Workshop
Conditional Gradients in Machine Learning
E1 05 (Leibniz-Saal)
Abstract
Conditional Gradient methods are an important class of methods to minimize (non-)smooth convex functions over (combinatorial) polytopes. Recently these methods received a lot of attention as they allow for structured optimization and hence learning, incorporating the underlying polyhedral structure into solutions. In this talk I will give a broad overview of these methods, their applications, as well as present some recent results both in traditional optimization and learning as well as in deep learning.