Preprint 47/2004

H2-matrix arithmetics in linear complexity

Steffen Börm

Contact the author: Please use for correspondence this email.
Submission date: 22. Jul. 2004 (revised version: September 2005)
Pages: 32
published in: Computing, 77 (2006) 1, p. 1-28 
DOI number (of the published article): 10.1007/s00607-005-0146-y
Bibtex
MSC-Numbers: 65F30
Keywords and phrases: hierarchical matrices, formatted matrix operations
Download full preprint: PDF (326 kB), PS ziped (253 kB)

Abstract:
For hierarchical matrices, approximations of the matrix-matrix sum and product can be computed in almost linear complexity, and using these matrix operations it is possible to construct the matrix inverse, efficient preconditioners or solutions of certain matrix equations.

formula10-matrices are a variant of hierarchical matrices that allow us to perform certain operations, like the matrix-vector product, in ``true'' linear complexity, but until now it was not clear whether matrix arithmetic operations could also reach this, in some sense optimal, complexity.

We present algorithms that compute the best-approximation of the sum and product of two formula10-matrices in a prescribed formula10-matrix format, and we prove that this computation can be accomplished in linear complexity.

03.07.2017, 01:41