsity, Idempotency and Depth of TI×I) Let h := mini∈I diam(Ωi). We use the
same notation as in Construction 6.20 and assume that (6.13) holds for some constants Csep, nmin. Let
T := TI×I be the block cluster tree from Construction 6.20 and 6.22. Then the following statements hold:
(a) All leaves t × s ∈ L(T) are either admissible with respect to (6.12) or min{#t̂, #ŝ} ≤ nmin.
(b) The depth of the tree is bounded by

depth(T) ≤ 1 + log2

(
(1 + Csep)

√
2H/hmin

)
.

(c) The sparsity constant is bounded by

Csp ≤ (4 + 16Csep + 8
√

2η−1(1 + Csep))2.

(d) The idempotency constant is bounded by

Cid ≤ ((4 + 4η)(1 + Csep))4.

Proof: (a) Holds by Construction 6.22.

(b) Let t ∈ T
(`)
I be a non-leaf node. Then #t̂ > nmin such that

diam(Bt)
(6.10)
=

√
2(2−` + ht)H

(6.13)

≤
√

2(2−` + Csepdiam(Ct))H =
√

2(1 + Csep)2−`H (6.14)

while diam(Bt) ≥ diam(Ωi) ≥ hmin. This yields 2` ≤
√

2(1 + Csep)H/hmin.

(c) We exploit the structure of the regular subdivision of [0, H)× [0, H) into the squares Ct. Let t ∈ T
(`)
I be

a node with #t̂ > nmin. The number of squares Cs on level ` that touch Ct is at most 32. By induction it
follows that the number of cubes on level ` with a distance less than j2−`H to Ct is bounded by (1+2j)2. Let

s ∈ T
(`)
I with #ŝ > nmin and dist(Ct, Cs) > j2−`H . The diameter and distance of the respective bounding

boxes can be estimated by

diam(Bt)
(6.14)

≤
√

2(1 + Csep)2−`H,

dist(Bt, Bs)
(6.11)

≥ dist(Ct, Cs) −
1

2

√
2(ht + hs)

> j2−`H − 1

2

√
2Csep(diam(Ct) + diam(Cs))

= j2−`H − Csep21−`H.

If t × s is not admissible, then (6.12) enables us to further estimate

√
2(1 + Csep)2−`H > η(j2−`H − 2Csep2

−`H)

which yields

j < η−1
(√

2(1 + Csep) + 2ηCsep

)
=: jmax.

As a consequence the number of nodes s ∈ T
(`)
I not admissible to t is bounded by (1 + 2jmax)

2. The number
of successors of s is bounded by 4 such that on level `+1 there are at most 4(1+2jmax)

2 nodes inadmissible
to a son of t. Lemma 6.23 yields (c).

(d) Let r × t ∈ L(T, `). If #r̂ ≤ nmin or #t̂ ≤ nmin, then the elementwise idempotency is Cid(r × t) = 1.
Now let r × t be admissible. Define q := d(log2(2(1 + η)(1 + Csep))e. We want to prove that for all vertices
r′, s′, t′ ∈ T (`+q), r′ × s′ ∈ S∗(r× s) and s′ × t′ ∈ S∗(s× t) one of the vertices r′ × s′ and s′ × t′ is a leaf. Let
r′, s′, t′ be given as above and min{#r̂′, #ŝ′, #t̂′} > nmin.

For u ∈ {r′, s′, t′} it holds

d̃iam(u)
(6.14)

≤
√

2(1 + Csep)2−q−`H
Def.q

≤ 1

2

√
2(1 + η)−12−`H. (6.15)

6.4. EXERCISES 105

Then we can estimate

d̃iam(s′)
(6.15)

≤ 1

2

√
2(1 − η(η + 1)−1)2−`H

=
1

2

√
22−`H − η

1

2

√
22−`H(η + 1)−1

(6.10)

≤ 1

2
min{d̃iam(r), d̃iam(t)} − η max

u∈{r′,s′,t′}
d̃iam(u)

≤ 1

2
ηd̃ist(r, t) − η max

u∈{r′,s′,t′}
d̃iam(u)

=
1

2
ηdist(Br , Bt) − η max

u∈{r′,s′,t′}
d̃iam(u)

≤ η max{dist(Br′ , Bs′), dist(Bs′ , Bt′)} + ηdiam(Bs′) − η max
u∈{r′,s′,t′}

d̃iam(u)

≤ η max{dist(Br′ , Bs′), dist(Bs′ , Bt′)}
= η max{d̃ist(r′, s′), d̃ist(s′, t′)},

i.e., either r′ × s′ or s′ × t′ is admissible (and has no sons). It follows that there are no vertices
r′′ × s′′ ∈ T (`+q+1) and s′′ × t′′ ∈ T (`+q+1) with r′′ ∈ S∗(r), t′′ ∈ S∗(t). Since the number of sons of
a vertex is limited by 24, there are at most 24q vertices in T · T that are contained in r × t.

Remark 6.26 Lemma 6.25 proves that Construction 6.20 (→ cluster tree) combined with Construction
6.22 (→ block cluster tree) yields a tree T that is sparse and idempotent with Csp and Cid independent of the
cardinality of the index set I. The depth of the tree is estimated by the logarithm of the ratio of the smallest
element to the diameter of the whole domain (which can be large). For reasonable triangulations this ratio
depends polynomially on #I such that the logarithm of the ratio is proportional to log(#I).

Remark 6.27 (Admissibility for H2-matrices) The results of Lemma 6.25 depend on the admissibility
condition (2.3). In the context of H2-matrices the stronger admissibility condition

max{diam(τ), diam(σ)} ≤ ηdist(τ, σ) (6.16)

is required. The bounds for the sparsity constant Csp, the idempotency constant Cid and the depth p of the
tree also hold for this admissibility condition, because the reference cubes Cr,Cs on the same level are of
equal size.

6.4 Exercises

6.4.1 Theory

Exercise 23 Let TI be a cluster tree. Prove for all i ∈ N0

I = T
(i)
I ∪ L(TI , i − 1) ∪ . . . ∪ L(TI , 0).

106 CHAPTER 6. COMPLEXITY ESTIMATES

Chapter 7

H2-matrices

In order to find a hierarchical matrix approximation of an integral operator, we have used a degenerate
expansion of the kernel function. We have constructed this expansion by applying interpolation to either
the first or the second argument of the kernel function.

In this chapter, we will take a closer look at the properties of this expansion and derive a specialized variant
of hierarchical matrices that can be treated by more efficient algorithms.

H2-matrices were introduced in [25], where the approximation was based on Taylor expansions. We will use
the construction described in [13, 6], which is based on interpolation.

7.1 Motivation

We consider the bilinear form

a(u, v) =

∫

Ω

v(x)

∫

Ω

g(x, y)u(y) dy dx

corresponding to an integral operator. In Chapter 3, we have replaced the original kernel function g(·, ·) by
a degenerate approximation

g̃t,s(x, y) :=
∑

ν∈K

g(xt
ν , y)Lt

ν(x)

for admissible cluster pairs (t, s) (we assume that diam(Qt) ≤ diam(Qs) holds for all cluster pairs in the
block cluster tree, so that we can always interpolate in the x-variable without losing the approximation
property).

Discretizing this approximated kernel function leads to the representation

G̃t,s
ij =

∫

Ω

ϕi(x)

∫

Ω

g̃t,s(x, y)ϕj(y) dy dx

=
∑

ν∈K

∫

Ω

ϕi(x)

∫

Ω

g(xt
ν , y)Lt

ν(x)ϕj(y) dy dx

=
∑

ν∈K

(∫

Ω

ϕi(x)Lt
ν (x) dx

)(∫

Ω

ϕj(y)g(xt
ν , y) dy

)

=
(
At,sBt,s>

)
ij

for all i ∈ t̂ and j ∈ ŝ, where

At,s
iν =

∫

Ω

ϕi(x)Lt
ν (x) dx and Bt,s

jν =

∫

Ω

ϕj(y)g(xt
ν , y) dy.

107

108 CHAPTER 7. H2-MATRICES

Let us take a closer look at the matrix At,s: since we integrate a Lagrange polynomial corresponding to a
cluster t multiplied with basis functions corresponding to the same cluster, this matrix depends only on the
cluster t, but not on the cluster s. This means that for each cluster t ∈ TI , we have a matrix V t ∈ Rt̂×K

defined by

V t
iν :=

∫

Ω

ϕi(x)Lt
ν (x) dx (7.1)

for i ∈ t̂ and ν ∈ K satisfying V t = At,s for all admissible leaves (t, s) of the block cluster tree TI×I . We
define

Rt := {s ∈ TI : (t, s) ∈ L(TI×I)},
i.e., Rt contains all clusters s such that (t, s) is an admissible leaf of the block cluster tree TI×I , and rewrite
our observation in the form

At,s = V t for all s ∈ Rt.

