Search

Workshop

Border subrank via a generalised Hilbert-Mumford criterion

  • Benjamin Biaggi
Felix-Klein-Hörsaal Universität Leipzig (Leipzig)

Abstract

The subrank of a bilinear map is the maximal number of independent scalar multiplications that can be linearly reduced to the bilinear map. Given a sufficiently general complex nxnxn tensor, we give an upper bound on the growth rate for the border subrank. Since this matches the growth rate for the generic (non-border) subrank recently established by Derksen-Makam-Zuiddam, we find that the generic border subrank has the same growth rate. In our proof, we use a generalisation of the Hilbert-Mumford criterion that we believe will be of independent interest. This talk is based on joint work with Chia-Yu Chang, Jan Draisma and Filip Rupniewski.

Links

conference
29.07.24 02.08.24

MEGA 2024

MPI für Mathematik in den Naturwissenschaften Leipzig (Leipzig) E1 05 (Leibniz-Saal)
Universität Leipzig (Leipzig) Felix-Klein-Hörsaal

Mirke Olschewski

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Saskia Gutzschebauch

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Christian Lehn

Ruhr-Universität Bochum

Irem Portakal

Max Planck Institute for Mathematics in the Sciences

Rainer Sinn

Universität Leipzig

Bernd Sturmfels

Max Planck Institute for Mathematics in the Sciences

Simon Telen

Max Planck Institute for Mathematics in the Sciences