Search
Talk

Survey on aspherical manifolds

  • Wolfgang Lück (University of Bonn)
Felix-Klein-Hörsaal Universität Leipzig (Leipzig)

Abstract

We give a survey over aspherical closed manifolds. Aspherical is the purely homotopy theoretic condition that the universal covering is contractible. There are many well-known examples such as closed Riemannian manifolds with non-positive sectional curvature, but also very exotic examples such as closed aspherical manifolds that do not admit a triangulation. We discuss some prominent conjectures, e.g., the Borel Conjecture about the topological rigidity, and the Singer Conjecture about the concentration of L^2-Betti numbers in the middle dimension. The main point is to get a better understanding why the condition aspherical has so many consequences about the topology, geometry, algebra, and analysis about such manifolds.

Felix Klein Colloquium lettering, with a portrait of Felix Klein
colloquium
26.11.25

Felix Klein Colloquium Felix Klein Colloquium

Universität Leipzig Felix-Klein-Hörsaal

Upcoming Events of this Colloquium