This equation has two major implications: We can save memory, since we have to store V t only once, and
we can save time in the matrix-vector multiplication, since due to

∑

s∈Rt

At,sBt,s> =
∑

s∈Rt

V tBt,s> = V t

(∑

s∈Rt

Bt,s>
)

,

we can sum over vectors of length k = #K instead of over vectors of length #t̂.

But there is more: consider a second cluster t′ ∈ TI . Since we use the same space of polynomials for all
clusters, we have

span{Lt
ν : ν ∈ K} = span{Lt′

ν′ : ν′ ∈ K},

so there must be coefficients T t′,t
ν′ν ∈ R such that

Lt
ν =

∑

ν′∈K

T t′,t
ν′ν Lt′

ν′ (7.2)

holds, i.e., we can represent the Lagrange polynomials corresponding to the cluster t by the Lagrange poly-
nomials corresponding to the cluster t′. Since we are dealing with Lagrange polynomials, the computation

of the coefficients T t′,t
ν′ν is especially simple: they are given by

T t′,t
ν′ν = Lt

ν(xt′

ν′). (7.3)

For each index i ∈ t̂, we can find a t′ ∈ sons(t) with i ∈ t̂′, and equation (7.2) implies

V t
iν =

∫

Ω

ϕi(x)Lt
ν(x) dx =

∑

ν′∈K

T t′,t
ν′ν

∫

Ω

ϕi(x)Lt′

ν′ (x) dx =
∑

ν′∈K

T t′,t
ν′ν V t′

iν′ = (V t′T t′,t)iν . (7.4)

This equation allows us to speed up the matrix-vector multiplication even more: computing V tyt directly for
a vector yt ∈ RK requires O(k#t̂) operations. If t is not a leaf, i.e., if sons(t) 6= ∅, there is a t′ ∈ sons(t) for
each i ∈ t̂ such that i ∈ t̂′, and this implies (V tyt)i = (V t′T t′,tyt)i. So instead of computing V tut directly,
we can compute T t′,tyt for all sons t′ ∈ sons(t), and this will only require O(k2) operations.

7.2 H2-matrices

7.2.1 Uniform H-matrices

We have seen that the matrices At,s which appear in our degenerate approximation of the admissible matrix
blocks have many desirable properties due to the fact that they are discretizations of Lagrange polynomials.
Unfortunately, the matrices Bt,s are not of this kind.

7.2. H2-MATRICES 109

In order to fix this, we change our approximation scheme: instead of applying interpolation only to the x
coordinate, we apply it to both coordinates:

g̃t,s(x, y) := (It
m ⊗ I

s
m)[g](x, y) =

∑

ν∈K

∑

µ∈K

g(xt
ν , xs

µ)Lt
ν(x)Ls

µ(y). (7.5)

Discretizing this approximation of the kernel, we find

G̃ij :=

∫

Ω

ϕi(x)

∫

Ω

g̃t,s(x, y)ϕj(y) dy dx

=
∑

ν∈K

∑

µ∈K

g(xt
ν , xs

µ)

(∫

Ω

ϕi(x)Lt
ν(x) dx

)

︸ ︷︷ ︸
=V t

iν

(∫

Ω

ϕj(y)Ls
µ(y) dy

)

︸ ︷︷ ︸
=V s

jµ

= V tSt,sV s> (7.6)

for i ∈ t̂ and j ∈ ŝ, where St,s ∈ RK×K is defined by

St,s
νµ := g(xt

ν , xs
µ). (7.7)

Now, we have what we need: the matrices V t and V s have the desired properties, and the matrix St,s is
only of dimension k × k (for k := #K).

Definition 7.1 (Cluster basis) Let TI be a cluster tree for the index set I. A family (V t)t∈TI
of matrices

is a cluster basis, if for each t ∈ TI there is a finite index set Kt such that V t ∈ Rt̂×Kt

.

A cluster basis (V t)t∈TI
is of constant order, if there is a set K such that K t = K holds for each t ∈ TI.

Obviously, the matrices V t introduced by (7.1) form a constant-order cluster basis.

Definition 7.2 (Uniform H-matrix) Let TI×J be a block cluster tree and let V = (V t)t∈TI
and W =

(W s)s∈TJ
be cluster bases for the index sets I,J . We define the set of uniform H-matrices with row basis

V and column basis W as

H(TI×J , V, W) := {M ∈ RI×J | for all admissible (t, s) ∈ L(TI×J),

there is St,s ∈ RKt×Ks

with M |t̂×ŝ = V tSt,sW s>}.

The matrices St,s are called coupling matrices.

A uniform H-matrix is of constant order, if the cluster bases (V t)t∈TI
and (W s)s∈TJ

are of constant order.

Remark 7.3 Differently from H-matrices, the set H(TI×J , V, W) of uniform H-matrices for fixed bases V
and W is a subspace of RI×J , but it is not an ideal.

Due to rank(V tSt,sW s>) ≤ rank(St,s) ≤ min{#Kt, #Ks}, each uniform H-matrix is also an H-matrix with
rank k := max{#Kt, #Ks : t ∈ TI , s ∈ TJ }.
Using the kernel approximation (7.5) in each admissible block will lead to blocks satisfying (7.6), this matrix
is a uniform H-matrix of constant order with cluster bases defined by (7.1) and coefficient matrices defined
by (7.7).

Multiplying a vector x ∈ RI can be organized in a procedure consisting of four steps:

1. Forward transformation: Compute xs := W s>x|ŝ for all clusters s ∈ TI .

2. Multiplication: Compute

yt :=
∑

s∈Rt

St,sxs

for all clusters t ∈ TI .

110 CHAPTER 7. H2-MATRICES

3. Backward transformation: Compute y ∈ RI defined by

yi :=
∑

t,i∈t̂

(V tyt)i.

4. Non-admissible blocks: Treat non-admissible blocks as in the case of standard H-matrices.

Lemma 7.4 (Complexity of the multiplication phase) Let Csp be the sparsity constant of TI×I. For
a constant-order cluster basis with k = #K, the multiplication phase requires O(Cspk2#TI) operations.

Proof: By definition, we have #Rt ≤ Csp. Since the multiplication by St,s requires O(k2) operations and
has to be performed for each s ∈ Rt, the computation of yt for a cluster t ∈ TI requires O(Cspk2) operations.

Summing over all clusters concludes the proof.

Lemma 7.5 (Complexity of the multiplication for non-admissible blocks) Let Csp be the sparsity
constant of TI×I, and let nmin := max{#t̂ | t ∈ L(TI)}. We assume that if a leaf t × s of the block cluster
tree TI×I is not admissible, then t and s are leaves of the cluster tree TI (cf. Exercise 8). Then the treatment
of the non-admissible blocks in the matrix-vector multiplication requires O(Cspn2

min#TI) operations.

Proof: There are not more than #TI leaves, so there are not more than Csp#TI leaf nodes in the block
cluster tree. Let t × s be one of these leaf nodes. By assumption, t and s must be leaf clusters of TI , so
we have max{#t̂, #ŝ} ≤ nmin, and the multiplication by the corresponding full matrix can be completed in
O(n2

min) operations.

In typical applications, we have #TI ≤ n, so the second and fourth step of the matrix-vector multiplication
can be accomplished in linear complexity with respect to the number of degrees of freedom n.

Unfortunately, a naive implementation of the remaining steps, namely the forward and backward transfor-
mation, requires O(n(p + 1)k) operations, where p is the depth of TI , and due to p ≈ log(n), we would only
reach almost linear complexity in n. In order to be able to perform matrix-vector multiplications in optimal
complexity with respect to n, we need to improve these transformations.

7.2.2 Nested cluster bases

Definition 7.6 (Nested cluster basis) A cluster basis (V t)t∈TI
is nested, if for each non-leaf cluster

t ∈ TI and each son cluster t′ ∈ sons(t), there is a transfer matrix T t′,t ∈ RKt′×Kt

satisfying

(V tyt)i = (V t′T t′,tyt)i (7.8)

for all vectors yt ∈ RKt

and all indices i ∈ t̂′.

Example 7.7 (Two sons) If we assume that sons(t) = {t1, t2} with t1 6= t2, we have that t̂ = t̂1∪̇t̂2 holds,
and (7.8) takes the form

V t =

(
V t1T t1,t

V t2T t2,t

)
=

(
V t1

V t2

)(
T t1,t

T t2,t

)
.

Applying this equation recursively, we find

range(V t|t̂′×Kt) ⊆ range(V t′)

for all clusters t′ ∈ TI with t̂′ ⊆ t̂.

7.2. H2-MATRICES 111

Definition 7.8 (H2-matrix) A uniform H-matrix whose column and row cluster basis are nested is called
an H2-matrix.

