Search

Talk

A regularity result for elliptic equations with low-regularity divergence-free coefficients

  • Michalis Kontovourkis (MPI MiS, Leipzig)
A3 01 (Sophus-Lie room)

Abstract

We study the equation $-\Delta u + \mathbf{b}\cdot\nabla u = f$ for divergence-free vector fields $\mathbf{b}$ with low regularity. Classical theory for general (not necessarily divergence-free) $\mathbf{b}$ requires at least $\mathbf{b}\in L^n$. It has been known for some time that for divergence-free coefficients, one can get results when $\mathbf{b}\in L^{n/2 +\epsilon}$. We show that for $n \geq 5$ one can even go below the exponent $n/2$, and $\mathbf{b}\in L^{(n-1)/2 +\epsilon}$ is sufficient.

seminar
24.10.24 30.01.25

Oberseminar Analysis

MPI für Mathematik in den Naturwissenschaften Leipzig (Leipzig) E2 10 (Leon-Lichtenstein) E1 05 (Leibniz-Saal)
Universität Leipzig (Leipzig) Augusteum - A314

Anne Dornfeld

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of this Seminar