Search

Workshop

Efficiently deciding if an ideal is toric after a linear coordinate change

  • Julian Vill
Felix-Klein-Hörsaal Universität Leipzig (Leipzig)

Abstract

We propose an effective algorithm that decides if a prime ideal can be made toric by a linear automorphism of the ambient space. If this is the case, the algorithm computes such a transformation explicitly. The algorithm can compute that all Gaussian graphical models on five vertices that are not toric from the start cannot be made toric by any linear change of coordinates. The same holds for all conditional independence ideals of undirected Gaussian graphical models on six vertices.

Links

conference
29.07.24 02.08.24

MEGA 2024

MPI für Mathematik in den Naturwissenschaften Leipzig (Leipzig) E1 05 (Leibniz-Saal)
Universität Leipzig (Leipzig) Felix-Klein-Hörsaal

Mirke Olschewski

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Saskia Gutzschebauch

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Christian Lehn

Ruhr-Universität Bochum

Irem Portakal

Max Planck Institute for Mathematics in the Sciences

Rainer Sinn

Universität Leipzig

Bernd Sturmfels

Max Planck Institute for Mathematics in the Sciences

Simon Telen

Max Planck Institute for Mathematics in the Sciences