Search

MiS Preprint Repository

Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.

MiS Preprint
36/2013

Alternating minimal energy methods for linear systems in higher dimensions. Part II: Faster algorithm and application to nonsymmetric systems

Sergey Dolgov and Dmitry Savostyanov

Abstract

In this paper we accomplish the development of the fast rank-adaptive solver for tensor--structured symmetric positive definite linear systems in higher dimensions. In the previous article this problem is approached by alternating minimization of the energy function, which we combine with steps of the basis expansion in accordance with the steepest descent algorithm.

In this paper we combine the same steps in such a way that the resulted algorithm works with one or two neighboring cores at a time. The recurrent interpretation of the algorithm allows to prove the global convergence and estimate the convergence rate. We also propose several strategies, both rigorous and heuristic, to compute new subspaces for the basis enrichment in a more efficient way.

We test the algorithm on a number of high-dimensional problems, including the non-symmetrical Fokker-Planck and chemical master equations, for which the efficiency of the method is not fully supported by the theory. In all examples we observe a convincing fast convergence and high efficiency of the proposed method.

Received:
Apr 3, 2013
Published:
Apr 4, 2013
Keywords:
high--dimensional problems, tensor train format, ALS, steepest descent, superfast algorithms, DMRG

Related publications

Preprint
2013 Repository Open Access
Sergey Dolgov and Dmitry V. Savostyanov

Alternating minimal energy methods for linear systems in higher dimensions. Pt. 2 : Faster algorithm and application to nonsymmetric systems