Due to equation (7.4), the cluster basis defined by (7.1) is nested.

Let us consider the backward transformation: for i ∈ I, we have to compute

yi :=
∑

s,i∈ŝ

(V sys)i.

We single out a non-leaf cluster t ∈ TI and apply (7.8) to the cluster t′ ∈ sons(t) with i ∈ t̂′:

yi =
∑

s6=t,i∈ŝ

(V sys)i + (V tyt)i =
∑

s6=t,i∈ŝ

(V sys)i + (V t′T t′,tyt)i

=
∑

s6=t,s6=t′,i∈ŝ

(V sys)i + V t′(yt′ + T t′,tyt)i.

The cluster t does no longer appear in this sum, since its contribution has been added to the vectors
corresponding to its son. This means that we can define a new set (ŷs)s∈TI

by setting

ŷs :=





0 if s = t

ys + T s,tyt if s ∈ sons(t)

ys otherwise.

and find

yi =
∑

s3i

(V sys)i =
∑

s3i

(V sŷs)i =
∑

s3i,s6=t

(V sŷs)i

for all i ∈ I. We can apply this technique to recursively eliminate all non-leaf clusters:

void

backward_clusterbasis(pclusterbasis cb, double *y)

{

/* ... some initialization ... */

if(sons > 0) {

yindex = 0;

for(i=0; i<sons; i++) {

addeval_lapack(son[i]->kt, kt, T[i], yt, son[i]->yt);

backward_clusterbasis(son[i], y + yindex);

yindex += son[i]->n;

}

}

else

addeval_lapack(n, kt, V, yt, y);

}

Lemma 7.9 (Complexity of the backward transformation) For a constant-order cluster basis with
k := #K, the fast backward transformation requires O(kn + k2#TI)) operations.

Proof: For a non-leaf cluster t ∈ TI , we multiply yt by T t′,t for all of its sons t′ sons(t). This requires O(k2)
operations. Since each cluster has not more than one father, not more than O(#TI) such multiplications
are performed, so treating all non-leaf clusters is accomplished in O(k2#TI) operations.

112 CHAPTER 7. H2-MATRICES

For a leaf cluster t ∈ TI , we multiply yt by V t. This requires O(k#t̂) operations. Since the index sets
corresponding to the leaves of TI form a partition of I (cf. Lemma 2.7), we have

∑

t∈L(TI)

k#t̂ = kn,

so the backward transformation requires O(kn + k2#TI) operations.

Remark 7.10 (Complexity of the forward transformation) Obviously, we can treat the forward
transformation by an identical argument and reach an identical bound for its the complexity.

Remark 7.11 In special situations, we can reduce the complexity of the forward and backward transforma-
tion to O(n) by using different ranks for different clusters [31, 32, 8].

7.2.3 Implementation

The structure used for the representation of a cluster basis is similar to that used for clusters:

Implementation 7.12 (clusterbasis) The clusterbasis structure is defined as follows:

typedef struct _clusterbasis clusterbasis;

typedef clusterbasis *pclusterbasis;

struct _clusterbasis {

pccluster t;

double **T;

double *V;

double *xt;

double *yt;

int k;

int kt;

int n;

int sons;

pclusterbasis *son;

};

The fields sons and son are used to form a tree of clusterbasis structures similar to the cluster tree.

The entry t points to the cluster this cluster basis is used for.

The field k gives the maximal possible rank for which memory has been allocated, while the field kt gives the
current rank. The field n gives the number of indices in the corresponding cluster, it is identical to t->size.

The array T contains the transfer matrices T t′,t. The entry T[i] corresponds to the i-th son son[i] and
represents a matrix in FORTRAN format with son[i]->kt rows and kt columns.

The array V contains the matrix V t corresponding to this cluster, stored in standard FORTRAN format
with n rows and kt columns. Typically, this array will only be used if t is a leaf cluster.

The fields xt and yt are auxiliary variables of size kt that store the vectors xt and yt used in the matrix-vector
multiplication algorithm.

7.2. H2-MATRICES 113

Using this representation of a cluster basis, the representation of a uniform H-matrix is straightforward: we
introduce a new matrix type containing the coefficient matrix St,s and pointers to the cluster bases and add
it to the supermatrix structure:

Implementation 7.13 The structure uniformmatrix is similar to rkmatrix:

typedef struct _uniformmatrix uniformmatrix;

typedef uniformmatrix *puniformmatrix;

struct _uniformmatrix {

pclusterbasis row;

pclusterbasis column;

int rows;

int cols;

int kr;

int kc;

int ktr;

int ktc;

double *S;

};

The pointers row and column give us the cluster basis corresponding to this block: V t corresponds to row

and V s corresponds to column.

The field rows stores the number of rows of this matrix block, while cols stores the number of columns.

The fields kr and kc give the maximal ranks of the row and column basis, the field ktr and ktc give the
current ranks.

Finally, the array S contains the coefficient matrix St,s in standard FORTRAN format with ktr rows and
ktc columns.

Implementation 7.14 (Changes in supermatrix) In order to be able to treat uniform H-matrices and
H2-matrices, we have to add three fields to the supermatrix structure:

pclusterbasis row;

pclusterbasis col;

puniformmatrix u;

The fields row and col give us the cluster bases corresponding to this supermatrix, if it describes a uniform
H-matrix. If it describes an admissible block of a uniform H-matrix, the field u contains the corresponding
coefficient matrix St,s.

There are two ways of performing a matrix-vector multiplication by a uniform matrix: we can compute
y := V tSt,sV s>x|s directly, or we can compute only yt := St,sxs. Obviously, the second choice is much more
efficient than the first. Its implementation is very simple if the LAPACK library is used:

void

fasteval_uniformmatrix(puniformmatrix um)

{

eval_lapack(um->ktr, um->ktc, um->S, um->col->xt, um->row->yt);

}

114 CHAPTER 7. H2-MATRICES

Obviously, this routine requires the representation um->col->xt of the vector xs to be already initialized.
This can be done by calling forward_clusterbasis before calling the standard eval_supermatrix and by
calling backward_clusterbasis afterwards. We have redefined eval_supermatrix, addeval_supermatrix,
evaltrans_supermatrix and addevaltrans_supermatrix in such a way that the forward and backward
transformations are performed automatically if a cluster basis is present, i.e., if the fields row and col of the
supermatrix are not null pointers.

7.3 Orthogonal cluster bases

In order to simplify the conversion of an arbitrary matrix into an H2-matrix, we introduce a special class of
cluster bases:

Definition 7.15 (Orthogonal cluster bases) A cluster basis (V t)t∈TI
is orthogonal, if

(V t)>V t = I

holds for all clusters t ∈ TI.

Before we can prove some of the properties of orthogonal cluster bases, we need some nomenclature:

Definition 7.16 (Matrix Hilbert space) Let I, J be arbitrary finite index sets. We define the Frobenius
inner product on the space RI×J by

〈A, B〉F :=
∑

i∈I

∑

j∈J
AijBij

for A, B ∈ RI×J . Obviously, we have 〈A, A〉F = ‖A‖2
F , so the Frobenius inner product turns the matrix

space RI×J into a Hilbert space.

Lemma 7.17 (Matrix products) Let I,J ,K be arbitrary finite index sets. Let A ∈ RI×J , B ∈ RJ×K

and C ∈ RI×K. Then we have

〈AB, C〉F = 〈B, A>C〉F = 〈A, CB>〉F .

Proof: Exercise 26.

Lemma 7.18 (Best approximation) Let (V t)t∈TI
, (W s)s∈TJ

be orthogonal cluster bases. Let M ∈ Rt̂×ŝ

be an arbitrary matrix. Then
SM := (V t)>MW s

satisfies
‖M − V tSM (W s)>‖F ≤ ‖M − V tS(W s)>‖F

for all S ∈ RKt×Ks

, i.e., SM is the optimal coefficient matrix for representing M as a uniform matrix block.

Proof: We introduce the function

f : RKt×Ks → R, S 7→ 1

2
‖V tS(W s)> − M‖2

F .

The minimum S∗ of f is the optimal coefficient matrix. Since f is a quadratic function, its minimum satisfies
the equation

0 = Df(S∗) · R = 〈V tS∗(W s)>, V tR(W s)>〉F − 〈M, V tR(W s)>〉F (7.9)

7.4. ADAPTIVE CLUSTER BASES 115

for all R ∈ Rt̂×ŝ, i.e.,

〈SM , R〉F = 〈(V t)>MW s, R〉F = 〈M, V tR(W s)>〉F
(7.9)
= 〈V tS∗(W s)>, V tR(W s)>〉F

= 〈S∗, (V t)>V t

︸ ︷︷ ︸
=I

R (W s)>W s

︸ ︷︷ ︸
=I

〉F = 〈S∗, R〉F .

