Search
Workshop

Resurgence and Calabi-Yau geometries

Abstract

The theory of resurgence provides powerful tools to access the non-perturbative sectors of the factorially divergent asymptotic series that arise naturally as perturbative expansions in quantum theories. After introducing the basics of resurgence, I will review recent progress on the resurgent analysis of the strong and weak coupling limits of the spectral theory of toric Calabi-Yau threefolds, which is conjecturally dual to the topological string theory compactified on the same background. In the case of the local P^2 geometry, a remarkable analytic number-theoretic structure unfolds, revealing an exact and explicit strong-weak symmetry underpinning the resurgent properties of the perturbative expansions and paving the way for further insights. This talk is based on arXiv:2212.10606. A follow-up with V. Fantini will be available soon.

conference
12.02.24 16.02.24

Positive Geometry in Particle Physics and Cosmology Positive Geometry in Particle Physics and Cosmology

MPI für Mathematik in den Naturwissenschaften Leipzig (Leipzig) E1 05 (Leibniz-Saal)
Universität Leipzig (Leipzig) Hörsaal für Theoretische Physik

Mirke Olschewski

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Johannes Henn

Max Planck Institute for Physics

Bernd Sturmfels

Max-Planck-Institut für Mathematik in den Naturwissenschaften