Search

Talk

A Simplistic Model of Neural Scaling Laws: Multiperiodic Santa Fe Processes

  • Łukasz Dębowski (IPI PAN)
Live Stream

Abstract

It was observed that large language models exhibit a power-law decay of cross entropy with respect to the number of parameters and training tokens. When extrapolated literally, this decay implies that the entropy rate of natural language is zero. To understand this phenomenon - or an artifact - better, we construct a simple stationary stochastic process and its memory-based predictor that exhibit a power-law decay of cross entropy with the vanishing entropy rate. Our example is based on previously discussed Santa Fe processes, which decompose a random text into a process of narration and time-independent knowledge. Previous discussions assumed that narration is a memoryless source with Zipf's distribution. In this talk, we propose a model of narration that has the vanishing entropy rate and applies a randomly chosen deterministic sequence called a multiperiodic sequence. Under a suitable parameterization, multiperiodic sequences exhibit asymptotic relative frequencies given by Zipf's law. Remaining agnostic about the value of the entropy rate of natural language, we discuss relevance of similar constructions for language modeling.

Based on: arxiv.org/abs/2302.09049

Links

seminar
25.04.24 16.05.24

Math Machine Learning seminar MPI MIS + UCLA

MPI for Mathematics in the Sciences Live Stream

Katharina Matschke

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of This Seminar