MiS Preprint Repository

We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV ( that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.

MiS Preprint

Induced $*$-representations and $C^*$-envelopes of some quantum $*$-algebras

Philip Dowerk and Yurii Savchuk


We consider three quantum algebras: the $q$-oscillator algebra, the Podleś sphere and the $q$-deformed enveloping algebra of $su(2).$ To each of these $*$-algebras we associate certain partial dynamical system and perform the "Mackey analysis" of $*$-representations developed in the paper "Unbounded induced representations of $*$-algebras" written by Y. Savchuk and K. Schmüdgen. As a result we get the description of "standard" irreducible $*$-representations. Further, for each of these examples we show the existence of a "$C^*$-envelope" which is canonically isomorphic to the covariance $C^*$-algebra of the partial dynamical system. Finally, for the $q$-oscillator algebra and the $q$-deformed $\mathcal{U}(su(2))$ we show the existence of "bad" representations.

MSC Codes:
20G42, 47L60, 17B37
Induced representations, Group graded algebras, Well-behaved representations, Partial action of a group, Mackey analysis, C*-envelope, q-deformed enveloping algebra, Podles sphere, q-oscillator algebra

Related publications

2013 Repository Open Access
Philip Dowerk and Yurii Savchuk

Induced \(\ast\)-representations and \(C\)*-envelopes of some quantum \(\ast\)-algebras

In: Journal of lie theory, 23 (2013) 1, pp. 229-250