Search

Workshop

The weakly random Schroedinger equation: homogenization and the kinetic limit

  • Lenya Ryzhik (Stanford University)
Felix-Klein-Hörsaal Universität Leipzig (Leipzig)

Abstract

We consider a Schroedinger equation with a weakly random time-independent potential. When the correlation function of the potential is, roughly speaking, of the Schwartz class, it has been shown by Spohn (1977), and Erdos and Yau (2001) that the kinetic limit holds -- the expectation of the phase space energy density of the solution converges to the solution of a kinetic equation. We "extend" this result to potentials whose correlation functions satisfy (in some sense) "sharp" conditions, and also prove a parallel homogenization result for slowly varying initial conditions. I will explain the quotation marks above and make some speculations on the genuinely sharp conditions on the random potential that separate various regimes. This talk is a joint work with T. Chen and T. Komorowski

conference
7/20/15 7/23/15

From Grain Boundaries to Stochastic Homogenization

Universität Leipzig Felix-Klein-Hörsaal

Valeria Hünniger

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Saskia Gutzschebauch

Max-Planck-Institut für Mathematik in den Naturwissenschaften Contact via Mail

Katja Heid

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Irene Fonseca

Carnegie Mellon University

Richard James

University of Minnesota

Stephan Luckhaus

Universität Leipzig

Felix Otto

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Peter Smereka

University of Michigan