Search

MiS Preprint Repository

We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.

MiS Preprint
100/2014

Corrector estimates for elliptic systems with random periodic coefficients

Peter Bella and Felix Otto

Abstract

We consider an elliptic system of equations on the torus $\left[ -\frac{L}{2}, \frac{L}{2} \right)^d$ with random coefficients $A$, that are assumed to be coercive and stationary. Using two different approaches we obtain moment bounds on the gradient of the corrector, independent of the domain size $L$. In the first approach we use Green function representation. For that we require $A$ to be locally H\"older continuous and distribution of $A$ to satisfy Logarithmic Sobolev inequality. The second method works for non-smooth (possibly discontinuous) coefficients, and it requires that statistics of $A$ satisfies Spectral Gap estimate.

Received:
25.09.14
Published:
01.10.14

Related publications

inJournal
2016 Repository Open Access
Peter Bella and Felix Otto

Corrector estimates for elliptic systems with random periodic coefficients

In: Multiscale modeling and simulation, 14 (2016) 4, pp. 1434-1462