Address:
Inselstraße 22
04103 Leipzig
Germany

Phone:
+49 (0) 341 - 9959 - 50

Fax:
+49 (0) 341 - 9959 - 658

Contact by E-mail

How to find our institute


@mpiMathSci
Facebook Twitter Instagram
      YouTube Linkedin

Welcome to the MPI MiS

Fundamental questions arising from natural and engineering sciences and economics have always inspired mathematicians to search for new mathematical structures and methods. The interaction between mathematics and the sciences forms the central point of research at the Max Planck Institute for Mathematics in the Sciences (MiS) in Leipzig.

Can optical art relieve or cure certain mental illnesses? (29.11.2021)

This question aroused the curiosity of artist Youri Messen-Jaschin after noticing peculiar effects on some people appreciating his art. He initiated a book project combining optical art and scientific research to which our group leader Noémie Combe contributed a mathematical point of view on optical illusions.

Read more >>>


25 years of MiS - Wolfgang Hackbusch and the world of hierarchical matrices (24.11.2021)

In the latest iteration of our 25 years of MiS column, we feature our director emeritus Wolfgang Hackbusch and look at a critical component of his work. Hierarchical Matrices are a fundamental mathematical tool to solve large systems of equations with various unknowns that are ubiquitous in the natural sciences and data science.

Calendar





Welcome

  • Bogdan Raita (03.12.)
  • Alvaro Diaz-Ruelas (01.12.)
  • Christiaan Van De Ven (01.12.)

more information >>>

Recent results

  • El Maazouz, Y. ; Nebe, G. and M. Stanojkovski: Bolytrope orders. [link]
  • Kahrobaei, D. and M. Stanojkovski: Cryptographic multilinear maps using pro-\(_p\) groups. [link]
  • Améndola, C. ; Gustafsson, L. ; Kohn, K. ; Marigliano, O. and A. Seigal: The maximum likelihood degree of linear spaces of symmetric matrices. [link]
  • Cid-Ruiz, Y.: Equations and multidegrees for inverse symmetric matrix pairs. [link]
  • Al Ahmadieh, A. ; Kummer, M. and M.-S. Sorea: A generalization of the space of complete quadrics. [link]
  • Davies, I. and O. Marigliano: Coloured graphical models and their symmetries. [link]
  • Dye, S. ; Kohn, K. ; Rydell, F. and R. Sinn: Maximum likelihood estimation for nets of conics. [link]
  • Eur, C. ; Fife, T. ; Samper, J. A. and T. Seynnaeve: Reciprocal maximum likelihood degrees of diagonal linear concentration models. [link]
  • Jiang, Y. ; Kohn, K. and R. Winter: Linear spaces of symmetric matrices with non-maximal maximum likelihood degree. [link]
  • Brysiewicz, T. ; Kozhasov, K. and M. Kummer: Nodes on quintic spectrahedra. [link]
  • Brysiewicz, T. ; Fevola, C. and B. Sturmfels: Tangent quadrics in real 3-space. [link]
  • Boege, T. ; Coons, J. I. ; Eur, C. ; Maraj, A. and F. Röttger: Reciprocal maximum likelihood degrees of Brownian motion tree models. [link]
  • more recent papers >>>




07.12.2021, 11:46