Since the Frobenius inner product in non-degenerate, this implies S∗ = SM .

This lemma implies that computing the optimal coefficient matrices is a simple task once the cluster bases
have been constructed.

As an example, let us consider the conversion of an rkmatrix to a uniformmatrix: the rkmatrix is given
in the form M = AB>, so the optimal coupling matrix

SM := (V t)>MW s = ((V t)>A)((W s)>B)>

can be computed by the following simple procedure:

void

convertrk2_uniformmatrix(prkmatrix r, puniformmatrix u)

{

/* ... some initialization ... */

Ac = allocate_matrix(u->ktr,r->kt);

Bc = allocate_matrix(u->ktc,r->kt);

for(i=0; i<r->kt; i++) {

forward_clusterbasis(u->row, r->a + i*r->rows);

copy_lapack(u->ktr, u->row->xt, Ac + i*u->ktr);

forward_clusterbasis(u->col, r->b + i*r->cols);

copy_lapack(u->ktc, u->col->xt, Bc + i*u->ktc);

}

multrans2_lapack(u->ktr, u->ktc, r->kt,

Ac, Bc, u->S);

freemem(Bc); freemem(Ac);

}

7.4 Adaptive cluster bases

We have seen that H2-matrices provide an efficient way of dealing with matrices that result from the dis-
cretization of integral operators. Now we want to examine the case of general matrices, i.e., we want to find
an algorithm that approximates an arbitrary matrix into an H2-matrix (cf. [5, 7, 2]).

7.4.1 Matrix error bounds

Since we intend to compute row and column cluster bases separately, we need to separate the estimates for
V t and W s:

116 CHAPTER 7. H2-MATRICES

Lemma 7.19 (Separation of row and column bases) Let (V t)t∈TI
, (W s)s∈TJ

be orthogonal cluster

bases. Let M ∈ Rt̂×ŝ. Then

‖M − V tSM (W s)>‖2
F ≤ ‖M − V t(V t)>M‖2

F + ‖M> − W s(W s)>M>‖2
F .

Proof: Let B, C ∈ Rt̂×ŝ. We start by observing

〈B − V t(V t)>B, V t(V t)>C〉F = 〈V t(V t)>B − V t (V t)>V t

︸ ︷︷ ︸
=I

(V t)>B, C〉F = 0. (7.10)

Setting B = M and C = M − MW s(W s)>, we find that we can apply Pythagoras’ equation in order to
prove

‖M − V tSM (W s)>‖2
F = ‖M − V t(V t)>M + V t(V t)>(M − MW s(W s)>)‖2

F

= ‖M − V t(V t)>M‖2
F + ‖V t(V t)>(M − MW s(W s)>)‖2

F .

Setting B = C = M − MW s(W s)> in (7.10), we can again use Pythagoras’ equation to get

‖B‖2
F = ‖B − V t(V t)>B‖2

F + ‖V t(V t)>B‖2
F ≥ ‖V t(V t)>B‖2

F

and therefore

‖V t(V t)>(M − MW s(W s)>)‖2
F ≤ ‖M − MW s(W s)>‖2

F .

Observing ‖M − MW s(W s)>‖F = ‖M> − W s(W s)>M>‖F concludes the proof.

Lemma 7.20 (Approximation error) Let (V t)t∈TI
be orthogonal cluster bases. Let M ∈ Rt̂×ŝ. Then we

have

‖M − V t(V t)>M‖2
F = ‖M‖2

F − ‖(V t)>M‖2
F .

Proof: Due to (7.10), we have

‖M − V t(V t)>M‖2
F = ‖M‖2

F + ‖V t(V t)>M‖2
F − 2〈M, V t(V t)>M〉2F

= ‖M‖2
F + ‖V t(V t)>M‖2

F − 2〈V t(V t)>M, V t(V t)>M〉2F = ‖M‖2
F − ‖V t(V t)>M‖2

F .

The orthogonality of V t implies

‖V t(V t)>M‖2
F = 〈V t(V t)>M, V t(V t)>M〉F = 〈(V t)>M, (V t)>V t

︸ ︷︷ ︸
=I

(V t)>M〉F = ‖(V t)>M‖2
F ,

which proves our claim.

This means that minimizing the approximation error is equivalent to maximizing ‖(V t)>M‖F .

7.4.2 Construction of a cluster basis for one cluster

We recall Lemma 5.5 to see that the singular value decomposition can be used to find the orthogonal low-
rank matrix V t that solves this maximization problem: we set n := #t̂ and compute the singular value
decomposition M = V ΣU> of M with orthogonal matrices V ∈ Rt̂×n, W ∈ Rŝ×n and a diagonal matrix
Σ = diag(σ1, . . . , σn) ∈ Rn×n, where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. We choose a rank k and use In,kt ∈ Rn×kt

defined by

In,k
ij = δij

7.4. ADAPTIVE CLUSTER BASES 117

for i ∈ {1, . . . , n}, j ∈ {1, . . . , k} to define V t := V In,k (in short: the matrix V t consists of the first k
columns of V). Now we see that

M − V t(V t)>M = V ΣU> − V In,k(In,k)>V >V ΣU = V (I − In,k(In,k)>)ΣU

holds, and since

In,k(In,k)>ij =

{
δij if i ≤ kt

0 otherwise,

we get

‖M − V t(V t)>M‖2
F =

n∑

i=k+1

σ2
i .

We note that
MM> = V ΣU>UΣ>V > = V Σ2V >

implies that, since we are not interested in the matrix U , we do not have to compute a full singular value
decomposition of M , but only a Schur decomposition of the Gram matrix MM>. Then the eigenvectors will
correspond to the columns of V and the eigenvalues to the squared singular values.

By definition, the matrix V t will not only be used for one block, but for an entire block row of the matrix.
The block row is given by

Rt
+ := {s ∈ TJ : there is t+ ∈ TI with t̂ ⊆ t̂+ such that t+ × s is an admissible leaf of TI×J }.

Due to the nested structure of cluster bases, we have to consider not only blocks directly connected to t, but
also those that are connected to ancestors of t.

Block rows influencing different clusters

Using the row blocks described by Rt
+, we can now formulate the optimization problem: let M ∈ RI×J be

a matrix. We need to find an orthogonal rank-k-matrix V t that maximizes

∑

s∈Rt
+

‖(V t)>M |t̂×ŝ‖2
F . (7.11)

As we have seen before, this problem can be solved by computing the eigenvectors and eigenvalues of the
Gram matrix

G :=
∑

s∈Rt
+

M |t̂×ŝM |>
t̂×ŝ

. (7.12)

7.4.3 Construction of a nested basis

We can apply the above construction to all clusters in TI and will get a cluster basis, but this basis will in
general not be nested. We have to modify the algorithm in order to ensure that it results in a nested cluster
basis: For all leaf clusters, we can apply the direct construction. For non-leaf clusters t ∈ TI , we assume

118 CHAPTER 7. H2-MATRICES

that we already have computed suitable orthogonal matrices V t′ for all sons t′ ∈ sons(t) and have to ensure

that there are matrices T t′,t ∈ Rkt′×k such that

V t
i = (V t′T t′,t)i

holds for all t′ ∈ sons(t) and i ∈ t̂. In order to simplify the presentation, we will only consider the case that
t has two sons, i.e., sons(t) = {t1, t2}. Then the condition (7.8) can be written in the form

V t =

(
V t1T t1,t

V t2T t2,t

)

and instead of finding V t maximizing (7.11), we have to find T t1,t and T t2,t maximizing

∑

s∈Rt
+

∥∥∥∥∥

(
V t1T t1,t

V t2T t2,t

)>(
M |t̂1×ŝ

M |t̂2×ŝ

)∣∣∣∣∣

2

F

=
∑

s∈Rt
+

∥∥∥∥∥

(
T t1,t

T t2,t

)>(
(V t1)>M |t̂1×ŝ

(V t2)>M |t̂2×ŝ

)∥∥∥∥∥

2

F

If we introduce the matrices

M̂ t1,s := (V t1)>M |t̂1×ŝ and M̂ t2,s := (V t2)>M |t̂2×ŝ,

we get

∑

s∈Rt
+

‖(V t)>M |t̂×ŝ‖2
F =

∑

s∈Rt
+

∥∥∥∥∥

(
T t1,t

T t2,t

)>(
M̂ t1,s

M̂ t2,s

)∥∥∥∥∥

2

F

.

By construction, we know that V t1 and V t2 are already orthogonal, and we want the matrix V t to be
orthogonal as well, i.e., to satisfy

I = (V t)>V t =

(
V t1T t1,t

V t2T t2,t

)>(
V t1T t1,t

V t2T t2,t

)
=

(
T t1,t

T t2,t

)>(
(V t1)>V t1T t1,t

(V t2)>V t2T t2,t

)
=

(
T t1,t

T t2,t

)>(
T t1,t

T t2,t

)
.

