Max Pfeffer
Max-Planck-Institut für Mathematik in den Naturwissenschaften
Inselstr. 22
04103 Leipzig

Office: F3 04


+49 341 9959 756

+49 341 9959 658

Max Pfeffer

Research interests

  • Tensor product approximation
  • Numerics in Quantum Chemistry
  • Parametric PDEs
  • Riemannian optimization


TU Berlin
Reinhold Schneider

WIAS Berlin
Martin Eigel
Manuel Marshall

FU Berlin
Jens Eisert
Christian Krumnow

KFKI Budapest
Örs Legeza

Curriculum vitae

Oct. 2017 - CurrentResearch Assistant
at Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany
Feb. 2014 - Oct. 2017PhD Student
with Prof. Schneider, Technische Universität Berlin, Germany
Oct. 2011 - Jan. 2014Master Student
at Technische Universität Berlin, Germany
Oct. 2008 - June 2009Erasmus Exchange
at Trinity College Dublin, Ireland
Oct. 2007 - Sep. 2011Bachelor Student
at Technische Universität Berlin, Germany


Journal Articles

Eigel, Martin ; Pfeffer, Max and Schneider, Reinhold: Adaptive stochastic Galerkin FEM with hierarchical tensor representations

Szalay, Szilárd ; Pfeffer, Max ; Murg, Valentin ; Barcza, Gergely ; Verstraete, Frank ; Schneider, Reinhold and Legeza, Örs: Tensor product methods and entanglement optimization for ab initio quantum chemistry
In: International journal of quantum chemistry, 115 (2015) 19, p. 1342-1391
Bibtex DOI: 10.1002/qua.24898 ARXIV:


Eigel, Martin ; Marschall, Manuel ; Pfeffer, Max and Schneider, Reinhold: Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations
Bibtex MIS-Preprint: 47/2018

Pfeffer, Max ; Seigal, Anna and Sturmfels, Bernd: Learning paths from signature tensors

Academic Theses

Pfeffer, Max: Tensor methods for the numerical solution of high-dimensional parametric partial differential equations
Dissertation, Technische Universität Berlin, 2018
Bibtex DOI: 10.14279/depositonce-7325

Pfeffer, Max: Aspects of second-order optimization on fixed rank tensor manifolds
Masterarbeit, Technische Universität Berlin, 2015

Pfeffer, Max: Dynamical low rank approximation in novel TT format
Bachelorarbeit, Technische Universität Berlin, 2011
13.12.2018, 04:45