The Lagrangian PSS stable homotopy equivalence

  • Kenneth Blakey (MIT)
E2 10 (Leon-Lichtenstein)


Lagrangian Floer homology is a Hamiltonian isotopy invariant of Lagrangian pairs in a symplectic manifold that counts pseudo-holomorphic curves with boundary conditions on the Lagrangians, and it may be thought of as an infinite-dimensional version of Morse theory. The classical Lagrangian PSS isomorphism relates the Lagrangian Floer homology of the pair $(L,L)$ to the singular homology of $L$. In this talk we will explain the promotion of this isomorphism to an equivalence of stable homotopy types — the Lagrangian Floer homotopy type of the pair $(L,L)$ is equivalent to the stable homotopy type of $L$. Although this is the expected result, there is no written account of such an equivalence.

Katharina Matschke

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of this Seminar