We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
We consider the response of the classical Hodgkin-Huxley (HH) spatial system in the weak to intermediate noise regime near the bifurcation to repetitive spiking. The deterministic component of the input (signal) is restricted to a small segment near the origin whereas noise, with parameter
The differences in behaviours of the spike counts as noise increases beyond 0.3 are attributable to noise-induced spiking outside the signal region, which has a larger probability of occurrence when the noise is over an extended region. This aspect is investigated by ascertaining the probability of noise-induced spiking as a function of noise level and examination of the corresponding latency distributions. These findings prompt a definition of weak noise in the standard HH model as that for which the probability of secondary phenomena is negligible, which occurs when
Finally, if signal and weak (