Research Spotlights

Claudia Fevola — KP Solitons from Tropical Limits

Veröffentlicht am 25.08.2021

In this talk, we study solutions to the Kadomtsev-Petviashvili equation whose underlying algebraic curves undergo tropical degenerations. Riemann’s theta function becomes a finite exponential sum that is supported on a Delaunay polytope. We introduce the Hirota variety which parametrizes all tau functions arising from such a sum. After introducing solitons solutions, we compute tau functions from points on the Sato Grassmannian that represent Riemann-Roch spaces. This is joint work with Daniele Agostini, Yelena Mandelshtam and Bernd Sturmfels.

Ich bin damit einverstanden, dass mir externe Inhalte angezeigt werden. Damit können personenbezogene Daten an Drittplattformen übermittelt werden.