Now we can summarize the algorithm:

1. If t ∈ TI is a leaf, we compute the Gram matrix

G :=
∑

s∈Rt
+

M |t̂×ŝM |>
t̂×ŝ

.

We build V t from the eigenvectors corresponding to the k largest eigenvalues of G and set

M̂ t,s := (V t)>M |t̂×ŝ

for all s ∈ Rt
+.

2. If t ∈ TI is not a leaf, we compute cluster bases for the son clusters t1, t2 recursively and then compute
the reduced Gram matrix

Ĝ :=
∑

s∈Rt
+

(
M̂ t1,s

M̂ t2,s

)(
M̂ t1,s

M̂ t2,s

)>

.

We build T t1,t and T t2,t from the eigenvectors corresponding to the k largest eigenvalues of Ĝ and set

M̂ t,s :=

(
T t1,t

T t2,t

)>(
M̂ t1,s

M̂ t2,s

)
= (T t1,t)>M̂ t1,s + (T t2,t)>M̂ t2,s

for all s ∈ Rt
+.

7.5. IMPLEMENTATION 119

7.4.4 Efficient conversion of H-matrices

We can implement the basic algorithm given above directly and will get a suitable nested row cluster bases
for the matrix M . Unfortunately, the computation of the Gram matrix

G =
∑

s∈Rt
+

M |t̂×ŝM |>
t̂×ŝ

for a general matrix will require O((#t̂)2(#ŝ)) operations, leading to a total complexity of O(n2). While
this is acceptable for dense matrices, it is not for matrices that are already stored in H-matrix format.

If M is an H-matrix, then s ∈ Rt
+ implies that there is a cluster t+ ∈ TI such that b := t+ × s ∈ TI×J

is admissible, i.e., that M |t̂+×ŝ = AB> holds for a rank parameter kH ∈ N and matrices A ∈ Rt̂+×kH ,

B ∈ Rŝ×kH . Therefore we have

M |t̂×ŝM |>
t̂×ŝ

= A|t̂×kB>BA|>
t̂×k

= A|t̂×kGbA|>
t̂×k

. (7.13)

If we have prepared the matrix
Gb := B>B,

in advance, we can compute the product (7.13) in O((t̂)2kH) operations, which leads to a total complexity
of O(n(k2 + kH)p). The preparation of all matrices Gb can be accomplished in O(nk2

Hp) operations.

7.5 Implementation

Implementation 7.21 (Conversion functions) Since they are quite complicated, we will not describe the
routines for creating adaptive cluster bases and recompressing H- or H2-matrices in detail. The following
functions are collected in the module h2conversion:

pclusterbasis

buildrow2_supermatrix(psupermatrix s, pccluster root,

double eps, int kmax,

TruncationStrategy strategy);

pclusterbasis

buildcol2_supermatrix(psupermatrix s, pccluster root,

double eps, int kmax,

TruncationStrategy strategy);

These functions create an adaptive orthogonal nested cluster basis for a given supermatrix and a given
cluster tree root. The parameter strategy controls the truncation strategy and can take the following
values:

• HLIB_FROBENIUS_ABSOLUTE means that the rank k will be chosen large enough to ensure that the ab-
solute Frobenius error of the resulting matrix is bounded by eps.

• HLIB_FROBENIUS_RELATIVE means that the rank k will be chosen large enough to ensure that the block-
wise relative Frobenius error of the resulting matrix is bounded by eps.

• HLIB_EUCLIDEAN_RELATIVE means that the rank k will be chosen large enough to ensure that the block-
wise relative Euclidean error of the resulting matrix is bounded by eps.

The parameter kmax gives an absolute upper bound for the rank k.

As soon as we have orthogonal row and column cluster bases, we can use the function

120 CHAPTER 7. H2-MATRICES

psupermatrix

project2bases_supermatrix(psupermatrix s, int mixed,

pclusterbasis row, pclusterbasis col);

to create an H2-matrix that is the optimal approximation of s in the same block structure and with the bases
row and col (cf. Lemma 7.18). If the parameter mixed is non-zero, the routine will not create a “pure”
H2-matrix but mix rkmatrix and uniformmatrix blocks to minimize the storage complexity.

Of course there are also top-level functions that hide all details from the user:

psupermatrix

buildh2_supermatrix(psupermatrix s, pccluster row, pccluster col,

double eps, int kmax,

TruncationStrategy strategy);

psupermatrix

buildh2symm_supermatrix(psupermatrix s, pccluster ct,

double eps, int kmax,

TruncationStrategy strategy);

The first routine computes an H2-matrix that approximates the given matrix s. Here, row and col give the
row and column cluster trees and eps, kmax and strategy have the same meaning as in the cluster bases
construction routines above.

The second routine is meant for symmetric matrices. Here, we can use the same cluster basis for row and
columns, so we can reduce the computational and storage complexity.

7.6 Exercises

7.6.1 Theory

Exercise 24 (Forward transformation) Derive a fast algorithm for computing the forward transforma-
tion based on the property (7.8) of nested cluster bases.

Prove that it has the same complexity as the backward transformation (cf. Lemma 7.9).

Exercise 25 (Error bound for the symmetric kernel approximation) Assume that

diam(Qt × Qs) ≤ η dist(Qt, Qs) (7.14)

holds. Prove that

|g(x, y) − g̃t,s(x, y)| ≤ Cd(m + 1)2d−1

22m dist(Qt, Qs)σ
(c0η)m+1

holds for all x ∈ Qt and y ∈ Qs under the assumptions from Subsection 3.2.4.

Exercise 26 (Frobenius and matrix product) Prove Lemma 7.17.

7.6.2 Practice

Exercise 27 (Forward transformation) Implement the algorithm from Exercise 24 as a function

void

forward_clusterbasis(pclusterbasis cb, const double *x);

7.6. EXERCISES 121

that fills the entries cb->xt of this clusterbasis structure and all its descendants with the coefficient vectors
xt = V tx|t̂.
Hint: See the procedure backward_clusterbasis in the source file clusterbasis.c.

Exercise 28 (Strongly admissible block cluster tree) In order to get a good approximation by an H2-
matrix, we have to replace the admissibility condition (2.3) by the strong admissibility condition (7.14).

Modify the function build_supermatrix_from_cluster2 from Exercise 8 in such a way that it uses the
strong admissibility condition (7.14) instead of the standard admissibility.

Exercise 29 (H2-matrix) Modify build_supermatrix_from_cluster2 from Exercise 28 in such a way
that for admissible blocks, a uniformmatrix is created instead of an rkmatrix. Since you need a
clusterbasis to create a uniformmatrix, you have to modify the parameters for your function:

psupermatrix

build_supermatrix_from_cluster2(pclusterbasis row, pclusterbasis col,

double eta);

Each supermatrix corresponds to a pair t × s of clusters. Make sure that the fields row and column of the
supermatrix point to the cluster bases corresponding to the correct clusters.

Exercise 30 (Coefficient matrices) In Exercise 29, we have created an H2-matrix structure. In order
to get a useful matrix, we have to initialize the coefficient matrices St,s, i.e., the field S in each of the
uniformmatrix structures (cf. (7.7)) Add a function

static void

interpolate_kernel(pclusterbasis row, pclusterbasis column,

pcurvebemfactory bfactory,

double *S, int ldS);

to the module curvebem.c that initializes the coefficient matrix S corresponding to the clusters row->t and
column->t for the kernel function from Subsection 3.3.

Hint: The fields row->t and column->t give us the clusters corresponding to a row and a column, so we
can easily access the bounding boxes needed in the computation of the interpolation points.

Test: Compile the program example_h2 by executing

make -f Makefile.sun example_h2

in a shell and run it with 1024 basis functions and an interpolation order of 3. The program should reach a
relative approximation error of less than 0.0003.

122 CHAPTER 7. H2-MATRICES

Chapter 8

Matrix Equations

In this chapter we consider matrix equations of the form

(Lyapunov) AX + XAT + C = 0, (8.1)

(Sylvester) AX − XB + C = 0, (8.2)

(Riccati) AX + XAT − XFX + C = 0, (8.3)

where A, B, C, F are given matrices of suitable dimension and X is the sought solution (a matrix). In the
previous chapters we had the task to assemble a (BEM) stiffness matrix A, or to invert the matrix A in a
data-sparse format, or to solve an equation Ax = b for the vector x, where the right-hand side b and system
matrix A are given. The solution x was just a standard vector.

For matrix equations, also the solution matrix X has to be sought in a data-sparse format. Here, we will
seek X either in the R(k)-matrix or H-matrix format.

8.1 Motivation

Let us start with a simple example, namely the equation

AX + XA + I = 0, A ∈ Rn×n.

