11th GAMM-Workshop on

Multigrid and Hierarchic Solution Techniques


  A. Almendral  
  M. Bader  
  R. Bank  
  M. Bebendorf  
  S. Beuchler  
  D. Braess  
  C. Douglas  
  L. Grasedyck  
  B. Khoromskij  
  R. Kornhuber  
  B. Krukier  
  U. Langer  
  C. Oosterlee  
  G. Pöplau  
  A. Reusken  
  J. Schöberl  
  M.A. Schweitzer  
  S. Serra Capizzano  
  B. Seynaeve  
  D. Smits  
  O. Steinbach  
  R. Stevenson  
  M. Wabro  
  R. Wienands  
  Arnold Reusken and Sven Gross: Parallel multilevel tetrahedral grid refinement

In this talk we introduce and analyze a parallel version of a multilevel red/green local refinement algorithm for tetrahedral meshes. The serial version of this algorithm is known in the literatuer (Bank, Bey, Bastian). We introduce a new data distribution format that is very suitable for parallelization of the multilevel refinement algorithm. This format is called an admissible hierarchical decomposition. We will prove that the application of the parallel refinement algorithm to an input admissible hierarchical decomposition yields an admissible hierarchical decomposition. We will show that due to this property one has good data locality (hence little communication) and at the same time only a small amount of copies (small storage overhead).
  This page was last modified Tue Aug 19 17:21:04 2003 by Ronald Kriemann.   Best viewed with any browser