We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
Based on a result by Taylor, Hendrickx, and Glineur (J. Optim. Theory Appl.}, 178(2):455--476, 2018) on the attainable convergence rate of gradient descent for smooth and strongly convex functions in terms of function values, an elementary convergence analysis for general descent methods with fixed step sizes is presented. It covers general variable metric methods, gradient related search directions under angle and scaling conditions, as well as inexact gradient methods. In all cases, optimal rates are obtained.