The solution is the matrix X = − 1
2A−1, i.e., the inversion of matrices is a special case of such a (linear)

matrix equation. From Section 4.3 we know that the inverse of an elliptic operator can be approximated
efficiently in the H-matrix format. In the following we will prove that this can be generalised and we will
present some algorithms by which the solution can be computed efficiently in the R(k)-matrix or H-matrix
format.

8.2 Existence of Low Rank Solutions

The existence of (approximate) solutions in a special format is best answered for the Sylvester equation
(which covers the Lyapunov case). For the non-linear Riccati equation we can derive the results easily for
low rank F .

For the existence and uniqueness of solutions to the Sylvester equation (8.2) it is necessary and sufficient
that σ(A) ∩ σ(B) = ∅. We demand a slightly stronger condition, namely

σ(A) < σ(B), (8.4)

123

124 CHAPTER 8. MATRIX EQUATIONS

which can be generalised to the case that the spectra of A and B are contained in two disjoint convex sets.
Then the solution X is explicitly known.

Theorem 8.1 Let A ∈ Rn×n, B ∈ Rm×m and let (8.4) hold. Then the matrix

X :=

∫ ∞

0

exp(tA)C exp(−tB) dt (8.5)

solves (8.2).

Proof: Due to (8.4) the function t 7→ ‖ exp(tA)‖‖ exp(−tB)‖ decays exponentially so that the matrix X is
well defined. Now we can simply calculate

AX − XB =

∫ ∞

0

(A exp(tA)C exp(−tB) − exp(tA)C exp(−tB)B) dt

=

∫ ∞

0

∂

∂t
exp(tA)C exp(−tB) dt

= lim
t→∞

exp(tA)C exp(−tB) − exp(0 · A)C exp(−0 · B)

= −C.

Since the integrand in (8.5) decays exponentially, we can use special quadrature formulae that need only
O(log(ε)2) quadrature points in order to approximate X up to an absolute error of ε. These can be derived
by piecewise interpolation, where the pieces are refined towards the origin, or one can use the formula from
the book [33] as done in [17] that gives k weights wj and points tj so that the matrix

Xk :=

k∑

j=1

wj exp(tjA)C exp(−tjB) (8.6)

fulfils the error estimate

‖X − Xk‖2 ≤ CA,B‖C‖2 exp(−
√

k),

where the constant CA,B depends on the location of the spectra of A and B. If C is an R(kC)-matrix, then
Xk is an R(k · kC)-matrix, which proves the existence of low rank solutions to the Sylvester and Lyapunov
equation if the matrix C is of low rank. For the solution X of the Riccati equation there holds

AX + XAT + (C − XFX) = 0,

so that the conclusions from above show that the solution X can be approximated up to an error of CA,AT ‖C−
XFX‖2 exp(−

√
k) by a matrix Xk of rank at most k · (kC + kF).

The computation of an approximate solution by formula (8.6) is not straight-forward, since it involves the
matrix exponential.

8.3 Existence of H-matrix Solutions

Formula (8.6) can be used to prove the existence of H-matrix solutions to the Sylvester equation for
H-matrices C ∈ H(T, kC), if both exp(tjA) and exp(−tjB) can be approximated by H-matrices Aj ∈
H(T, kA), Bj ∈ H(T, kB) for all tj : Lemma 6.18 proves

AjCBj ∈ H(T, C2
idC2

sp(p + 1)2 max{kA, kB , kC})

8.4. COMPUTING THE SOLUTIONS 125

so that the approximant

XH,k :=

k∑

j=1

wjAjCBj

is contained in H(T, kX) for a rank kX = O(kp2 max{kA, kB , kC}). The existence of H-matrix approxima-
tions to the matrix exponential is studied in [11, 17] and briefly in the outlook in chapter 9.3.2. Essentially,
one requires the uniform approximability of (λI − A)−1 in H(T, kA) for complex numbers λ outside the
spectrum of A. This is just a variant of the approximation result from Section 4.3, if the matrix A stems
from the discretisation of a partial differential operator of elliptic type.

For a simple H-matrix format, we can improve the analytic results from above by algebraic arguments. Let
us consider a block-system of the form

[
A11 A12

A21 A22

] [
X11 X12

X21 X22

]
−
[
X11 X12

X21 X22

] [
B11 B12

B21 B22

]
+

[
C11 C12

C21 C22

]
= 0,

where the off-diagonal blocks Aij , BijCij , i 6= j, are of the R(k)-matrix format.

For the two off-diagonal blocks we get the equations

A22X21 − X21B11 + (C21 + A21X11 − X22B21) = 0,

which is a Sylvester equation with low rank matrix C21 + A21X11 − X22B21, so that here the results from
the previous section prove that X21 can be approximated in the R(k)-matrix format.

In the diagonal subblocks this resolves into two smaller Sylvester equations

AiiXii − XiiBii + (Cii + AijXji − XijBji) = 0, i 6= j.

Since Aij and Bji are of low rank, the (blockwise) rank of C11 is increased only by 2k.

By induction this proves

X ≈ XH,ε ∈ H(T, k̃), ‖X − XH,ε‖2 ≤ ε

where T is a block cluster tree where all off-diagonal blocks are leaves (admissible), A, B, C ∈ H(T, k) and
k̃ = O(log(ε)2kp).

8.4 Computing the solutions

The computation of rkmatrix and H-matrix solutions can be done efficiently by numerous methods. Here,
we want to present only some concepts of this rapidly developing field of research.

Via the matrix exponential

The first method is just the straight-forward implementation of (8.6). We compute the weights wj and
quadrature points tj beforehand (by an explicit formula), use the H-matrix-by-matrix multiplication �
to compute exp(tjA)C exp(−tjB) and need to compute “only” the matrix exponential for all tj . This
can be done by scaling and squaring in the formatted H-matrix arithmetic [4] or by a Dunford-Cauchy
representation that involves the resolvents [11]. For each quadrature point we have to compute at least once
a matrix exponential, i.e., the complexity is at least O(n log4) for this ansatz — neglecting the rank k. The
advantage of this method is its simplicity: all computations can be performed in the standard H-matrix
arithmetic and it works for matrices A, B, C in H-matrix or rkmatrix format.

126 CHAPTER 8. MATRIX EQUATIONS

Via multigrid methods

Multigrid methods rely on a multilevel discretisation of the underlying continuous equation, i.e., we have a
sequence

A`X` − X`B` + C` = 0

of equations where the size of the system on level ` is n` × n` and

1 ≈ n1 ≤ · · · ≤ n`.

Each of the operators A`, B`, C` is discretised on a grid τ` (e.g., by finite elements) and between two subse-
quent grids τ`, τ`+1 we have transfer operators P` that map a vector on the coarser grid τ` to the finer grid
τ`+1. Therefore, the coarse solutions X` can be approximated by

X` ≈ P T
` X`+1P`.

In the low rank setting the application of P reads

P T
` X`+1P` =

k∑

ν=1

P T
` aνbT

ν P` =

k∑

ν=1

(P T
` aν)(P T

` bν)T ,

so that the transfer of the solution matrix X between the grids is just the application of the transfer operator
to the vectors aν , bν in the R(k)-matrix format. Similarly, this can be done for H-matrix solutions X`. Apart
from the grid transfer operators we need on each level ` a so-called smoothing operator S`, e.g., Richardson
or Jacobi [22]. For a Sylvester equation the Jacobi smoother requires the solution of a diagonal Sylvester
equation (A and B diagonal matrices).

Via meta methods

A meta method is, e.g., ADI . Here, the Sylvester equation is split into a series of linear systems

Ã`,jX`,j = C̃`,j

where Ã`,j = A` + λjI . For the right choice of shift parameters λj the iteration converges rapidly, but

in each step we have to invert the shifted system Ã`,j — similar to the matrix exponential ansatz in the
Dunford-Cauchy representation. In the low rank setting however, one can use standard solvers for the linear
system Ã`,jx = c, hence the name “meta method”.

Via the matrix sign function

The matrix sign function has proven to be a useful tool for the solution of dense matrix equations [29].
Therefore, it is natural to use the same method but formulate it in terms of H-matrices and H-matrix
arithmetics. We will explain this for the Lyapunov equation and leave the Riccati equation to the interested
reader [17]. We define the matrices

X0 := C, A0 := A

where σ(A) ⊂ C− is assumed. The solution X is just X = 1
2X∞, where X∞ is the limit of the series

Xi+1 :=
1

2
(Xi + A−T

i XiA
−1
i), Ai+1 :=

1

2
(Ai + A−1

i).

Implicitly, we have computed

sign

[
AT C

−A

]
=

[
AT

∞ X∞
−A∞

]

by Newton’s method (sign is the matrix sign function corresponding to the complex sign function on C\{0}:

sign(r + ic) =

{
1 r > 0
−1 r < 0

8.5. HIGH-DIMENSIONAL PROBLEMS 127

Locally, the convergence is quadratic but the initital slow (linear) convergence dominates. Therefore, one
should use an acceleration technique by scaling.

