Talk

Lipschitz regularity for solutions of a general class of elliptic equations

  • Greta Marino (Universität Augsburg)
E2 10 (Leon-Lichtenstein)

Abstract

We prove local Lipschitz regularity for local minimisers of W1,1(Ω)vΩF(Dv)dx where Ω\RN, N2 and F:\RN\R is a quasiuniformly convex integrand in the sense of [Kovalev and Maldonado, 2005], i.e.,a convex C1-function such that the ratio between the maximum and minimum eigenvalues of D2F is essentially bounded. This class of integrands includes the standard functions F(z)=|z|p for any p>1 and arises as the closure, with respect to a natural convergence, of the strongly elliptic integrands of the Calculus of Variations.

Upcoming Events of this Seminar

  • Montag, 14.07.25 tba with Alexandra Holzinger
  • Dienstag, 15.07.25 tba with Anna Shalova
  • Dienstag, 12.08.25 tba with Sarah-Jean Meyer
  • Freitag, 15.08.25 tba with Thomas Suchanek
  • Freitag, 22.08.25 tba with Nikolay Barashkov
  • Freitag, 29.08.25 tba with Andreas Koller