We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
MiS Preprint
18/2022
A Harnack inequality for weak solutions of the Finsler $\gamma$-Laplacian
We study regularity of the Finsler $\gamma$-Laplacian, a general class of degenerate elliptic PDEs which naturally appear in anisotropic geometric problems. Precisely, given any strictly convex family of $C^{1}$-norms $\{ \rho_{x}\}$ on $\mathbb{R}^{n}$ and $\gamma > 1$, we consider the $W^{1,\gamma}(\Omega)$ solutions of the anisotropic PDE$$\displaystyle \int_{\Omega} \left \langle \rho_{x}(Du)^{\gamma-1} (D \rho_{x})(Du), D \varphi \right \rangle = \int_{\Omega} \vec{F} \cdot D \varphi + f \varphi \qquad \forall \varphi \in W^{1,\gamma^{\prime}}_{0}(\Omega).$$Under the mild assumption $|\xi|^{-1} \rho_{x}( \xi) \in [\nu, \Lambda]$ for all $(x,\xi) \in \Omega \times \mathbb{R}^{n}$ and some $0 < \nu \le \Lambda < \infty$ we perform a Moser iteration, verifying that sub- and super-solutions satisfy one-sided $\| \cdot \|_{\infty}$ bounds, which together imply solutions are locally bounded. When $u$ is non-negative this also implies a (weak) Harnack inequality. If $f, \vec{F} \equiv 0$ weak solutions also benefit from a strong maximum principle, and a Liouville-type theorem.