We consider the scalar case a0 � 0 and compute ai+1 := 1
2 (ai + a−1

i) ≈ 1
2ai. The limit is the same if we

scale the iterate a0 by some value α > 0:

sign(a0) = lim
i→∞

ai = lim
i→∞

bi = sign(b0), b0 = αa0, bi+1 :=
1

2
(bi + b−1

i).

In the limit we get limi→∞ ai = −1, but for a0 � 0 we have just a linear convergence rate of 1/2. Here, it
is obvious to compute

b0 := a0/|a0|,
i.e., we rescale the iterate a0 and get the solution in one step. For matrices Ai this translates to

α :=
√
‖A−1‖2/‖A‖2,

A0 := αA,

Ai+1 =
1

2
(Ai + A−1

i).

In principle, one can use the acceleration by scaling in every step of Newton’s method, but for two reasons
this is not adavantageous: first, the quadratic convergence can be deteriorated and second, the truncation
error can be amplified by the scaling factor. Therefore, one should only use the scaling in the first step to
balance the spectrum of A0. Due to the fact that we have to compute A−1

0 anyway, the additional cost to
compute α by some power iteration (norm2_supermatrix) is negligible.

In H-matrix arithmetics we have to replace the exact addition, multiplication and inversion by the formatted
counterparts. This yields a fast solution method for Lyapunov, Sylvester and Riccati equations where the
matrices A, B, C, F are allowed to be of an arbitrary H-matrix format. Since the computation of the matrix
sign involves log(n) inversions, the overall complexity of this approach is O(n log(n)3).

8.5 High-dimensional Problems

As a generalisation to the Sylvester equation of the previous section one can consider equations Ax = b

where the matrix A ∈ Rnd×nd

is of the form

A =

d∑

i=1

Âi, Âi = I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1 terms

⊗Ai ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−i terms

, I, Ai ∈ Rn×n

and the right-hand side is given as a tensor vector

b =

d⊗

i=1

bi, bi ∈ Rn, b[j1, . . . , jd] =

d∏

i=1

bi[ji] for j ∈ {1, . . . , n}d.

Then the solution can be computed by use of the matrix exponential exp(tjAi) of the n × n matrices Ai,

x ≈
k∑

ν=1

d⊗

i=1

xi,ν , xi,ν = wν exp(tνAi)bi,

such that the complexity is reduced to O(dn log(n)c) instead of O(nd) for the fullmatrix solution. For
details the reader is referred to [15]. Here, the matrix exponential exp(tνAi) can be approximated in the
H-matrix format and the solution is represented as a (low Kronecker rank) tensor vector, which is a d-
dimensional analogue to the rkmatrix format.

128 CHAPTER 8. MATRIX EQUATIONS

Chapter 9

Outlook

In the previous chapters we introduced the hierarchical matrix format (H-matrices) and a refined variant,
the H2-matrix format. In this chapter we will consider further algorithms for these matrices, other (similar)
matrix formats and possible applications.

9.1 Adaptive Arithmetics and Adaptive Refinement

9.1.1 Rank-adaptive Truncation

In Chapter 5 we have defined the formatted arithmetics of R(k)-matrices and H-matrices based on a fixed
given rank k in the target matrix. E.g., for the addition of two hierarchical matrices we have truncated the
exact sum in each rkmatrix block to rank k by the projection Tk. An alternative truncation operator Tε

can be defined by

Tε(M) := argmin

{
rank(R)

∣∣∣ ‖R − M‖2

‖M‖2
≤ ε

}
.

Again, the reduced singular value decomposition (rSVD) allows for an efficient computation of the minimizer.
The parameter ε can be regarded as the desired accuracy, e.g., ε = 10−16 is the double precision machine
accuracy, ε = 10−8 the single precision accuracy and any larger ε yields an approximation of lower quality.

The corresponding truncation Tε of hierarchical matrices leads to the so-called adaptive arithmetics (see
[14]), where the rank is not a priori fixed. This is especially interesting in the context of the inversion of
stiffness matrices of partial differential operators where the sparsity of the matrix to be inverted can be kept
longer than for fixed rank. Also, few blocks can have a considerably larger rank if needed and thus allow for
the treatment of matrices that would not fit into the hierarchical matrix format for (constant) fixed rank in
each block.

9.1.2 Adaptive Grid-Refinement

For the efficient treatment of boundary integral and partial differential equations an adaptive discretization
scheme is inevitable, that means for a given right-hand side the unique solution has to be approximated on
a grid with as few as necessary unknowns. This is typically done by refining the grid adaptively according
to the indication by some a posteriori error estimator.

For partial differential equations the discretization itself is of negligible complexity, only the solution of
the typically ill-conditioned large system of equations is a task. If a large part of the grid is refined, then
the (block) cluster tree is best constructed in the standard geometrically or cardinality balanced way and
the formatted H-matrix inversion yields a good approximate inverse that can be used to directly solve or
precondition the system. If only a small part of the grid is to be refined, then this can be regarded as a

129

130 CHAPTER 9. OUTLOOK

low rank perturbation of the operator on the coarse grid. The Sherman-Morrison-Woodbury formula for the
inversion of the perturbed matrix allows for an efficient low rank update of the previously computed inverse
for the coarse grid.

The story is different for (boundary) integral operators. Here, the (data-sparse) discretization is of high
complexity. Therefore, it is desirable to retain as many as possible entries when refining the grid. This can
be achieved for the regular geometrically balanced clustering if one uses the approximation by interpolation
from Chapter 3. This topic is partially covered by [18].

9.2 Other Hierarchical Matrix Formats

The hierarchical matrices introduced in the previous chapters consist of rkmatrix or fullmatrix blocks
(uniformmatrix blocks for H2-matrices). One may think of other formats like Toeplitz matrices, banded
matrices, sparse matrices or others. Here, one has to distinguish between the data-sparse storage and fast
evaluation of the matrix, and the possibility to apply the formatted H-matrix arithmetics. While the first
goal, the storage and evaluation, can be achieved for a variety of formats, this is not true for the second task,
the formatted arithmetics. Toeplitz matrices allow for a fast inversion, but as subblocks in a hierarchical
matrix they have to be added and multiplied by other matrix blocks, which will destroy the structure.

9.3 Applications of Hierarchical Matrices

9.3.1 Partial Differential Equations

H2-matrices and multi-grid methods share many properties in common, so it is straightforward to look for
approximations of the inverses of elliptic partial differential equations in the H2-matrix format.

A simple method to compute this approximation is to use the H-matrix inversion and use the algorithm
from [5] to find suitable cluster bases. Evaluating the resulting H2-representation of the inverse is more
efficient than evaluating the H-matrix representation, and the complexity of the transformation from H- to
H2-format is lower than that of the H-inversion.

Finding an algorithm that allows us to create an H2-matrix inverse without having to resort to the H-matrix
inversion is a topic of current research.

9.3.2 Matrix Functions

The most prominent matrix function is M 7→ M−1, i.e., f(x) = 1
x , which we have already analysed in

Chapter 4.3 for elliptic partial differential operators. Another important function is the matrix exponential,
because it allows us to solve systems of ordinary differential equations:

ẋ(t) = Ax(t), x(0) = x0 ⇒ x(t) = exp(tA)x0.

If we could compute exp(δA) for a small δ > 0, then we can easily obtain the values of x at all times tj = jδ,
j = 1, . . . , N , by j times evaluating exp(δA): x(tj) = (exp(δA))jx0, i.e., we need N times the matrix-vector
multiplication and only once the computation of the matrix exponential.

The question remains whether or not it is possible to approximate the matrix exponential in the H-matrix
format and how one can efficiently compute the matrix exponential in this format. The first question is
answered in [11] under the assumption that the resolvents (A−λI)−1 can be approximated in the H-matrix
format, cf. Chapter 4.3. For the second question there is no definitive answer; often the standard scaling and
squaring strategy proposed in [4] does the job very well but for a more general survey the reader is referred
to [28].

9.3. APPLICATIONS OF HIERARCHICAL MATRICES 131

For other matrix functions ([10],[12]) one can use the representation by the Cauchy integral

f(M) =
1

2πi

∮

Γ

f(t)(M − tI)−1dt

and an efficient (exponentially convergent) quadrature rule

f(M) ≈
k∑

j=1

wjf(tj)(M − tjI)−1

to obtain an approximation.

