Geometry of the four-point correlators

  • Chia-Kai Kuo (National Taiwan University, Taiwan)
E1 05 (Leibniz-Saal)


In this talk, I will reformulate the correlahedron as a loop-geometry over the positive space X_i X_j>0. This clarifies the connection between the geometric form and the O2222 correlator, while manifesting the partial non-renormalization theorem.

This reformulation allows us to invoke the novel idea of "chambers" to study the loop-geometry. We characterize the boundary of the chambers in each loop order and compute its loop-form. We have verified the construction up to L=3

12.02.24 16.02.24

Positive Geometry in Particle Physics and Cosmology

MPI für Mathematik in den Naturwissenschaften Leipzig (Leipzig) E1 05 (Leibniz-Saal)
Universität Leipzig (Leipzig) Hörsaal für Theoretische Physik

Mirke Olschewski

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Johannes Henn

Max Planck Institute for Physics

Bernd Sturmfels

Max-Planck-Institut für Mathematik in den Naturwissenschaften