We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
We are interested in the thin-film equation with zero-contact angle and quadratic mobility, modeling the spreading of a thin liquid film, driven by capillarity and limited by viscosity in conjunction with a Navier-slip condition at the substrate. This degenerate fourth-order parabolic equation has the contact line as a free boundary. From the analysis of the self-similar source-type solution, one expects that the solution is smooth only as a function of two variables
Here, we prove global existence and uniqueness for one-dimensional initial data that are close to traveling waves. The main ingredients are maximal regularity estimates in weighted