Search

Talk

Concentration vs regularity in the Navier-Stokes equations

  • Christophe Prange (Université de Bordeaux)
A3 01 (Sophus-Lie room)

Abstract

The three-dimensional Navier-Stokes equations describe the motion of incompressible viscous fluids. They date back to the 19th century. A breakthrough in their mathematical analysis came from the pioneering work of Leray in 1934. As far as we know, many questions about the behavior of solutions remain open, notably the uniqueness of weak solutions and their regularity or finite time blow-up.

In this talk, we will survey some aspects of the regularity theory for the Navier-Stokes equations. The other side of the coin is finding necessary conditions for solutions developing finite time singularities. In a recent work with Y. Maekawa (Kyoto University) and H. Miura (Tokyo Tech) we found a concentration phenomenon for blowing-up solutions. We will explain this result and a strengthened version, which is work in progress with T. Barker (ENS Paris).

Katja Heid

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of This Seminar

  • May 14, 2024 tba with Barbara Verfürth
  • May 14, 2024 tba with Lisa Hartung
  • Jun 4, 2024 tba with Vadim Gorin
  • Jun 25, 2024 tba with Paul Dario
  • Jul 16, 2024 tba with Michael Loss
  • Aug 20, 2024 tba with Tomasz Komorowski
  • Dec 3, 2024 tba with Patricia Gonçalves