We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
The linear boundary and the projective boundary have recently been introduced by Krön, Lehnert, Seifter and Teufl as a quasi-isometry invariant boundary of Cayley graphs of finitely generated groups, but also as a more general concept in metric spaces.
An element of the linear boundary of a Cayley graph is an equivalence class of forward orbits
The diameter of these boundaries is always at most 1. We show that for all finitely generated groups, the distance between the antipodal points
We also give an example of a group with elements