132 CHAPTER 9. OUTLOOK

Index

H-LDLT decomposition, 90
H-LU decomposition, 89, 90
H-matrix, 18
H-matrix storage requirements, 95
H2-matrix, 111
R(k)-Matrix, 77
R(k, n, m), 77
blockcluster, 36
clusterbasis, 112
clusterfactory, 27
clustertree, 27
cluster, 25
fullmatrix, 16
h2conversion, 119
rkmatrix, 17, 77
sparsefactory, 73
sparsematrix, 71
supermatrix, 19
uniformmatrix, 113

Adaptive cluster basis construction, 118
Adaptive cluster basis for H-matrices, 119
Adaptive refinement, 129
Adaptive truncation, 80
Admissibility condition, 11
Ancestors S∗(t), 98

Backward transformation, 109
Best approximation by uniform blocks, 114
Best approximation in H(TI×I , k), 82
Best approximation in R(k, n, m), 78
Block cluster tree, 14, 32
Block cluster tree, admissible, 33

Cardinality of TI and TI×I , 96
Cholesky decomposition, 89
Cluster bases, orthogonal, 114
Cluster basis, 109
Cluster basis, nested, 110
Cluster tree, 14, 24
Clustering of a 2D domain, 31
Clustering of a curve in 2D, 30
Complexity of H-matrix-vector-multiplication, 95
Complexity of the H-matrix addition, 97
Complexity of the H-matrix inversion, 101

Complexity of the H-matrix multiplication, 100
Complexity of the H-matrix truncation, 96
Complexity of the R(k)-truncation, 94
Complexity of the fast backward transformation,

111
Complexity of the hierarchical approximation, 96
Conversion functions for H2-matrix, 119
Current rank kt, 78

Degenerate kernel, 10
Discretisation error, 57

Estimate of the sparsity, idempotency and depth
of TI×I, 104

Fast multiplication of H-matrices, 86
Fast truncation T ′

k , 83
Formatted H-matrix addition, 82
Formatted H-matrix multiplication, 82
Formatted inversion, 87
Formatted rkmatrix addition, 80
Forward transformation, 109
Frobenius formula, 55

Galerkin solution, 56
Geometrically balanced custering, 102
Green’s function, 57

Hierarchical approximation, 84
Hierarchical matrices, H2-matrix, 111
Homogeneity of block cluster trees, 32

Idempotency Cid, 100
Inversion of tridiagonal matrices, 55, 76

Labeled tree, 24
Large scale computations, 7
Levels of a tree, 83
Linear complexity, 7
Local inversion formula, 76
Locality Csep of basis functions, 103
LU decomposition, 89
Lyapunov equation, 123

Matrix exponential, 125
Matrix functions, 130

133

134 INDEX

Matrix Hilbert space, 114
Matrix sign function, 126
Multigrid methods, 126

Nested cluster basis, 110

One-sided H2-matrix approximation error, 116
Optimization problem for cluster bases, 117
Orthogonal cluster bases, 114

Poisson’s equation, 56
Preconditioned conjugate gradient method, 91
Product of block cluster trees, 98

Rank-adaptive arithmetic, 129
Representation of index sets, 27
Riccati equation, 123
rSVD, 78

Separation of row and column bases, 115
Singular value decomposition, 78
Singularity function, 56
Sparsity Csp, 94
Sparsity criterion, 103
Sparsity of tree product, 98
Stiffness matrix, 56
Structure of H-matrix product, 99
SVD, 78
Sylvester equation, 123

Taylor expansion, 11
Tree, 23
Tree level, 24
Triangular H-matrix solve, 89
Truncation Tε, 80
Truncation T abs

ε , 80
Truncation Tk, 80, 82

Uniform H-matrix, 109

Bibliography

[1] Mario Bebendorf and Wolfgang Hackbusch. Existence of H-matrix approximants to the inverse FE-
matrix of elliptic operators with L∞-coefficients. Numerische Mathematik, 95:1–28, 2003.

[2] Steffen Börm. H2-matrices — multilevel methods for the approximation of integral operators. Comput.
Visual. Sci., 7:173–181, 2004.

[3] Steffen Börm and Lars Grasedyck. Low-rank approximation of integral operators by interpolation.
Computing, 72:325–332, 2004.

[4] Steffen Börm, Lars Grasedyck, and Wolfgang Hackbusch. Introduction to hierarchical matrices with
applications. Engineering Analysis with Boundary Elements, 27:405–422, 2003.

[5] Steffen Börm and Wolfgang Hackbusch. Data-sparse approximation by adaptive H2-matrices. Comput-
ing, 69:1–35, 2002.

[6] Steffen Börm and Wolfgang Hackbusch. H2-matrix approximation of integral operators by interpolation.
Applied Numerical Mathematics, 43:129–143, 2002.

[7] Steffen Börm and Wolfgang Hackbusch. Approximation of boundary element operators by adaptive
H2-matrices. Foundations of Computational Mathematics, 312:58–75, 2004.

[8] Steffen Börm, Maike Löhndorf, and Jens Markus Melenk. Approximation of integral operators by
variable-order interpolation. Numerische Mathematik, 99(4):605–643, 2005.

[9] C. F. Van Loan G. H. Golub. Matrix Computations. Johns Hopkins University Press, London, 1996.

[10] Ivan Gavrilyuk, Wolfgang Hackbusch, and Boris Khoromskij. Data-sparse approximation to operator-
valued functions of elliptic operator. Technical Report 54, Max Planck Institute for Mathematics in the
Sciences, 2002. To appear in Mathematics of Computation.

[11] Ivan Gavrilyuk, Wolfgang Hackbusch, and Boris Khoromskij. H-matrix approximation for the operator
exponential with applications. Numerische Mathematik, 92:83–111, 2002.

[12] Ivan Gavrilyuk, Wolfgang Hackbusch, and Boris Khoromskij. Data-sparse approximation of a class of
operator-valued functions. Technical Report 20, Max Planck Institute for Mathematics in the Sciences,
2003. To appear in Mathematics of Computation.

[13] Klaus Giebermann. Multilevel approximation of boundary integral operators. Computing, 67:183–207,
2001.

[14] Lars Grasedyck. Theorie und Anwendungen Hierarchischer Matrizen. PhD thesis, Universität Kiel,
2001.

[15] Lars Grasedyck. Existence and computation of low Kronecker-rank approximations for large linear
systems of tensor product structure. Computing, 72:247–265, 2004.

[16] Lars Grasedyck and Wolfgang Hackbusch. Construction and arithmetics of H-matrices. Computing,
70(4):295–334, 2003.

135

136 BIBLIOGRAPHY

[17] Lars Grasedyck, Wolfgang Hackbusch, and Boris Khoromskij. Solution of large scale algebraic matrix
Riccati equations by use of hierarchical matrices. Computing, 70:121–165, 2003.

[18] Lars Grasedyck, Wolfgang Hackbusch, and Sabine LeBorne. Adaptive refinement and clustering of
H-matrices. Technical Report 106, Max Planck Institute of Mathematics in the Sciences, 2001.

[19] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. Journal of Compu-
tational Physics, 73:325–348, 1987.

[20] M. Güter and K.-O. Widman. The green function for uniformly elliptic equations. Manuscripta Math-
ematica, 37:303–342, 1982.

[21] Wolfgang Hackbusch. Elliptic Differential Equations. Theory and Numerical Treatment. Springer-Verlag
Berlin, 1992.

[22] Wolfgang Hackbusch. Iterative Solution of Large Sparse Systems. Springer-Verlag New York, 1994.

[23] Wolfgang Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-
matrices. Computing, 62:89–108, 1999.

[24] Wolfgang Hackbusch and Boris Khoromskij. A sparse H-matrix arithmetic: General complexity esti-
mates. J. Comp. Appl. Math., 125:479–501, 2000.

[25] Wolfgang Hackbusch, Boris Khoromskij, and Stefan Sauter. On H2-matrices. In H. Bungartz, R. Hoppe,
and C. Zenger, editors, Lectures on Applied Mathematics, pages 9–29. Springer-Verlag, Berlin, 2000.

[26] Wolfgang Hackbusch and Zenon Paul Nowak. On the fast matrix multiplication in the boundary element
method by panel clustering. Numerische Mathematik, 54:463–491, 1989.

[27] G. Meinardus. Approximation of Functions: Theory and Numerical Methods. Springer-Verlag New
York, 1967.

[28] C. Moler and C. F. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five
years later. SIAM Reviews, 45:3–49, 2003.

[29] J. D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use of the sign
function. Internat. J. Control, 32:677–687, 1980.

[30] Vladimir Rokhlin. Rapid solution of integral equations of classical potential theory. Journal of Com-
putational Physics, 60:187–207, 1985.

[31] Stefan Sauter. Variable order panel clustering (extended version). Technical Report 52, Max-Planck-
Institut für Mathematik, Leipzig, Germany, 1999.

[32] Stefan Sauter. Variable order panel clustering. Computing, 64:223–261, 2000.

[33] F. Stenger. Numerical methods based on Sinc and analytic functions. Springer, New York, 1993.

