We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
MiS Preprint
115/2002
A Rough Lipschitz Function
Bernd Kirchheim and Paul F. X. Müller
Abstract
A real-valued Lipschitz function on the unit interval is constructed such that $$ \sum_{k=1}^\infty \beta_f (x, 2^{-k} ) = \infty ,$$ holds for {every} $x \in [0,1]$. Here $ \beta_f (x, 2^{-k} )$ measures the distance of $f$ to the best approximating linear functions at scale $2^{-k}$ around $x$.
This problem is linked to the ongoing efforts to provide geometric understanding for J. Bourgain's results that there exist points $x\in [0,1],$ at which bounded harmonic functions have finite radial variation.