MiS Preprint Repository

We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV ( that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.

MiS Preprint

Lower Bound of Concurrence Based on Generalized Positive Maps

Hui-Hui Qin and Shao-Ming Fei


We study the mathematical structures and relations among some quantities in the theory of quantum entanglement, such as separability, weak Schmidt decompositions, Hadamard matrices etc. We provide an operational method to identify the Schmidt-correlated states by using weak Schmidt decomposition. We show that a mixed state is Schmidt-correlated if and only if its spectral decomposition consists of a set of pure eigenstates which can be simultaneously diagonalized in weak Schmidt decomposition, i.e. allowing for complex-valued diagonal entries. For such states, the separability is reduced to the orthogonality conditions of the vectors consisting of diagonal entries associated to the eigenstates; moreover, for a special subclass of these states this is surprisingly related to the so-called complex Hadamard matrices. Using the Hadamard matrices, we provide a variety of generalized maximal entangled Bell bases.

03.67.Mn, 03.67.-a, 02.20.Hj, 03.65.-w

Related publications

2013 Repository Open Access
Huihui Qin and Shao-Ming Fei

Lower bound of concurrence based on generalized positive maps

In: Communications in theoretical physics, 60 (2013) 6, pp. 663-666