Workshop

Matroids with coefficients and Lorentzian polynomials

  • Matt Baker
E1 05 (Leibniz-Saal)

Abstract

In the first half of the talk, I will briefly survey the theory of matroids with coefficients, which was introduced by Andreas Dress and Walter Wenzel in the 1980s and refined by the speaker and Nathan Bowler in 2016. This theory provides a unification of vector subspaces, matroids, valuated matroids, and oriented matroids. Then, in the second half, I will outline an intriguing connection between Lorentzian polynomials, as defined by Petter Brändén and June Huh, and matroids with coefficients. The connection hinges on the relationship between valuated matroids and phylogenetic trees, which Dress made use of in both his earlier work on matroid theory and his later work on mathematical biology. This is joint work with June Huh, Mario Kummer, and Oliver Lorscheid.

Saskia Gutzschebauch

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Mirke Olschewski

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Jürgen Jost

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Michael Joswig

Technical University Berlin

Peter Stadler

Leipzig University

Bernd Sturmfels

Max Planck Institute for Mathematics in the Sciences