We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
MiS Preprint
54/2011
An asymptotic error bound for testing multiple quantum hypotheses
Michael Nussbaum and Arleta Szkola
Abstract
We consider the problem of detecting the true quantum state among r possible ones, based of measurements performed on n copies of a finite dimensional quantum system. A special case is the problem of discriminating between r probability measures on a finite sample space, using n i.i.d. observations. In this classical setting it is known that the averaged error probability decreases exponentially with exponent given by the worst case binary Chernoff bound between any possible pair of the r probability measures. Define analogously the multiple quantum Chernoff bound, considering all possible pairs of states. Recently it has been shown that this asymptotic error bound is attainable in the case of r pure states, and that it is unimprovable in general. Here we extend the attainability result to a larger class of r-tuples of states which are possibly mixed, but pairwise linearly in-dependent. We also construct a quantum detector which universally attains the multiple quantum Chernoff bound up to a factor 1/3.