We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
We study a model of
The time horizon (interpreted as the inverse temperature) is kept fixed. We analyse the model for diverging number of Brownian motions in terms of a large deviation principle. The resulting variational formula is the positive-temperature analogue of the well known Gross-Pitaevskii formula, which approximates the ground state of a certain dilute large quantum system; the kinetic energy term of that formula is replaced by a probabilistic energy functional.
This study is a continuation of the analysis in [ABK04] where we considered the limit of diverging time (i.e., the zero-temperature limit) with fixed number of Brownian motions, followed by the limit for diverging number of motions.