Search

Talk

Finite element-discontinuous Galerkin method for the numerical simulation of two-phase flow

  • Miloslav Feistauer (Charles University Prague)
A3 01 (Sophus-Lie room)

Abstract

The subject of the lecture is the numerical simulation of two-phase flow of immiscible fluids. Their motion is described by the incompressible Navier-Stokes equations with piecewise constant density and viscosity. The interface between the fluids is defined with the aid of the level-set method using a transport first-order hyperbolic equation. The Navier-Stokes system equipped with initial and boundary conditions and transmission conditions on the interface between the fluids is discretized by the Taylor-Hood P2/P1 conforming finite elements in space and the second-order BDF method in time. The transport level-set problem is solved with the aid of the space-time discontinuous Galerkin method (DGM). The second part of the lecture is devoted to the theoretical analysis of the DGM for the level-set problem. Numerical experiments demonstrate the applicability, accuracy and robustness of the developed method.

Katja Heid

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of This Seminar

  • May 14, 2024 tba with Barbara Verfürth
  • May 14, 2024 tba with Lisa Hartung
  • Jun 4, 2024 tba with Vadim Gorin
  • Jun 25, 2024 tba with Paul Dario
  • Jul 16, 2024 tba with Michael Loss
  • Aug 20, 2024 tba with Tomasz Komorowski
  • Dec 3, 2024 tba with Patricia Gonçalves