Positive Geometry and Wonderful Polytopes

  • Sarah Brauner (MPI MiS, Leipzig)
G3 10 (Lecture hall)


A positive geometry is a certain type of space that is equipped with a canonical meromorphic form. While the construction originates in theoretical physics, many beloved objects in algebraic combinatorics and geometry turn out to be examples of positive geometries. In this talk, I will focus on one such example: polytopes. Given any convex polytope, we will study its corresponding “wonderful” polytopes, which arise from the wonderful compactification of a hyperplane arrangement in the same way that polytopes arise as the regions of a hyperplane arrangement. I will describe on-going work with Chris Eur, Lizzie Pratt, and Raluca Vlad showing that any simple wonderful polytope is a positive geometry. I aim to make this talk accessible, and no prior knowledge of positive geometries or wonderful compactifications will be assumed.

Mirke Olschewski

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of this Seminar