We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
There are several generalizations of the classical theory of Sobolev spaces as they are necessary for the applications to Carnot-Carathéodory spaces, subelliptic equations, quasiconformal mappings on Carnot groups and more general Loewner spaces, analysis on topological manifolds, potential theory on infinite graphs, analysis on fractals and the theory of Dirichlet forms.
The aim of this paper is to present a unified approach to the theory of Sobolev spaces that covers applications to many of those areas. The variety of different areas of applications forces a very general setting.
We are given a metric space X equipped with a doubling measure
holds, where r is the radius of B and